Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 12 February 2024

Education reform and change driven by digital technology: a bibliometric study from a global perspective

  • Chengliang Wang 1 ,
  • Xiaojiao Chen 1 ,
  • Teng Yu   ORCID: orcid.org/0000-0001-5198-7261 2 , 3 ,
  • Yidan Liu 1 , 4 &
  • Yuhui Jing 1  

Humanities and Social Sciences Communications volume  11 , Article number:  256 ( 2024 ) Cite this article

9089 Accesses

3 Citations

1 Altmetric

Metrics details

  • Development studies
  • Science, technology and society

Amidst the global digital transformation of educational institutions, digital technology has emerged as a significant area of interest among scholars. Such technologies have played an instrumental role in enhancing learner performance and improving the effectiveness of teaching and learning. These digital technologies also ensure the sustainability and stability of education during the epidemic. Despite this, a dearth of systematic reviews exists regarding the current state of digital technology application in education. To address this gap, this study utilized the Web of Science Core Collection as a data source (specifically selecting the high-quality SSCI and SCIE) and implemented a topic search by setting keywords, yielding 1849 initial publications. Furthermore, following the PRISMA guidelines, we refined the selection to 588 high-quality articles. Using software tools such as CiteSpace, VOSviewer, and Charticulator, we reviewed these 588 publications to identify core authors (such as Selwyn, Henderson, Edwards), highly productive countries/regions (England, Australia, USA), key institutions (Monash University, Australian Catholic University), and crucial journals in the field ( Education and Information Technologies , Computers & Education , British Journal of Educational Technology ). Evolutionary analysis reveals four developmental periods in the research field of digital technology education application: the embryonic period, the preliminary development period, the key exploration, and the acceleration period of change. The study highlights the dual influence of technological factors and historical context on the research topic. Technology is a key factor in enabling education to transform and upgrade, and the context of the times is an important driving force in promoting the adoption of new technologies in the education system and the transformation and upgrading of education. Additionally, the study identifies three frontier hotspots in the field: physical education, digital transformation, and professional development under the promotion of digital technology. This study presents a clear framework for digital technology application in education, which can serve as a valuable reference for researchers and educational practitioners concerned with digital technology education application in theory and practice.

Similar content being viewed by others

educational technology research paper

A bibliometric analysis of knowledge mapping in Chinese education digitalization research from 2012 to 2022

educational technology research paper

Digital transformation and digital literacy in the context of complexity within higher education institutions: a systematic literature review

educational technology research paper

Education big data and learning analytics: a bibliometric analysis

Introduction.

Digital technology has become an essential component of modern education, facilitating the extension of temporal and spatial boundaries and enriching the pedagogical contexts (Selwyn and Facer, 2014 ). The advent of mobile communication technology has enabled learning through social media platforms (Szeto et al. 2015 ; Pires et al. 2022 ), while the advancement of augmented reality technology has disrupted traditional conceptions of learning environments and spaces (Perez-Sanagustin et al., 2014 ; Kyza and Georgiou, 2018 ). A wide range of digital technologies has enabled learning to become a norm in various settings, including the workplace (Sjöberg and Holmgren, 2021 ), home (Nazare et al. 2022 ), and online communities (Tang and Lam, 2014 ). Education is no longer limited to fixed locations and schedules, but has permeated all aspects of life, allowing learning to continue at any time and any place (Camilleri and Camilleri, 2016 ; Selwyn and Facer, 2014 ).

The advent of digital technology has led to the creation of several informal learning environments (Greenhow and Lewin, 2015 ) that exhibit divergent form, function, features, and patterns in comparison to conventional learning environments (Nygren et al. 2019 ). Consequently, the associated teaching and learning processes, as well as the strategies for the creation, dissemination, and acquisition of learning resources, have undergone a complete overhaul. The ensuing transformations have posed a myriad of novel issues, such as the optimal structuring of teaching methods by instructors and the adoption of appropriate learning strategies by students in the new digital technology environment. Consequently, an examination of the principles that underpin effective teaching and learning in this environment is a topic of significant interest to numerous scholars engaged in digital technology education research.

Over the course of the last two decades, digital technology has made significant strides in the field of education, notably in extending education time and space and creating novel educational contexts with sustainability. Despite research attempts to consolidate the application of digital technology in education, previous studies have only focused on specific aspects of digital technology, such as Pinto and Leite’s ( 2020 ) investigation into digital technology in higher education and Mustapha et al.’s ( 2021 ) examination of the role and value of digital technology in education during the pandemic. While these studies have provided valuable insights into the practical applications of digital technology in particular educational domains, they have not comprehensively explored the macro-mechanisms and internal logic of digital technology implementation in education. Additionally, these studies were conducted over a relatively brief period, making it challenging to gain a comprehensive understanding of the macro-dynamics and evolutionary process of digital technology in education. Some studies have provided an overview of digital education from an educational perspective but lack a precise understanding of technological advancement and change (Yang et al. 2022 ). Therefore, this study seeks to employ a systematic scientific approach to collate relevant research from 2000 to 2022, comprehend the internal logic and development trends of digital technology in education, and grasp the outstanding contribution of digital technology in promoting the sustainability of education in time and space. In summary, this study aims to address the following questions:

RQ1: Since the turn of the century, what is the productivity distribution of the field of digital technology education application research in terms of authorship, country/region, institutional and journal level?

RQ2: What is the development trend of research on the application of digital technology in education in the past two decades?

RQ3: What are the current frontiers of research on the application of digital technology in education?

Literature review

Although the term “digital technology” has become ubiquitous, a unified definition has yet to be agreed upon by scholars. Because the meaning of the word digital technology is closely related to the specific context. Within the educational research domain, Selwyn’s ( 2016 ) definition is widely favored by scholars (Pinto and Leite, 2020 ). Selwyn ( 2016 ) provides a comprehensive view of various concrete digital technologies and their applications in education through ten specific cases, such as immediate feedback in classes, orchestrating teaching, and community learning. Through these specific application scenarios, Selwyn ( 2016 ) argues that digital technology encompasses technologies associated with digital devices, including but not limited to tablets, smartphones, computers, and social media platforms (such as Facebook and YouTube). Furthermore, Further, the behavior of accessing the internet at any location through portable devices can be taken as an extension of the behavior of applying digital technology.

The evolving nature of digital technology has significant implications in the field of education. In the 1890s, the focus of digital technology in education was on comprehending the nuances of digital space, digital culture, and educational methodologies, with its connotations aligned more towards the idea of e-learning. The advent and subsequent widespread usage of mobile devices since the dawn of the new millennium have been instrumental in the rapid expansion of the concept of digital technology. Notably, mobile learning devices such as smartphones and tablets, along with social media platforms, have become integral components of digital technology (Conole and Alevizou, 2010 ; Batista et al. 2016 ). In recent times, the burgeoning application of AI technology in the education sector has played a vital role in enriching the digital technology lexicon (Banerjee et al. 2021 ). ChatGPT, for instance, is identified as a novel educational technology that has immense potential to revolutionize future education (Rospigliosi, 2023 ; Arif, Munaf and Ul-Haque, 2023 ).

Pinto and Leite ( 2020 ) conducted a comprehensive macroscopic survey of the use of digital technologies in the education sector and identified three distinct categories, namely technologies for assessment and feedback, mobile technologies, and Information Communication Technologies (ICT). This classification criterion is both macroscopic and highly condensed. In light of the established concept definitions of digital technology in the educational research literature, this study has adopted the characterizations of digital technology proposed by Selwyn ( 2016 ) and Pinto and Leite ( 2020 ) as crucial criteria for analysis and research inclusion. Specifically, this criterion encompasses several distinct types of digital technologies, including Information and Communication Technologies (ICT), Mobile tools, eXtended Reality (XR) Technologies, Assessment and Feedback systems, Learning Management Systems (LMS), Publish and Share tools, Collaborative systems, Social media, Interpersonal Communication tools, and Content Aggregation tools.

Methodology and materials

Research method: bibliometric.

The research on econometric properties has been present in various aspects of human production and life, yet systematic scientific theoretical guidance has been lacking, resulting in disorganization. In 1969, British scholar Pritchard ( 1969 ) proposed “bibliometrics,” which subsequently emerged as an independent discipline in scientific quantification research. Initially, Pritchard defined bibliometrics as “the application of mathematical and statistical methods to books and other media of communication,” however, the definition was not entirely rigorous. To remedy this, Hawkins ( 2001 ) expanded Pritchard’s definition to “the quantitative analysis of the bibliographic features of a body of literature.” De Bellis further clarified the objectives of bibliometrics, stating that it aims to analyze and identify patterns in literature, such as the most productive authors, institutions, countries, and journals in scientific disciplines, trends in literary production over time, and collaboration networks (De Bellis, 2009 ). According to Garfield ( 2006 ), bibliometric research enables the examination of the history and structure of a field, the flow of information within the field, the impact of journals, and the citation status of publications over a longer time scale. All of these definitions illustrate the unique role of bibliometrics as a research method for evaluating specific research fields.

This study uses CiteSpace, VOSviewer, and Charticulator to analyze data and create visualizations. Each of these three tools has its own strengths and can complement each other. CiteSpace and VOSviewer use set theory and probability theory to provide various visualization views in fields such as keywords, co-occurrence, and co-authors. They are easy to use and produce visually appealing graphics (Chen, 2006 ; van Eck and Waltman, 2009 ) and are currently the two most widely used bibliometric tools in the field of visualization (Pan et al. 2018 ). In this study, VOSviewer provided the data necessary for the Performance Analysis; Charticulator was then used to redraw using the tabular data exported from VOSviewer (for creating the chord diagram of country collaboration); this was to complement the mapping process, while CiteSpace was primarily utilized to generate keyword maps and conduct burst word analysis.

Data retrieval

This study selected documents from the Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI) in the Web of Science Core Collection as the data source, for the following reasons:

(1) The Web of Science Core Collection, as a high-quality digital literature resource database, has been widely accepted by many researchers and is currently considered the most suitable database for bibliometric analysis (Jing et al. 2023a ). Compared to other databases, Web of Science provides more comprehensive data information (Chen et al. 2022a ), and also provides data formats suitable for analysis using VOSviewer and CiteSpace (Gaviria-Marin et al. 2019 ).

(2) The application of digital technology in the field of education is an interdisciplinary research topic, involving technical knowledge literature belonging to the natural sciences and education-related literature belonging to the social sciences. Therefore, it is necessary to select Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI) as the sources of research data, ensuring the comprehensiveness of data while ensuring the reliability and persuasiveness of bibliometric research (Hwang and Tsai, 2011 ; Wang et al. 2022 ).

After establishing the source of research data, it is necessary to determine a retrieval strategy (Jing et al. 2023b ). The choice of a retrieval strategy should consider a balance between the breadth and precision of the search formula. That is to say, it should encompass all the literature pertaining to the research topic while excluding irrelevant documents as much as possible. In light of this, this study has set a retrieval strategy informed by multiple related papers (Mustapha et al. 2021 ; Luo et al. 2021 ). The research by Mustapha et al. ( 2021 ) guided us in selecting keywords (“digital” AND “technolog*”) to target digital technology, while Luo et al. ( 2021 ) informed the selection of terms (such as “instruct*,” “teach*,” and “education”) to establish links with the field of education. Then, based on the current application of digital technology in the educational domain and the scope of selection criteria, we constructed the final retrieval strategy. Following the general patterns of past research (Jing et al. 2023a , 2023b ), we conducted a specific screening using the topic search (Topics, TS) function in Web of Science. For the specific criteria used in the screening for this study, please refer to Table 1 .

Literature screening

Literature acquired through keyword searches may contain ostensibly related yet actually unrelated works. Therefore, to ensure the close relevance of literature included in the analysis to the research topic, it is often necessary to perform a manual screening process to identify the final literature to be analyzed, subsequent to completing the initial literature search.

The manual screening process consists of two steps. Initially, irrelevant literature is weeded out based on the title and abstract, with two members of the research team involved in this phase. This stage lasted about one week, resulting in 1106 articles being retained. Subsequently, a comprehensive review of the full text is conducted to accurately identify the literature required for the study. To carry out the second phase of manual screening effectively and scientifically, and to minimize the potential for researcher bias, the research team established the inclusion criteria presented in Table 2 . Three members were engaged in this phase, which took approximately 2 weeks, culminating in the retention of 588 articles after meticulous screening. The entire screening process is depicted in Fig. 1 , adhering to the PRISMA guidelines (Page et al. 2021 ).

figure 1

The process of obtaining and filtering the necessary literature data for research.

Data standardization

Nguyen and Hallinger ( 2020 ) pointed out that raw data extracted from scientific databases often contains multiple expressions of the same term, and not addressing these synonymous expressions could affect research results in bibliometric analysis. For instance, in the original data, the author list may include “Tsai, C. C.” and “Tsai, C.-C.”, while the keyword list may include “professional-development” and “professional development,” which often require merging. Therefore, before analyzing the selected literature, a data disambiguation process is necessary to standardize the data (Strotmann and Zhao, 2012 ; Van Eck and Waltman, 2019 ). This study adopted the data standardization process proposed by Taskin and Al ( 2019 ), mainly including the following standardization operations:

Firstly, the author and source fields in the data are corrected and standardized to differentiate authors with similar names.

Secondly, the study checks whether the journals to which the literature belongs have been renamed in the past over 20 years, so as to avoid the influence of periodical name change on the analysis results.

Finally, the keyword field is standardized by unifying parts of speech and singular/plural forms of keywords, which can help eliminate redundant entries in the knowledge graph.

Performance analysis (RQ1)

This section offers a thorough and detailed analysis of the state of research in the field of digital technology education. By utilizing descriptive statistics and visual maps, it provides a comprehensive overview of the development trends, authors, countries, institutions, and journal distribution within the field. The insights presented in this section are of great significance in advancing our understanding of the current state of research in this field and identifying areas for further investigation. The use of visual aids to display inter-country cooperation and the evolution of the field adds to the clarity and coherence of the analysis.

Time trend of the publications

To understand a research field, it is first necessary to understand the most basic quantitative information, among which the change in the number of publications per year best reflects the development trend of a research field. Figure 2 shows the distribution of publication dates.

figure 2

Time trend of the publications on application of digital technology in education.

From the Fig. 2 , it can be seen that the development of this field over the past over 20 years can be roughly divided into three stages. The first stage was from 2000 to 2007, during which the number of publications was relatively low. Due to various factors such as technological maturity, the academic community did not pay widespread attention to the role of digital technology in expanding the scope of teaching and learning. The second stage was from 2008 to 2019, during which the overall number of publications showed an upward trend, and the development of the field entered an accelerated period, attracting more and more scholars’ attention. The third stage was from 2020 to 2022, during which the number of publications stabilized at around 100. During this period, the impact of the pandemic led to a large number of scholars focusing on the role of digital technology in education during the pandemic, and research on the application of digital technology in education became a core topic in social science research.

Analysis of authors

An analysis of the author’s publication volume provides information about the representative scholars and core research strengths of a research area. Table 3 presents information on the core authors in adaptive learning research, including name, publication number, and average number of citations per article (based on the analysis and statistics from VOSviewer).

Variations in research foci among scholars abound. Within the field of digital technology education application research over the past two decades, Neil Selwyn stands as the most productive author, having published 15 papers garnering a total of 1027 citations, resulting in an average of 68.47 citations per paper. As a Professor at the Faculty of Education at Monash University, Selwyn concentrates on exploring the application of digital technology in higher education contexts (Selwyn et al. 2021 ), as well as related products in higher education such as Coursera, edX, and Udacity MOOC platforms (Bulfin et al. 2014 ). Selwyn’s contributions to the educational sociology perspective include extensive research on the impact of digital technology on education, highlighting the spatiotemporal extension of educational processes and practices through technological means as the greatest value of educational technology (Selwyn, 2012 ; Selwyn and Facer, 2014 ). In addition, he provides a blueprint for the development of future schools in 2030 based on the present impact of digital technology on education (Selwyn et al. 2019 ). The second most productive author in this field, Henderson, also offers significant contributions to the understanding of the important value of digital technology in education, specifically in the higher education setting, with a focus on the impact of the pandemic (Henderson et al. 2015 ; Cohen et al. 2022 ). In contrast, Edwards’ research interests focus on early childhood education, particularly the application of digital technology in this context (Edwards, 2013 ; Bird and Edwards, 2015 ). Additionally, on the technical level, Edwards also mainly prefers digital game technology, because it is a digital technology that children are relatively easy to accept (Edwards, 2015 ).

Analysis of countries/regions and organization

The present study aimed to ascertain the leading countries in digital technology education application research by analyzing 75 countries related to 558 works of literature. Table 4 depicts the top ten countries that have contributed significantly to this field in terms of publication count (based on the analysis and statistics from VOSviewer). Our analysis of Table 4 data shows that England emerged as the most influential country/region, with 92 published papers and 2401 citations. Australia and the United States secured the second and third ranks, respectively, with 90 papers (2187 citations) and 70 papers (1331 citations) published. Geographically, most of the countries featured in the top ten publication volumes are situated in Australia, North America, and Europe, with China being the only exception. Notably, all these countries, except China, belong to the group of developed nations, suggesting that economic strength is a prerequisite for fostering research in the digital technology education application field.

This study presents a visual representation of the publication output and cooperation relationships among different countries in the field of digital technology education application research. Specifically, a chord diagram is employed to display the top 30 countries in terms of publication output, as depicted in Fig. 3 . The chord diagram is composed of nodes and chords, where the nodes are positioned as scattered points along the circumference, and the length of each node corresponds to the publication output, with longer lengths indicating higher publication output. The chords, on the other hand, represent the cooperation relationships between any two countries, and are weighted based on the degree of closeness of the cooperation, with wider chords indicating closer cooperation. Through the analysis of the cooperation relationships, the findings suggest that the main publishing countries in this field are engaged in cooperative relationships with each other, indicating a relatively high level of international academic exchange and research internationalization.

figure 3

In the diagram, nodes are scattered along the circumference of a circle, with the length of each node representing the volume of publications. The weighted arcs connecting any two points on the circle are known as chords, representing the collaborative relationship between the two, with the width of the arc indicating the closeness of the collaboration.

Further analyzing Fig. 3 , we can extract more valuable information, enabling a deeper understanding of the connections between countries in the research field of digital technology in educational applications. It is evident that certain countries, such as the United States, China, and England, display thicker connections, indicating robust collaborative relationships in terms of productivity. These thicker lines signify substantial mutual contributions and shared objectives in certain sectors or fields, highlighting the interconnectedness and global integration in these areas. By delving deeper, we can also explore potential future collaboration opportunities through the chord diagram, identifying possible partners to propel research and development in this field. In essence, the chord diagram successfully encapsulates and conveys the multi-dimensionality of global productivity and cooperation, allowing for a comprehensive understanding of the intricate inter-country relationships and networks in a global context, providing valuable guidance and insights for future research and collaborations.

An in-depth examination of the publishing institutions is provided in Table 5 , showcasing the foremost 10 institutions ranked by their publication volume. Notably, Monash University and Australian Catholic University, situated in Australia, have recorded the most prolific publications within the digital technology education application realm, with 22 and 10 publications respectively. Moreover, the University of Oslo from Norway is featured among the top 10 publishing institutions, with an impressive average citation count of 64 per publication. It is worth highlighting that six institutions based in the United Kingdom were also ranked within the top 10 publishing institutions, signifying their leading position in this area of research.

Analysis of journals

Journals are the main carriers for publishing high-quality papers. Some scholars point out that the two key factors to measure the influence of journals in the specified field are the number of articles published and the number of citations. The more papers published in a magazine and the more citations, the greater its influence (Dzikowski, 2018 ). Therefore, this study utilized VOSviewer to statistically analyze the top 10 journals with the most publications in the field of digital technology in education and calculated the average citations per article (see Table 6 ).

Based on Table 6 , it is apparent that the highest number of articles in the domain of digital technology in education research were published in Education and Information Technologies (47 articles), Computers & Education (34 articles), and British Journal of Educational Technology (32 articles), indicating a higher article output compared to other journals. This underscores the fact that these three journals concentrate more on the application of digital technology in education. Furthermore, several other journals, such as Technology Pedagogy and Education and Sustainability, have published more than 15 articles in this domain. Sustainability represents the open access movement, which has notably facilitated research progress in this field, indicating that the development of open access journals in recent years has had a significant impact. Although there is still considerable disagreement among scholars on the optimal approach to achieve open access, the notion that research outcomes should be accessible to all is widely recognized (Huang et al. 2020 ). On further analysis of the research fields to which these journals belong, except for Sustainability, it is evident that they all pertain to educational technology, thus providing a qualitative definition of the research area of digital technology education from the perspective of journals.

Temporal keyword analysis: thematic evolution (RQ2)

The evolution of research themes is a dynamic process, and previous studies have attempted to present the developmental trajectory of fields by drawing keyword networks in phases (Kumar et al. 2021 ; Chen et al. 2022b ). To understand the shifts in research topics across different periods, this study follows past research and, based on the significant changes in the research field and corresponding technological advancements during the outlined periods, divides the timeline into four stages (the first stage from January 2000 to December 2005, the second stage from January 2006 to December 2011, the third stage from January 2012 to December 2017; and the fourth stage from January 2018 to December 2022). The division into these four stages was determined through a combination of bibliometric analysis and literature review, which presented a clear trajectory of the field’s development. The research analyzes the keyword networks for each time period (as there are only three articles in the first stage, it was not possible to generate an appropriate keyword co-occurrence map, hence only the keyword co-occurrence maps from the second to the fourth stages are provided), to understand the evolutionary track of the digital technology education application research field over time.

2000.1–2005.12: germination period

From January 2000 to December 2005, digital technology education application research was in its infancy. Only three studies focused on digital technology, all of which were related to computers. Due to the popularity of computers, the home became a new learning environment, highlighting the important role of digital technology in expanding the scope of learning spaces (Sutherland et al. 2000 ). In specific disciplines and contexts, digital technology was first favored in medical clinical practice, becoming an important tool for supporting the learning of clinical knowledge and practice (Tegtmeyer et al. 2001 ; Durfee et al. 2003 ).

2006.1–2011.12: initial development period

Between January 2006 and December 2011, it was the initial development period of digital technology education research. Significant growth was observed in research related to digital technology, and discussions and theoretical analyses about “digital natives” emerged. During this phase, scholars focused on the debate about “how to use digital technology reasonably” and “whether current educational models and school curriculum design need to be adjusted on a large scale” (Bennett and Maton, 2010 ; Selwyn, 2009 ; Margaryan et al. 2011 ). These theoretical and speculative arguments provided a unique perspective on the impact of cognitive digital technology on education and teaching. As can be seen from the vocabulary such as “rethinking”, “disruptive pedagogy”, and “attitude” in Fig. 4 , many scholars joined the calm reflection and analysis under the trend of digital technology (Laurillard, 2008 ; Vratulis et al. 2011 ). During this phase, technology was still undergoing dramatic changes. The development of mobile technology had already caught the attention of many scholars (Wong et al. 2011 ), but digital technology represented by computers was still very active (Selwyn et al. 2011 ). The change in technological form would inevitably lead to educational transformation. Collins and Halverson ( 2010 ) summarized the prospects and challenges of using digital technology for learning and educational practices, believing that digital technology would bring a disruptive revolution to the education field and bring about a new educational system. In addition, the term “teacher education” in Fig. 4 reflects the impact of digital technology development on teachers. The rapid development of technology has widened the generation gap between teachers and students. To ensure smooth communication between teachers and students, teachers must keep up with the trend of technological development and establish a lifelong learning concept (Donnison, 2009 ).

figure 4

In the diagram, each node represents a keyword, with the size of the node indicating the frequency of occurrence of the keyword. The connections represent the co-occurrence relationships between keywords, with a higher frequency of co-occurrence resulting in tighter connections.

2012.1–2017.12: critical exploration period

During the period spanning January 2012 to December 2017, the application of digital technology in education research underwent a significant exploration phase. As can be seen from Fig. 5 , different from the previous stage, the specific elements of specific digital technology have started to increase significantly, including the enrichment of technological contexts, the greater variety of research methods, and the diversification of learning modes. Moreover, the temporal and spatial dimensions of the learning environment were further de-emphasized, as noted in previous literature (Za et al. 2014 ). Given the rapidly accelerating pace of technological development, the education system in the digital era is in urgent need of collaborative evolution and reconstruction, as argued by Davis, Eickelmann, and Zaka ( 2013 ).

figure 5

In the domain of digital technology, social media has garnered substantial scholarly attention as a promising avenue for learning, as noted by Pasquini and Evangelopoulos ( 2016 ). The implementation of social media in education presents several benefits, including the liberation of education from the restrictions of physical distance and time, as well as the erasure of conventional educational boundaries. The user-generated content (UGC) model in social media has emerged as a crucial source for knowledge creation and distribution, with the widespread adoption of mobile devices. Moreover, social networks have become an integral component of ubiquitous learning environments (Hwang et al. 2013 ). The utilization of social media allows individuals to function as both knowledge producers and recipients, which leads to a blurring of the conventional roles of learners and teachers. On mobile platforms, the roles of learners and teachers are not fixed, but instead interchangeable.

In terms of research methodology, the prevalence of empirical studies with survey designs in the field of educational technology during this period is evident from the vocabulary used, such as “achievement,” “acceptance,” “attitude,” and “ict.” in Fig. 5 . These studies aim to understand learners’ willingness to adopt and attitudes towards new technologies, and some seek to investigate the impact of digital technologies on learning outcomes through quasi-experimental designs (Domínguez et al. 2013 ). Among these empirical studies, mobile learning emerged as a hot topic, and this is not surprising. First, the advantages of mobile learning environments over traditional ones have been empirically demonstrated (Hwang et al. 2013 ). Second, learners born around the turn of the century have been heavily influenced by digital technologies and have developed their own learning styles that are more open to mobile devices as a means of learning. Consequently, analyzing mobile learning as a relatively novel mode of learning has become an important issue for scholars in the field of educational technology.

The intervention of technology has led to the emergence of several novel learning modes, with the blended learning model being the most representative one in the current phase. Blended learning, a novel concept introduced in the information age, emphasizes the integration of the benefits of traditional learning methods and online learning. This learning mode not only highlights the prominent role of teachers in guiding, inspiring, and monitoring the learning process but also underlines the importance of learners’ initiative, enthusiasm, and creativity in the learning process. Despite being an early conceptualization, blended learning’s meaning has been expanded by the widespread use of mobile technology and social media in education. The implementation of new technologies, particularly mobile devices, has resulted in the transformation of curriculum design and increased flexibility and autonomy in students’ learning processes (Trujillo Maza et al. 2016 ), rekindling scholarly attention to this learning mode. However, some scholars have raised concerns about the potential drawbacks of the blended learning model, such as its significant impact on the traditional teaching system, the lack of systematic coping strategies and relevant policies in several schools and regions (Moskal et al. 2013 ).

2018.1–2022.12: accelerated transformation period

The period spanning from January 2018 to December 2022 witnessed a rapid transformation in the application of digital technology in education research. The field of digital technology education research reached a peak period of publication, largely influenced by factors such as the COVID-19 pandemic (Yu et al. 2023 ). Research during this period was built upon the achievements, attitudes, and social media of the previous phase, and included more elements that reflect the characteristics of this research field, such as digital literacy, digital competence, and professional development, as depicted in Fig. 6 . Alongside this, scholars’ expectations for the value of digital technology have expanded, and the pursuit of improving learning efficiency and performance is no longer the sole focus. Some research now aims to cultivate learners’ motivation and enhance their self-efficacy by applying digital technology in a reasonable manner, as demonstrated by recent studies (Beardsley et al. 2021 ; Creely et al. 2021 ).

figure 6

The COVID-19 pandemic has emerged as a crucial backdrop for the digital technology’s role in sustaining global education, as highlighted by recent scholarly research (Zhou et al. 2022 ; Pan and Zhang, 2020 ; Mo et al. 2022 ). The online learning environment, which is supported by digital technology, has become the primary battleground for global education (Yu, 2022 ). This social context has led to various studies being conducted, with some scholars positing that the pandemic has impacted the traditional teaching order while also expanding learning possibilities in terms of patterns and forms (Alabdulaziz, 2021 ). Furthermore, the pandemic has acted as a catalyst for teacher teaching and technological innovation, and this viewpoint has been empirically substantiated (Moorhouse and Wong, 2021 ). Additionally, some scholars believe that the pandemic’s push is a crucial driving force for the digital transformation of the education system, serving as an essential mechanism for overcoming the system’s inertia (Romero et al. 2021 ).

The rapid outbreak of the pandemic posed a challenge to the large-scale implementation of digital technologies, which was influenced by a complex interplay of subjective and objective factors. Objective constraints included the lack of infrastructure in some regions to support digital technologies, while subjective obstacles included psychological resistance among certain students and teachers (Moorhouse, 2021 ). These factors greatly impacted the progress of online learning during the pandemic. Additionally, Timotheou et al. ( 2023 ) conducted a comprehensive systematic review of existing research on digital technology use during the pandemic, highlighting the critical role played by various factors such as learners’ and teachers’ digital skills, teachers’ personal attributes and professional development, school leadership and management, and administration in facilitating the digitalization and transformation of schools.

The current stage of research is characterized by the pivotal term “digital literacy,” denoting a growing interest in learners’ attitudes and adoption of emerging technologies. Initially, the term “literacy” was restricted to fundamental abilities and knowledge associated with books and print materials (McMillan, 1996 ). However, with the swift advancement of computers and digital technology, there have been various attempts to broaden the scope of literacy beyond its traditional meaning, including game literacy (Buckingham and Burn, 2007 ), information literacy (Eisenberg, 2008 ), and media literacy (Turin and Friesem, 2020 ). Similarly, digital literacy has emerged as a crucial concept, and Gilster and Glister ( 1997 ) were the first to introduce this concept, referring to the proficiency in utilizing technology and processing digital information in academic, professional, and daily life settings. In practical educational settings, learners who possess higher digital literacy often exhibit an aptitude for quickly mastering digital devices and applying them intelligently to education and teaching (Yu, 2022 ).

The utilization of digital technology in education has undergone significant changes over the past two decades, and has been a crucial driver of educational reform with each new technological revolution. The impact of these changes on the underlying logic of digital technology education applications has been noticeable. From computer technology to more recent developments such as virtual reality (VR), augmented reality (AR), and artificial intelligence (AI), the acceleration in digital technology development has been ongoing. Educational reforms spurred by digital technology development continue to be dynamic, as each new digital innovation presents new possibilities and models for teaching practice. This is especially relevant in the post-pandemic era, where the importance of technological progress in supporting teaching cannot be overstated (Mughal et al. 2022 ). Existing digital technologies have already greatly expanded the dimensions of education in both time and space, while future digital technologies aim to expand learners’ perceptions. Researchers have highlighted the potential of integrated technology and immersive technology in the development of the educational metaverse, which is highly anticipated to create a new dimension for the teaching and learning environment, foster a new value system for the discipline of educational technology, and more effectively and efficiently achieve the grand educational blueprint of the United Nations’ Sustainable Development Goals (Zhang et al. 2022 ; Li and Yu, 2023 ).

Hotspot evolution analysis (RQ3)

The examination of keyword evolution reveals a consistent trend in the advancement of digital technology education application research. The emergence and transformation of keywords serve as indicators of the varying research interests in this field. Thus, the utilization of the burst detection function available in CiteSpace allowed for the identification of the top 10 burst words that exhibited a high level of burst strength. This outcome is illustrated in Table 7 .

According to the results presented in Table 7 , the explosive terminology within the realm of digital technology education research has exhibited a concentration mainly between the years 2018 and 2022. Prior to this time frame, the emerging keywords were limited to “information technology” and “computer”. Notably, among them, computer, as an emergent keyword, has always had a high explosive intensity from 2008 to 2018, which reflects the important position of computer in digital technology and is the main carrier of many digital technologies such as Learning Management Systems (LMS) and Assessment and Feedback systems (Barlovits et al. 2022 ).

Since 2018, an increasing number of research studies have focused on evaluating the capabilities of learners to accept, apply, and comprehend digital technologies. As indicated by the use of terms such as “digital literacy” and “digital skill,” the assessment of learners’ digital literacy has become a critical task. Scholarly efforts have been directed towards the development of literacy assessment tools and the implementation of empirical assessments. Furthermore, enhancing the digital literacy of both learners and educators has garnered significant attention. (Nagle, 2018 ; Yu, 2022 ). Simultaneously, given the widespread use of various digital technologies in different formal and informal learning settings, promoting learners’ digital skills has become a crucial objective for contemporary schools (Nygren et al. 2019 ; Forde and OBrien, 2022 ).

Since 2020, the field of applied research on digital technology education has witnessed the emergence of three new hotspots, all of which have been affected to some extent by the pandemic. Firstly, digital technology has been widely applied in physical education, which is one of the subjects that has been severely affected by the pandemic (Parris et al. 2022 ; Jiang and Ning, 2022 ). Secondly, digital transformation has become an important measure for most schools, especially higher education institutions, to cope with the impact of the pandemic globally (García-Morales et al. 2021 ). Although the concept of digital transformation was proposed earlier, the COVID-19 pandemic has greatly accelerated this transformation process. Educational institutions must carefully redesign their educational products to face this new situation, providing timely digital learning methods, environments, tools, and support systems that have far-reaching impacts on modern society (Krishnamurthy, 2020 ; Salas-Pilco et al. 2022 ). Moreover, the professional development of teachers has become a key mission of educational institutions in the post-pandemic era. Teachers need to have a certain level of digital literacy and be familiar with the tools and online teaching resources used in online teaching, which has become a research hotspot today. Organizing digital skills training for teachers to cope with the application of emerging technologies in education is an important issue for teacher professional development and lifelong learning (Garzón-Artacho et al. 2021 ). As the main organizers and practitioners of emergency remote teaching (ERT) during the pandemic, teachers must put cognitive effort into their professional development to ensure effective implementation of ERT (Romero-Hall and Jaramillo Cherrez, 2022 ).

The burst word “digital transformation” reveals that we are in the midst of an ongoing digital technology revolution. With the emergence of innovative digital technologies such as ChatGPT and Microsoft 365 Copilot, technology trends will continue to evolve, albeit unpredictably. While the impact of these advancements on school education remains uncertain, it is anticipated that the widespread integration of technology will significantly affect the current education system. Rejecting emerging technologies without careful consideration is unwise. Like any revolution, the technological revolution in the education field has both positive and negative aspects. Detractors argue that digital technology disrupts learning and memory (Baron, 2021 ) or causes learners to become addicted and distracted from learning (Selwyn and Aagaard, 2020 ). On the other hand, the prudent use of digital technology in education offers a glimpse of a golden age of open learning. Educational leaders and practitioners have the opportunity to leverage cutting-edge digital technologies to address current educational challenges and develop a rational path for the sustainable and healthy growth of education.

Discussion on performance analysis (RQ1)

The field of digital technology education application research has experienced substantial growth since the turn of the century, a phenomenon that is quantifiably apparent through an analysis of authorship, country/region contributions, and institutional engagement. This expansion reflects the increased integration of digital technologies in educational settings and the heightened scholarly interest in understanding and optimizing their use.

Discussion on authorship productivity in digital technology education research

The authorship distribution within digital technology education research is indicative of the field’s intellectual structure and depth. A primary figure in this domain is Neil Selwyn, whose substantial citation rate underscores the profound impact of his work. His focus on the implications of digital technology in higher education and educational sociology has proven to be seminal. Selwyn’s research trajectory, especially the exploration of spatiotemporal extensions of education through technology, provides valuable insights into the multifaceted role of digital tools in learning processes (Selwyn et al. 2019 ).

Other notable contributors, like Henderson and Edwards, present diversified research interests, such as the impact of digital technologies during the pandemic and their application in early childhood education, respectively. Their varied focuses highlight the breadth of digital technology education research, encompassing pedagogical innovation, technological adaptation, and policy development.

Discussion on country/region-level productivity and collaboration

At the country/region level, the United Kingdom, specifically England, emerges as a leading contributor with 92 published papers and a significant citation count. This is closely followed by Australia and the United States, indicating a strong English-speaking research axis. Such geographical concentration of scholarly output often correlates with investment in research and development, technological infrastructure, and the prevalence of higher education institutions engaging in cutting-edge research.

China’s notable inclusion as the only non-Western country among the top contributors to the field suggests a growing research capacity and interest in digital technology in education. However, the lower average citation per paper for China could reflect emerging engagement or different research focuses that may not yet have achieved the same international recognition as Western counterparts.

The chord diagram analysis furthers this understanding, revealing dense interconnections between countries like the United States, China, and England, which indicates robust collaborations. Such collaborations are fundamental in addressing global educational challenges and shaping international research agendas.

Discussion on institutional-level contributions to digital technology education

Institutional productivity in digital technology education research reveals a constellation of universities driving the field forward. Monash University and the Australian Catholic University have the highest publication output, signaling Australia’s significant role in advancing digital education research. The University of Oslo’s remarkable average citation count per publication indicates influential research contributions, potentially reflecting high-quality studies that resonate with the broader academic community.

The strong showing of UK institutions, including the University of London, The Open University, and the University of Cambridge, reinforces the UK’s prominence in this research field. Such institutions are often at the forefront of pedagogical innovation, benefiting from established research cultures and funding mechanisms that support sustained inquiry into digital education.

Discussion on journal publication analysis

An examination of journal outputs offers a lens into the communicative channels of the field’s knowledge base. Journals such as Education and Information Technologies , Computers & Education , and the British Journal of Educational Technology not only serve as the primary disseminators of research findings but also as indicators of research quality and relevance. The impact factor (IF) serves as a proxy for the quality and influence of these journals within the academic community.

The high citation counts for articles published in Computers & Education suggest that research disseminated through this medium has a wide-reaching impact and is of particular interest to the field. This is further evidenced by its significant IF of 11.182, indicating that the journal is a pivotal platform for seminal work in the application of digital technology in education.

The authorship, regional, and institutional productivity in the field of digital technology education application research collectively narrate the evolution of this domain since the turn of the century. The prominence of certain authors and countries underscores the importance of socioeconomic factors and existing academic infrastructure in fostering research productivity. Meanwhile, the centrality of specific journals as outlets for high-impact research emphasizes the role of academic publishing in shaping the research landscape.

As the field continues to grow, future research may benefit from leveraging the collaborative networks that have been elucidated through this analysis, perhaps focusing on underrepresented regions to broaden the scope and diversity of research. Furthermore, the stabilization of publication numbers in recent years invites a deeper exploration into potential plateaus in research trends or saturation in certain sub-fields, signaling an opportunity for novel inquiries and methodological innovations.

Discussion on the evolutionary trends (RQ2)

The evolution of the research field concerning the application of digital technology in education over the past two decades is a story of convergence, diversification, and transformation, shaped by rapid technological advancements and shifting educational paradigms.

At the turn of the century, the inception of digital technology in education was largely exploratory, with a focus on how emerging computer technologies could be harnessed to enhance traditional learning environments. Research from this early period was primarily descriptive, reflecting on the potential and challenges of incorporating digital tools into the educational setting. This phase was critical in establishing the fundamental discourse that would guide subsequent research, as it set the stage for understanding the scope and impact of digital technology in learning spaces (Wang et al. 2023 ).

As the first decade progressed, the narrative expanded to encompass the pedagogical implications of digital technologies. This was a period of conceptual debates, where terms like “digital natives” and “disruptive pedagogy” entered the academic lexicon, underscoring the growing acknowledgment of digital technology as a transformative force within education (Bennett and Maton, 2010 ). During this time, the research began to reflect a more nuanced understanding of the integration of technology, considering not only its potential to change where and how learning occurred but also its implications for educational equity and access.

In the second decade, with the maturation of internet connectivity and mobile technology, the focus of research shifted from theoretical speculations to empirical investigations. The proliferation of digital devices and the ubiquity of social media influenced how learners interacted with information and each other, prompting a surge in studies that sought to measure the impact of these tools on learning outcomes. The digital divide and issues related to digital literacy became central concerns, as scholars explored the varying capacities of students and educators to engage with technology effectively.

Throughout this period, there was an increasing emphasis on the individualization of learning experiences, facilitated by adaptive technologies that could cater to the unique needs and pacing of learners (Jing et al. 2023a ). This individualization was coupled with a growing recognition of the importance of collaborative learning, both online and offline, and the role of digital tools in supporting these processes. Blended learning models, which combined face-to-face instruction with online resources, emerged as a significant trend, advocating for a balance between traditional pedagogies and innovative digital strategies.

The later years, particularly marked by the COVID-19 pandemic, accelerated the necessity for digital technology in education, transforming it from a supplementary tool to an essential platform for delivering education globally (Mo et al. 2022 ; Mustapha et al. 2021 ). This era brought about an unprecedented focus on online learning environments, distance education, and virtual classrooms. Research became more granular, examining not just the pedagogical effectiveness of digital tools, but also their role in maintaining continuity of education during crises, their impact on teacher and student well-being, and their implications for the future of educational policy and infrastructure.

Across these two decades, the research field has seen a shift from examining digital technology as an external addition to the educational process, to viewing it as an integral component of curriculum design, instructional strategies, and even assessment methods. The emergent themes have broadened from a narrow focus on specific tools or platforms to include wider considerations such as data privacy, ethical use of technology, and the environmental impact of digital tools.

Moreover, the field has moved from considering the application of digital technology in education as a primarily cognitive endeavor to recognizing its role in facilitating socio-emotional learning, digital citizenship, and global competencies. Researchers have increasingly turned their attention to the ways in which technology can support collaborative skills, cultural understanding, and ethical reasoning within diverse student populations.

In summary, the past over twenty years in the research field of digital technology applications in education have been characterized by a progression from foundational inquiries to complex analyses of digital integration. This evolution has mirrored the trajectory of technology itself, from a facilitative tool to a pervasive ecosystem defining contemporary educational experiences. As we look to the future, the field is poised to delve into the implications of emerging technologies like AI, AR, and VR, and their potential to redefine the educational landscape even further. This ongoing metamorphosis suggests that the application of digital technology in education will continue to be a rich area of inquiry, demanding continual adaptation and forward-thinking from educators and researchers alike.

Discussion on the study of research hotspots (RQ3)

The analysis of keyword evolution in digital technology education application research elucidates the current frontiers in the field, reflecting a trajectory that is in tandem with the rapidly advancing digital age. This landscape is sculpted by emergent technological innovations and shaped by the demands of an increasingly digital society.

Interdisciplinary integration and pedagogical transformation

One of the frontiers identified from recent keyword bursts includes the integration of digital technology into diverse educational contexts, particularly noted with the keyword “physical education.” The digitalization of disciplines traditionally characterized by physical presence illustrates the pervasive reach of technology and signifies a push towards interdisciplinary integration where technology is not only a facilitator but also a transformative agent. This integration challenges educators to reconceptualize curriculum delivery to accommodate digital tools that can enhance or simulate the physical aspects of learning.

Digital literacy and skills acquisition

Another pivotal frontier is the focus on “digital literacy” and “digital skill”, which has intensified in recent years. This suggests a shift from mere access to technology towards a comprehensive understanding and utilization of digital tools. In this realm, the emphasis is not only on the ability to use technology but also on critical thinking, problem-solving, and the ethical use of digital resources (Yu, 2022 ). The acquisition of digital literacy is no longer an additive skill but a fundamental aspect of modern education, essential for navigating and contributing to the digital world.

Educational digital transformation

The keyword “digital transformation” marks a significant research frontier, emphasizing the systemic changes that education institutions must undergo to align with the digital era (Romero et al. 2021 ). This transformation includes the redesigning of learning environments, pedagogical strategies, and assessment methods to harness digital technology’s full potential. Research in this area explores the complexity of institutional change, addressing the infrastructural, cultural, and policy adjustments needed for a seamless digital transition.

Engagement and participation

Further exploration into “engagement” and “participation” underscores the importance of student-centered learning environments that are mediated by technology. The current frontiers examine how digital platforms can foster collaboration, inclusivity, and active learning, potentially leading to more meaningful and personalized educational experiences. Here, the use of technology seeks to support the emotional and cognitive aspects of learning, moving beyond the transactional view of education to one that is relational and interactive.

Professional development and teacher readiness

As the field evolves, “professional development” emerges as a crucial area, particularly in light of the pandemic which necessitated emergency remote teaching. The need for teacher readiness in a digital age is a pressing frontier, with research focusing on the competencies required for educators to effectively integrate technology into their teaching practices. This includes familiarity with digital tools, pedagogical innovation, and an ongoing commitment to personal and professional growth in the digital domain.

Pandemic as a catalyst

The recent pandemic has acted as a catalyst for accelerated research and application in this field, particularly in the domains of “digital transformation,” “professional development,” and “physical education.” This period has been a litmus test for the resilience and adaptability of educational systems to continue their operations in an emergency. Research has thus been directed at understanding how digital technologies can support not only continuity but also enhance the quality and reach of education in such contexts.

Ethical and societal considerations

The frontier of digital technology in education is also expanding to consider broader ethical and societal implications. This includes issues of digital equity, data privacy, and the sociocultural impact of technology on learning communities. The research explores how educational technology can be leveraged to address inequities and create more equitable learning opportunities for all students, regardless of their socioeconomic background.

Innovation and emerging technologies

Looking forward, the frontiers are set to be influenced by ongoing and future technological innovations, such as artificial intelligence (AI) (Wu and Yu, 2023 ; Chen et al. 2022a ). The exploration into how these technologies can be integrated into educational practices to create immersive and adaptive learning experiences represents a bold new chapter for the field.

In conclusion, the current frontiers of research on the application of digital technology in education are multifaceted and dynamic. They reflect an overarching movement towards deeper integration of technology in educational systems and pedagogical practices, where the goals are not only to facilitate learning but to redefine it. As these frontiers continue to expand and evolve, they will shape the educational landscape, requiring a concerted effort from researchers, educators, policymakers, and technologists to navigate the challenges and harness the opportunities presented by the digital revolution in education.

Conclusions and future research

Conclusions.

The utilization of digital technology in education is a research area that cuts across multiple technical and educational domains and continues to experience dynamic growth due to the continuous progress of technology. In this study, a systematic review of this field was conducted through bibliometric techniques to examine its development trajectory. The primary focus of the review was to investigate the leading contributors, productive national institutions, significant publications, and evolving development patterns. The study’s quantitative analysis resulted in several key conclusions that shed light on this research field’s current state and future prospects.

(1) The research field of digital technology education applications has entered a stage of rapid development, particularly in recent years due to the impact of the pandemic, resulting in a peak of publications. Within this field, several key authors (Selwyn, Henderson, Edwards, etc.) and countries/regions (England, Australia, USA, etc.) have emerged, who have made significant contributions. International exchanges in this field have become frequent, with a high degree of internationalization in academic research. Higher education institutions in the UK and Australia are the core productive forces in this field at the institutional level.

(2) Education and Information Technologies , Computers & Education , and the British Journal of Educational Technology are notable journals that publish research related to digital technology education applications. These journals are affiliated with the research field of educational technology and provide effective communication platforms for sharing digital technology education applications.

(3) Over the past two decades, research on digital technology education applications has progressed from its early stages of budding, initial development, and critical exploration to accelerated transformation, and it is currently approaching maturity. Technological progress and changes in the times have been key driving forces for educational transformation and innovation, and both have played important roles in promoting the continuous development of education.

(4) Influenced by the pandemic, three emerging frontiers have emerged in current research on digital technology education applications, which are physical education, digital transformation, and professional development under the promotion of digital technology. These frontier research hotspots reflect the core issues that the education system faces when encountering new technologies. The evolution of research hotspots shows that technology breakthroughs in education’s original boundaries of time and space create new challenges. The continuous self-renewal of education is achieved by solving one hotspot problem after another.

The present study offers significant practical implications for scholars and practitioners in the field of digital technology education applications. Firstly, it presents a well-defined framework of the existing research in this area, serving as a comprehensive guide for new entrants to the field and shedding light on the developmental trajectory of this research domain. Secondly, the study identifies several contemporary research hotspots, thus offering a valuable decision-making resource for scholars aiming to explore potential research directions. Thirdly, the study undertakes an exhaustive analysis of published literature to identify core journals in the field of digital technology education applications, with Sustainability being identified as a promising open access journal that publishes extensively on this topic. This finding can potentially facilitate scholars in selecting appropriate journals for their research outputs.

Limitation and future research

Influenced by some objective factors, this study also has some limitations. First of all, the bibliometrics analysis software has high standards for data. In order to ensure the quality and integrity of the collected data, the research only selects the periodical papers in SCIE and SSCI indexes, which are the core collection of Web of Science database, and excludes other databases, conference papers, editorials and other publications, which may ignore some scientific research and original opinions in the field of digital technology education and application research. In addition, although this study used professional software to carry out bibliometric analysis and obtained more objective quantitative data, the analysis and interpretation of data will inevitably have a certain subjective color, and the influence of subjectivity on data analysis cannot be completely avoided. As such, future research endeavors will broaden the scope of literature screening and proactively engage scholars in the field to gain objective and state-of-the-art insights, while minimizing the adverse impact of personal subjectivity on research analysis.

Data availability

The datasets analyzed during the current study are available in the Dataverse repository: https://doi.org/10.7910/DVN/F9QMHY

Alabdulaziz MS (2021) COVID-19 and the use of digital technology in mathematics education. Educ Inf Technol 26(6):7609–7633. https://doi.org/10.1007/s10639-021-10602-3

Arif TB, Munaf U, Ul-Haque I (2023) The future of medical education and research: is ChatGPT a blessing or blight in disguise? Med Educ Online 28. https://doi.org/10.1080/10872981.2023.2181052

Banerjee M, Chiew D, Patel KT, Johns I, Chappell D, Linton N, Cole GD, Francis DP, Szram J, Ross J, Zaman S (2021) The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med Educ 21. https://doi.org/10.1186/s12909-021-02870-x

Barlovits S, Caldeira A, Fesakis G, Jablonski S, Koutsomanoli Filippaki D, Lázaro C, Ludwig M, Mammana MF, Moura A, Oehler DXK, Recio T, Taranto E, Volika S(2022) Adaptive, synchronous, and mobile online education: developing the ASYMPTOTE learning environment. Mathematics 10:1628. https://doi.org/10.3390/math10101628

Article   Google Scholar  

Baron NS(2021) Know what? How digital technologies undermine learning and remembering J Pragmat 175:27–37. https://doi.org/10.1016/j.pragma.2021.01.011

Batista J, Morais NS, Ramos F (2016) Researching the use of communication technologies in higher education institutions in Portugal. https://doi.org/10.4018/978-1-5225-0571-6.ch057

Beardsley M, Albó L, Aragón P, Hernández-Leo D (2021) Emergency education effects on teacher abilities and motivation to use digital technologies. Br J Educ Technol 52. https://doi.org/10.1111/bjet.13101

Bennett S, Maton K(2010) Beyond the “digital natives” debate: towards a more nuanced understanding of students’ technology experiences J Comput Assist Learn 26:321–331. https://doi.org/10.1111/j.1365-2729.2010.00360.x

Buckingham D, Burn A (2007) Game literacy in theory and practice 16:323–349

Google Scholar  

Bulfin S, Pangrazio L, Selwyn N (2014) Making “MOOCs”: the construction of a new digital higher education within news media discourse. In: The International Review of Research in Open and Distributed Learning 15. https://doi.org/10.19173/irrodl.v15i5.1856

Camilleri MA, Camilleri AC(2016) Digital learning resources and ubiquitous technologies in education Technol Knowl Learn 22:65–82. https://doi.org/10.1007/s10758-016-9287-7

Chen C(2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature J Am Soc Inf Sci Technol 57:359–377. https://doi.org/10.1002/asi.20317

Chen J, Dai J, Zhu K, Xu L(2022) Effects of extended reality on language learning: a meta-analysis Front Psychol 13:1016519. https://doi.org/10.3389/fpsyg.2022.1016519

Article   PubMed   PubMed Central   Google Scholar  

Chen J, Wang CL, Tang Y (2022b) Knowledge mapping of volunteer motivation: a bibliometric analysis and cross-cultural comparative study. Front Psychol 13. https://doi.org/10.3389/fpsyg.2022.883150

Cohen A, Soffer T, Henderson M(2022) Students’ use of technology and their perceptions of its usefulness in higher education: International comparison J Comput Assist Learn 38(5):1321–1331. https://doi.org/10.1111/jcal.12678

Collins A, Halverson R(2010) The second educational revolution: rethinking education in the age of technology J Comput Assist Learn 26:18–27. https://doi.org/10.1111/j.1365-2729.2009.00339.x

Conole G, Alevizou P (2010) A literature review of the use of Web 2.0 tools in higher education. Walton Hall, Milton Keynes, UK: the Open University, retrieved 17 February

Creely E, Henriksen D, Crawford R, Henderson M(2021) Exploring creative risk-taking and productive failure in classroom practice. A case study of the perceived self-efficacy and agency of teachers at one school Think Ski Creat 42:100951. https://doi.org/10.1016/j.tsc.2021.100951

Davis N, Eickelmann B, Zaka P(2013) Restructuring of educational systems in the digital age from a co-evolutionary perspective J Comput Assist Learn 29:438–450. https://doi.org/10.1111/jcal.12032

De Belli N (2009) Bibliometrics and citation analysis: from the science citation index to cybermetrics, Scarecrow Press. https://doi.org/10.1111/jcal.12032

Domínguez A, Saenz-de-Navarrete J, de-Marcos L, Fernández-Sanz L, Pagés C, Martínez-Herráiz JJ(2013) Gamifying learning experiences: practical implications and outcomes Comput Educ 63:380–392. https://doi.org/10.1016/j.compedu.2012.12.020

Donnison S (2009) Discourses in conflict: the relationship between Gen Y pre-service teachers, digital technologies and lifelong learning. Australasian J Educ Technol 25. https://doi.org/10.14742/ajet.1138

Durfee SM, Jain S, Shaffer K (2003) Incorporating electronic media into medical student education. Acad Radiol 10:205–210. https://doi.org/10.1016/s1076-6332(03)80046-6

Dzikowski P(2018) A bibliometric analysis of born global firms J Bus Res 85:281–294. https://doi.org/10.1016/j.jbusres.2017.12.054

van Eck NJ, Waltman L(2009) Software survey: VOSviewer, a computer program for bibliometric mapping Scientometrics 84:523–538 https://doi.org/10.1007/s11192-009-0146-3

Edwards S(2013) Digital play in the early years: a contextual response to the problem of integrating technologies and play-based pedagogies in the early childhood curriculum Eur Early Child Educ Res J 21:199–212. https://doi.org/10.1080/1350293x.2013.789190

Edwards S(2015) New concepts of play and the problem of technology, digital media and popular-culture integration with play-based learning in early childhood education Technol Pedagogy Educ 25:513–532 https://doi.org/10.1080/1475939x.2015.1108929

Article   MathSciNet   Google Scholar  

Eisenberg MB(2008) Information literacy: essential skills for the information age DESIDOC J Libr Inf Technol 28:39–47. https://doi.org/10.14429/djlit.28.2.166

Forde C, OBrien A (2022) A literature review of barriers and opportunities presented by digitally enhanced practical skill teaching and learning in health science education. Med Educ Online 27. https://doi.org/10.1080/10872981.2022.2068210

García-Morales VJ, Garrido-Moreno A, Martín-Rojas R (2021) The transformation of higher education after the COVID disruption: emerging challenges in an online learning scenario. Front Psychol 12. https://doi.org/10.3389/fpsyg.2021.616059

Garfield E(2006) The history and meaning of the journal impact factor JAMA 295:90. https://doi.org/10.1001/jama.295.1.90

Article   PubMed   Google Scholar  

Garzón-Artacho E, Sola-Martínez T, Romero-Rodríguez JM, Gómez-García G(2021) Teachers’ perceptions of digital competence at the lifelong learning stage Heliyon 7:e07513. https://doi.org/10.1016/j.heliyon.2021.e07513

Gaviria-Marin M, Merigó JM, Baier-Fuentes H(2019) Knowledge management: a global examination based on bibliometric analysis Technol Forecast Soc Change 140:194–220. https://doi.org/10.1016/j.techfore.2018.07.006

Gilster P, Glister P (1997) Digital literacy. Wiley Computer Pub, New York

Greenhow C, Lewin C(2015) Social media and education: reconceptualizing the boundaries of formal and informal learning Learn Media Technol 41:6–30. https://doi.org/10.1080/17439884.2015.1064954

Hawkins DT(2001) Bibliometrics of electronic journals in information science Infor Res 7(1):7–1. http://informationr.net/ir/7-1/paper120.html

Henderson M, Selwyn N, Finger G, Aston R(2015) Students’ everyday engagement with digital technology in university: exploring patterns of use and “usefulness J High Educ Policy Manag 37:308–319 https://doi.org/10.1080/1360080x.2015.1034424

Huang CK, Neylon C, Hosking R, Montgomery L, Wilson KS, Ozaygen A, Brookes-Kenworthy C (2020) Evaluating the impact of open access policies on research institutions. eLife 9. https://doi.org/10.7554/elife.57067

Hwang GJ, Tsai CC(2011) Research trends in mobile and ubiquitous learning: a review of publications in selected journals from 2001 to 2010 Br J Educ Technol 42:E65–E70. https://doi.org/10.1111/j.1467-8535.2011.01183.x

Hwang GJ, Wu PH, Zhuang YY, Huang YM(2013) Effects of the inquiry-based mobile learning model on the cognitive load and learning achievement of students Interact Learn Environ 21:338–354. https://doi.org/10.1080/10494820.2011.575789

Jiang S, Ning CF (2022) Interactive communication in the process of physical education: are social media contributing to the improvement of physical training performance. Universal Access Inf Soc, 1–10. https://doi.org/10.1007/s10209-022-00911-w

Jing Y, Zhao L, Zhu KK, Wang H, Wang CL, Xia Q(2023) Research landscape of adaptive learning in education: a bibliometric study on research publications from 2000 to 2022 Sustainability 15:3115–3115. https://doi.org/10.3390/su15043115

Jing Y, Wang CL, Chen Y, Wang H, Yu T, Shadiev R (2023b) Bibliometric mapping techniques in educational technology research: a systematic literature review. Educ Inf Technol 1–29. https://doi.org/10.1007/s10639-023-12178-6

Krishnamurthy S (2020) The future of business education: a commentary in the shadow of the Covid-19 pandemic. J Bus Res. https://doi.org/10.1016/j.jbusres.2020.05.034

Kumar S, Lim WM, Pandey N, Christopher Westland J (2021) 20 years of electronic commerce research. Electron Commer Res 21:1–40

Kyza EA, Georgiou Y(2018) Scaffolding augmented reality inquiry learning: the design and investigation of the TraceReaders location-based, augmented reality platform Interact Learn Environ 27:211–225. https://doi.org/10.1080/10494820.2018.1458039

Laurillard D(2008) Technology enhanced learning as a tool for pedagogical innovation J Philos Educ 42:521–533. https://doi.org/10.1111/j.1467-9752.2008.00658.x

Li M, Yu Z (2023) A systematic review on the metaverse-based blended English learning. Front Psychol 13. https://doi.org/10.3389/fpsyg.2022.1087508

Luo H, Li G, Feng Q, Yang Y, Zuo M (2021) Virtual reality in K-12 and higher education: a systematic review of the literature from 2000 to 2019. J Comput Assist Learn. https://doi.org/10.1111/jcal.12538

Margaryan A, Littlejohn A, Vojt G(2011) Are digital natives a myth or reality? University students’ use of digital technologies Comput Educ 56:429–440. https://doi.org/10.1016/j.compedu.2010.09.004

McMillan S(1996) Literacy and computer literacy: definitions and comparisons Comput Educ 27:161–170. https://doi.org/10.1016/s0360-1315(96)00026-7

Mo CY, Wang CL, Dai J, Jin P (2022) Video playback speed influence on learning effect from the perspective of personalized adaptive learning: a study based on cognitive load theory. Front Psychology 13. https://doi.org/10.3389/fpsyg.2022.839982

Moorhouse BL (2021) Beginning teaching during COVID-19: newly qualified Hong Kong teachers’ preparedness for online teaching. Educ Stud 1–17. https://doi.org/10.1080/03055698.2021.1964939

Moorhouse BL, Wong KM (2021) The COVID-19 Pandemic as a catalyst for teacher pedagogical and technological innovation and development: teachers’ perspectives. Asia Pac J Educ 1–16. https://doi.org/10.1080/02188791.2021.1988511

Moskal P, Dziuban C, Hartman J (2013) Blended learning: a dangerous idea? Internet High Educ 18:15–23

Mughal MY, Andleeb N, Khurram AFA, Ali MY, Aslam MS, Saleem MN (2022) Perceptions of teaching-learning force about Metaverse for education: a qualitative study. J. Positive School Psychol 6:1738–1745

Mustapha I, Thuy Van N, Shahverdi M, Qureshi MI, Khan N (2021) Effectiveness of digital technology in education during COVID-19 pandemic. a bibliometric analysis. Int J Interact Mob Technol 15:136

Nagle J (2018) Twitter, cyber-violence, and the need for a critical social media literacy in teacher education: a review of the literature. Teach Teach Education 76:86–94

Nazare J, Woolf A, Sysoev I, Ballinger S, Saveski M, Walker M, Roy D (2022) Technology-assisted coaching can increase engagement with learning technology at home and caregivers’ awareness of it. Comput Educ 188:104565

Nguyen UP, Hallinger P (2020) Assessing the distinctive contributions of simulation & gaming to the literature, 1970-2019: a bibliometric review. Simul Gaming 104687812094156. https://doi.org/10.1177/1046878120941569

Nygren H, Nissinen K, Hämäläinen R, Wever B(2019) Lifelong learning: formal, non-formal and informal learning in the context of the use of problem-solving skills in technology-rich environments Br J Educ Technol 50:1759–1770. https://doi.org/10.1111/bjet.12807

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 88:105906

Pan SL, Zhang S(2020) From fighting COVID-19 pandemic to tackling sustainable development goals: an opportunity for responsible information systems research Int J Inf Manage 55:102196. https://doi.org/10.1016/j.ijinfomgt.2020.102196

Pan X, Yan E, Cui M, Hua W(2018) Examining the usage, citation, and diffusion patterns of bibliometric mapping software: a comparative study of three tools J Informetr 12:481–493. https://doi.org/10.1016/j.joi.2018.03.005

Parris Z, Cale L, Harris J, Casey A (2022) Physical activity for health, covid-19 and social media: what, where and why?. Movimento, 28. https://doi.org/10.22456/1982-8918.122533

Pasquini LA, Evangelopoulos N (2016) Sociotechnical stewardship in higher education: a field study of social media policy documents. J Comput High Educ 29:218–239

Pérez-Sanagustín M, Hernández-Leo D, Santos P, Delgado Kloos C, Blat J(2014) Augmenting reality and formality of informal and non-formal settings to enhance blended learning IEEE Trans Learn Technol 7:118–131. https://doi.org/10.1109/TLT.2014.2312719

Pinto M, Leite C (2020) Digital technologies in support of students learning in Higher Education: literature review. Digital Education Review 343–360. https://doi.org/10.1344/der.2020.37.343-360

Pires F, Masanet MJ, Tomasena JM, Scolari CA(2022) Learning with YouTube: beyond formal and informal through new actors, strategies and affordances Convergence 28(3):838–853. https://doi.org/10.1177/1354856521102054

Pritchard A (1969) Statistical bibliography or bibliometrics 25:348

Romero M, Romeu T, Guitert M, Baztán P (2021) Digital transformation in higher education: the UOC case. In ICERI2021 Proceedings (pp. 6695–6703). IATED https://doi.org/10.21125/iceri.2021.1512

Romero-Hall E, Jaramillo Cherrez N (2022) Teaching in times of disruption: faculty digital literacy in higher education during the COVID-19 pandemic. Innovations in Education and Teaching International 1–11. https://doi.org/10.1080/14703297.2022.2030782

Rospigliosi PA(2023) Artificial intelligence in teaching and learning: what questions should we ask of ChatGPT? Interactive Learning Environments 31:1–3. https://doi.org/10.1080/10494820.2023.2180191

Salas-Pilco SZ, Yang Y, Zhang Z(2022) Student engagement in online learning in Latin American higher education during the COVID-19 pandemic: a systematic review. Br J Educ Technol 53(3):593–619. https://doi.org/10.1111/bjet.13190

Selwyn N(2009) The digital native-myth and reality In Aslib proceedings 61(4):364–379. https://doi.org/10.1108/00012530910973776

Selwyn N(2012) Making sense of young people, education and digital technology: the role of sociological theory Oxford Review of Education 38:81–96. https://doi.org/10.1080/03054985.2011.577949

Selwyn N, Facer K(2014) The sociology of education and digital technology: past, present and future Oxford Rev Educ 40:482–496. https://doi.org/10.1080/03054985.2014.933005

Selwyn N, Banaji S, Hadjithoma-Garstka C, Clark W(2011) Providing a platform for parents? Exploring the nature of parental engagement with school Learning Platforms J Comput Assist Learn 27:314–323. https://doi.org/10.1111/j.1365-2729.2011.00428.x

Selwyn N, Aagaard J (2020) Banning mobile phones from classrooms-an opportunity to advance understandings of technology addiction, distraction and cyberbullying. Br J Educ Technol 52. https://doi.org/10.1111/bjet.12943

Selwyn N, O’Neill C, Smith G, Andrejevic M, Gu X (2021) A necessary evil? The rise of online exam proctoring in Australian universities. Media Int Austr 1329878X2110058. https://doi.org/10.1177/1329878x211005862

Selwyn N, Pangrazio L, Nemorin S, Perrotta C (2019) What might the school of 2030 be like? An exercise in social science fiction. Learn, Media Technol 1–17. https://doi.org/10.1080/17439884.2020.1694944

Selwyn, N (2016) What works and why?* Understanding successful technology enabled learning within institutional contexts 2016 Final report Appendices (Part B). Monash University Griffith University

Sjöberg D, Holmgren R (2021) Informal workplace learning in swedish police education-a teacher perspective. Vocations and Learning. https://doi.org/10.1007/s12186-021-09267-3

Strotmann A, Zhao D (2012) Author name disambiguation: what difference does it make in author-based citation analysis? J Am Soc Inf Sci Technol 63:1820–1833

Article   CAS   Google Scholar  

Sutherland R, Facer K, Furlong R, Furlong J(2000) A new environment for education? The computer in the home. Comput Educ 34:195–212. https://doi.org/10.1016/s0360-1315(99)00045-7

Szeto E, Cheng AY-N, Hong J-C(2015) Learning with social media: how do preservice teachers integrate YouTube and Social Media in teaching? Asia-Pac Educ Res 25:35–44. https://doi.org/10.1007/s40299-015-0230-9

Tang E, Lam C(2014) Building an effective online learning community (OLC) in blog-based teaching portfolios Int High Educ 20:79–85. https://doi.org/10.1016/j.iheduc.2012.12.002

Taskin Z, Al U(2019) Natural language processing applications in library and information science Online Inf Rev 43:676–690. https://doi.org/10.1108/oir-07-2018-0217

Tegtmeyer K, Ibsen L, Goldstein B(2001) Computer-assisted learning in critical care: from ENIAC to HAL Crit Care Med 29:N177–N182. https://doi.org/10.1097/00003246-200108001-00006

Article   CAS   PubMed   Google Scholar  

Timotheou S, Miliou O, Dimitriadis Y, Sobrino SV, Giannoutsou N, Cachia R, Moné AM, Ioannou A(2023) Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: a literature review. Educ Inf Technol 28(6):6695–6726. https://doi.org/10.1007/s10639-022-11431-8

Trujillo Maza EM, Gómez Lozano MT, Cardozo Alarcón AC, Moreno Zuluaga L, Gamba Fadul M (2016) Blended learning supported by digital technology and competency-based medical education: a case study of the social medicine course at the Universidad de los Andes, Colombia. Int J Educ Technol High Educ 13. https://doi.org/10.1186/s41239-016-0027-9

Turin O, Friesem Y(2020) Is that media literacy?: Israeli and US media scholars’ perceptions of the field J Media Lit Educ 12:132–144. https://doi.org/10.1007/s11192-009-0146-3

Van Eck NJ, Waltman L (2019) VOSviewer manual. Universiteit Leiden

Vratulis V, Clarke T, Hoban G, Erickson G(2011) Additive and disruptive pedagogies: the use of slowmation as an example of digital technology implementation Teach Teach Educ 27:1179–1188. https://doi.org/10.1016/j.tate.2011.06.004

Wang CL, Dai J, Xu LJ (2022) Big data and data mining in education: a bibliometrics study from 2010 to 2022. In 2022 7th International Conference on Cloud Computing and Big Data Analytics ( ICCCBDA ) (pp. 507-512). IEEE. https://doi.org/10.1109/icccbda55098.2022.9778874

Wang CL, Dai J, Zhu KK, Yu T, Gu XQ (2023) Understanding the continuance intention of college students toward new E-learning spaces based on an integrated model of the TAM and TTF. Int J Hum-Comput Int 1–14. https://doi.org/10.1080/10447318.2023.2291609

Wong L-H, Boticki I, Sun J, Looi C-K(2011) Improving the scaffolds of a mobile-assisted Chinese character forming game via a design-based research cycle Comput Hum Behav 27:1783–1793. https://doi.org/10.1016/j.chb.2011.03.005

Wu R, Yu Z (2023) Do AI chatbots improve students learning outcomes? Evidence from a meta-analysis. Br J Educ Technol. https://doi.org/10.1111/bjet.13334

Yang D, Zhou J, Shi D, Pan Q, Wang D, Chen X, Liu J (2022) Research status, hotspots, and evolutionary trends of global digital education via knowledge graph analysis. Sustainability 14:15157–15157. https://doi.org/10.3390/su142215157

Yu T, Dai J, Wang CL (2023) Adoption of blended learning: Chinese university students’ perspectives. Humanit Soc Sci Commun 10:390. https://doi.org/10.3390/su142215157

Yu Z (2022) Sustaining student roles, digital literacy, learning achievements, and motivation in online learning environments during the COVID-19 pandemic. Sustainability 14:4388. https://doi.org/10.3390/su14084388

Za S, Spagnoletti P, North-Samardzic A(2014) Organisational learning as an emerging process: the generative role of digital tools in informal learning practices Br J Educ Technol 45:1023–1035. https://doi.org/10.1111/bjet.12211

Zhang X, Chen Y, Hu L, Wang Y (2022) The metaverse in education: definition, framework, features, potential applications, challenges, and future research topics. Front Psychol 13:1016300. https://doi.org/10.3389/fpsyg.2022.1016300

Zhou M, Dzingirai C, Hove K, Chitata T, Mugandani R (2022) Adoption, use and enhancement of virtual learning during COVID-19. Education and Information Technologies. https://doi.org/10.1007/s10639-022-10985-x

Download references

Acknowledgements

This research was supported by the Zhejiang Provincial Social Science Planning Project, “Mechanisms and Pathways for Empowering Classroom Teaching through Learning Spaces under the Strategy of High-Quality Education Development”, the 2022 National Social Science Foundation Education Youth Project “Research on the Strategy of Creating Learning Space Value and Empowering Classroom Teaching under the background of ‘Double Reduction’” (Grant No. CCA220319) and the National College Student Innovation and Entrepreneurship Training Program of China (Grant No. 202310337023).

Author information

Authors and affiliations.

College of Educational Science and Technology, Zhejiang University of Technology, Zhejiang, China

Chengliang Wang, Xiaojiao Chen, Yidan Liu & Yuhui Jing

Graduate School of Business, Universiti Sains Malaysia, Minden, Malaysia

Department of Management, The Chinese University of Hong Kong, Hong Kong, China

College of Humanities and Social Sciences, Beihang University, Beijing, China

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization: Y.J., C.W.; methodology, C.W.; software, C.W., Y.L.; writing-original draft preparation, C.W., Y.L.; writing-review and editing, T.Y., Y.L., C.W.; supervision, X.C., T.Y.; project administration, Y.J.; funding acquisition, X.C., Y.L. All authors read and approved the final manuscript. All authors have read and approved the re-submission of the manuscript.

Corresponding author

Correspondence to Yuhui Jing .

Ethics declarations

Ethical approval.

Ethical approval was not required as the study did not involve human participants.

Informed consent

Informed consent was not required as the study did not involve human participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Wang, C., Chen, X., Yu, T. et al. Education reform and change driven by digital technology: a bibliometric study from a global perspective. Humanit Soc Sci Commun 11 , 256 (2024). https://doi.org/10.1057/s41599-024-02717-y

Download citation

Received : 11 July 2023

Accepted : 17 January 2024

Published : 12 February 2024

DOI : https://doi.org/10.1057/s41599-024-02717-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

A meta-analysis of learners’ continuance intention toward online education platforms.

  • Chengliang Wang

Education and Information Technologies (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

educational technology research paper

Education Technology: An Evidence-Based Review

In recent years, there has been widespread excitement around the potential for technology to transform learning. As investments in education technology continue to grow, students, parents, and teachers face a seemingly endless array of education technologies from which to choose—from digital personalized learning platforms to educational games to online courses. Amidst the excitement, it is important to step back and understand how technology can help—or in some cases hinder—how students learn. This review paper synthesizes and discusses experimental evidence on the effectiveness of technology-based approaches in education and outlines areas for future inquiry. In particular, we examine RCTs across the following categories of education technology: (1) access to technology, (2) computer-assisted learning, (3) technology-enabled behavioral interventions in education, and (4) online learning. While this review focuses on literature from developed countries, it also draws upon extensive research from developing countries. We hope this literature review will advance the knowledge base of how technology can be used to support education, outline key areas for new experimental research, and help drive improvements to the policies, programs, and structures that contribute to successful teaching and learning.

We are extremely grateful to Caitlin Anzelone, Rekha Balu, Peter Bergman, Brad Bernatek, Ben Castleman, Luke Crowley, Angela Duckworth, Jonathan Guryan, Alex Haslam, Andrew Ho, Ben Jones, Matthew Kraft, Kory Kroft, David Laibson, Susanna Loeb, Andrew Magliozzi, Ignacio Martinez, Susan Mayer, Steve Mintz, Piotr Mitros, Lindsay Page, Amanda Pallais, John Pane, Justin Reich, Jonah Rockoff, Sylvi Rzepka, Kirby Smith, and Oscar Sweeten-Lopez for providing helpful and detailed comments as we put together this review. We also thank Rachel Glennerster for detailed support throughout the project, Jessica Mardo and Sophie Shank for edits, and to the Spencer Foundation for financial support. Any errors or omissions are our own. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

MARC RIS BibTeΧ

Download Citation Data

Mentioned in the News

More from nber.

In addition to working papers , the NBER disseminates affiliates’ latest findings through a range of free periodicals — the NBER Reporter , the NBER Digest , the Bulletin on Retirement and Disability , the Bulletin on Health , and the Bulletin on Entrepreneurship  — as well as online conference reports , video lectures , and interviews .

15th Annual Feldstein Lecture, Mario Draghi, "The Next Flight of the Bumblebee: The Path to Common Fiscal Policy in the Eurozone cover slide

Educational technology: what it is and how it works

  • AI & SOCIETY 37(4)

Jon Dron at Athabasca University

  • Athabasca University

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Irene Negron

  • Health Informat J
  • Dimas S. E. W. Sumunar

Natalia Stathakarou

  • Valerie Irvine
  • Chris DeLuca

Okan Bulut

  • Gerald Ardito

Jon Dron

  • Med Educ Online

Hongbin Wu

  • Ursula Martius Franklin
  • R. V. O’NEILL
  • D. L. DeANGELIS
  • J. B. WAIDE
  • T.F.H. ALLEN
  • D.J. Haraway

Brent Davis

  • Cecilia Heyes
  • Ashok K. Goel
  • Lalith Polepeddi
  • Donna Haraway

Ariel Sarid

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up
  • Review article
  • Open access
  • Published: 02 October 2017

Computer-based technology and student engagement: a critical review of the literature

  • Laura A. Schindler   ORCID: orcid.org/0000-0001-8730-5189 1 ,
  • Gary J. Burkholder 2 , 3 ,
  • Osama A. Morad 1 &
  • Craig Marsh 4  

International Journal of Educational Technology in Higher Education volume  14 , Article number:  25 ( 2017 ) Cite this article

393k Accesses

145 Citations

39 Altmetric

Metrics details

Computer-based technology has infiltrated many aspects of life and industry, yet there is little understanding of how it can be used to promote student engagement, a concept receiving strong attention in higher education due to its association with a number of positive academic outcomes. The purpose of this article is to present a critical review of the literature from the past 5 years related to how web-conferencing software, blogs, wikis, social networking sites ( Facebook and Twitter ), and digital games influence student engagement. We prefaced the findings with a substantive overview of student engagement definitions and indicators, which revealed three types of engagement (behavioral, emotional, and cognitive) that informed how we classified articles. Our findings suggest that digital games provide the most far-reaching influence across different types of student engagement, followed by web-conferencing and Facebook . Findings regarding wikis, blogs, and Twitter are less conclusive and significantly limited in number of studies conducted within the past 5 years. Overall, the findings provide preliminary support that computer-based technology influences student engagement, however, additional research is needed to confirm and build on these findings. We conclude the article by providing a list of recommendations for practice, with the intent of increasing understanding of how computer-based technology may be purposefully implemented to achieve the greatest gains in student engagement.

Introduction

The digital revolution has profoundly affected daily living, evident in the ubiquity of mobile devices and the seamless integration of technology into common tasks such as shopping, reading, and finding directions (Anderson, 2016 ; Smith & Anderson, 2016 ; Zickuhr & Raine, 2014 ). The use of computers, mobile devices, and the Internet is at its highest level to date and expected to continue to increase as technology becomes more accessible, particularly for users in developing countries (Poushter, 2016 ). In addition, there is a growing number of people who are smartphone dependent, relying solely on smartphones for Internet access (Anderson & Horrigan, 2016 ) rather than more expensive devices such as laptops and tablets. Greater access to and demand for technology has presented unique opportunities and challenges for many industries, some of which have thrived by effectively digitizing their operations and services (e.g., finance, media) and others that have struggled to keep up with the pace of technological innovation (e.g., education, healthcare) (Gandhi, Khanna, & Ramaswamy, 2016 ).

Integrating technology into teaching and learning is not a new challenge for universities. Since the 1900s, administrators and faculty have grappled with how to effectively use technical innovations such as video and audio recordings, email, and teleconferencing to augment or replace traditional instructional delivery methods (Kaware & Sain, 2015 ; Westera, 2015 ). Within the past two decades, however, this challenge has been much more difficult due to the sheer volume of new technologies on the market. For example, in the span of 7 years (from 2008 to 2015), the number of active apps in Apple’s App Store increased from 5000 to 1.75 million. Over the next 4 years, the number of apps is projected to rise by 73%, totaling over 5 million (Nelson, 2016 ). Further compounding this challenge is the limited shelf life of new devices and software combined with significant internal organizational barriers that hinder universities from efficiently and effectively integrating new technologies (Amirault, 2012 ; Kinchin, 2012 ; Linder-VanBerschot & Summers 2015 ; Westera, 2015 ).

Many organizational barriers to technology integration arise from competing tensions between institutional policy and practice and faculty beliefs and abilities. For example, university administrators may view technology as a tool to attract and retain students, whereas faculty may struggle to determine how technology coincides with existing pedagogy (Lawrence & Lentle-Keenan, 2013 ; Lin, Singer, & Ha, 2010 ). In addition, some faculty may be hesitant to use technology due to lack of technical knowledge and/or skepticism about the efficacy of technology to improve student learning outcomes (Ashrafzadeh & Sayadian, 2015 ; Buchanan, Sainter, & Saunders, 2013 ; Hauptman, 2015 ; Johnson, 2013 ; Kidd, Davis, & Larke, 2016 ; Kopcha, Rieber, & Walker, 2016 ; Lawrence & Lentle-Keenan, 2013 ; Lewis, Fretwell, Ryan, & Parham, 2013 ; Reid, 2014 ). Organizational barriers to technology adoption are particularly problematic given the growing demands and perceived benefits among students about using technology to learn (Amirault, 2012 ; Cassidy et al., 2014 ; Gikas & Grant, 2013 ; Paul & Cochran, 2013 ). Surveys suggest that two-thirds of students use mobile devices for learning and believe that technology can help them achieve learning outcomes and better prepare them for a workforce that is increasingly dependent on technology (Chen, Seilhamer, Bennett, & Bauer, 2015 ; Dahlstrom, 2012 ). Universities that fail to effectively integrate technology into the learning experience miss opportunities to improve student outcomes and meet the expectations of a student body that has grown accustomed to the integration of technology into every facet of life (Amirault, 2012 ; Cook & Sonnenberg, 2014 ; Revere & Kovach, 2011 ; Sun & Chen, 2016 ; Westera, 2015 ).

The purpose of this paper is to provide a literature review on how computer-based technology influences student engagement within higher education settings. We focused on computer-based technology given the specific types of technologies (i.e., web-conferencing software, blogs, wikis, social networking sites, and digital games) that emerged from a broad search of the literature, which is described in more detail below. Computer-based technology (hereafter referred to as technology) requires the use of specific hardware, software, and micro processing features available on a computer or mobile device. We also focused on student engagement as the dependent variable of interest because it encompasses many different aspects of the teaching and learning process (Bryson & Hand, 2007 ; Fredricks, Blumenfeld, & Parks, 1994; Wimpenny & Savin-Baden, 2013 ), compared narrower variables in the literature such as final grades or exam scores. Furthermore, student engagement has received significant attention over the past several decades due to shifts towards student-centered, constructivist instructional methods (Haggis, 2009 ; Wright, 2011 ), mounting pressures to improve teaching and learning outcomes (Axelson & Flick, 2011 ; Kuh, 2009 ), and promising studies suggesting relationships between student engagement and positive academic outcomes (Carini, Kuh, & Klein, 2006 ; Center for Postsecondary Research, 2016 ; Hu & McCormick, 2012 ). Despite the interest in student engagement and the demand for more technology in higher education, there are no articles offering a comprehensive review of how these two variables intersect. Similarly, while many existing student engagement conceptual models have expanded to include factors that influence student engagement, none highlight the overt role of technology in the engagement process (Kahu, 2013 ; Lam, Wong, Yang, & Yi, 2012 ; Nora, Barlow, & Crisp, 2005 ; Wimpenny & Savin-Baden, 2013 ; Zepke & Leach, 2010 ).

Our review aims to address existing gaps in the student engagement literature and seeks to determine whether student engagement models should be expanded to include technology. The review also addresses some of the organizational barriers to technology integration (e.g., faculty uncertainty and skepticism about technology) by providing a comprehensive account of the research evidence regarding how technology influences student engagement. One limitation of the literature, however, is the lack of detail regarding how teaching and learning practices were used to select and integrate technology into learning. For example, the methodology section of many studies does not include a pedagogical justification for why a particular technology was used or details about the design of the learning activity itself. Therefore, it often is unclear how teaching and learning practices may have affected student engagement levels. We revisit this issue in more detail at the end of this paper in our discussions of areas for future research and recommendations for practice. We initiated our literature review by conducting a broad search for articles published within the past 5 years, using the key words technology and higher education , in Google Scholar and the following research databases: Academic Search Complete, Communication & Mass Media Complete, Computers & Applied Sciences Complete, Education Research Complete, ERIC, PsycARTICLES, and PsycINFO . Our initial search revealed themes regarding which technologies were most prevalent in the literature (e.g., social networking, digital games), which then lead to several, more targeted searches of the same databases using specific keywords such as Facebook and student engagement. After both broad and targeted searches, we identified five technologies (web-conferencing software, blogs, wikis, social networking sites, and digital games) to include in our review.

We chose to focus on technologies for which there were multiple studies published, allowing us to identify areas of convergence and divergence in the literature and draw conclusions about positive and negative effects on student engagement. In total, we identified 69 articles relevant to our review, with 36 pertaining to social networking sites (21 for Facebook and 15 for Twitter ), 14 pertaining to digital games, seven pertaining to wikis, and six pertaining to blogs and web-conferencing software respectively. Articles were categorized according to their influence on specific types of student engagement, which will be described in more detail below. In some instances, one article pertained to multiple types of engagement. In the sections that follow, we will provide an overview of student engagement, including an explanation of common definitions and indicators of engagement, followed by a synthesis of how each type of technology influences student engagement. Finally, we will discuss areas for future research and make recommendations for practice.

  • Student engagement

Interest in student engagement began over 70 years ago with Ralph Tyler’s research on the relationship between time spent on coursework and learning (Axelson & Flick, 2011 ; Kuh, 2009 ). Since then, the study of student engagement has evolved and expanded considerably, through the seminal works of Pace ( 1980 ; 1984 ) and Astin ( 1984 ) about how quantity and quality of student effort affect learning and many more recent studies on the environmental conditions and individual dispositions that contribute to student engagement (Bakker, Vergel, & Kuntze, 2015 ; Gilboy, Heinerichs, & Pazzaglia, 2015 ; Martin, Goldwasser, & Galentino, 2017 ; Pellas, 2014 ). Perhaps the most well-known resource on student engagement is the National Survey of Student Engagement (NSSE), an instrument designed to assess student participation in various educational activities (Kuh, 2009 ). The NSSE and other engagement instruments like it have been used in many studies that link student engagement to positive student outcomes such as higher grades, retention, persistence, and completion (Leach, 2016 ; McClenney, Marti, & Adkins, 2012 ; Trowler & Trowler, 2010 ), further convincing universities that student engagement is an important factor in the teaching and learning process. However, despite the increased interest in student engagement, its meaning is generally not well understood or agreed upon.

Student engagement is a broad and complex phenomenon for which there are many definitions grounded in psychological, social, and/or cultural perspectives (Fredricks et al., 1994; Wimpenny & Savin-Baden, 2013 ; Zepke & Leach, 2010 ). Review of definitions revealed that student engagement is defined in two ways. One set of definitions refer to student engagement as a desired outcome reflective of a student’s thoughts, feelings, and behaviors about learning. For example, Kahu ( 2013 ) defines student engagement as an “individual psychological state” that includes a student’s affect, cognition, and behavior (p. 764). Other definitions focus primarily on student behavior, suggesting that engagement is the “extent to which students are engaging in activities that higher education research has shown to be linked with high-quality learning outcomes” (Krause & Coates, 2008 , p. 493) or the “quality of effort and involvement in productive learning activities” (Kuh, 2009 , p. 6). Another set of definitions refer to student engagement as a process involving both the student and the university. For example, Trowler ( 2010 ) defined student engagement as “the interaction between the time, effort and other relevant resources invested by both students and their institutions intended to optimize the student experience and enhance the learning outcomes and development of students and the performance, and reputation of the institution” (p. 2). Similarly, the NSSE website indicates that student engagement is “the amount of time and effort students put into their studies and other educationally purposeful activities” as well as “how the institution deploys its resources and organizes the curriculum and other learning opportunities to get students to participate in activities that decades of research studies show are linked to student learning” (Center for Postsecondary Research, 2017 , para. 1).

Many existing models of student engagement reflect the latter set of definitions, depicting engagement as a complex, psychosocial process involving both student and university characteristics. Such models organize the engagement process into three areas: factors that influence student engagement (e.g., institutional culture, curriculum, and teaching practices), indicators of student engagement (e.g., interest in learning, interaction with instructors and peers, and meaningful processing of information), and outcomes of student engagement (e.g., academic achievement, retention, and personal growth) (Kahu, 2013 ; Lam et al., 2012 ; Nora et al., 2005 ). In this review, we examine the literature to determine whether technology influences student engagement. In addition, we will use Fredricks et al. ( 2004 ) typology of student engagement to organize and present research findings, which suggests that there are three types of engagement (behavioral, emotional, and cognitive). The typology is useful because it is broad in scope, encompassing different types of engagement that capture a range of student experiences, rather than narrower typologies that offer specific or prescriptive conceptualizations of student engagement. In addition, this typology is student-centered, focusing exclusively on student-focused indicators rather than combining student indicators with confounding variables, such as faculty behavior, curriculum design, and campus environment (Coates, 2008 ; Kuh, 2009 ). While such variables are important in the discussion of student engagement, perhaps as factors that may influence engagement, they are not true indicators of student engagement. Using the typology as a guide, we examined recent student engagement research, models, and measures to gain a better understanding of how behavioral, emotional, and cognitive student engagement are conceptualized and to identify specific indicators that correspond with each type of engagement, as shown in Fig. 1 .

Conceptual framework of types and indicators of student engagement

Behavioral engagement is the degree to which students are actively involved in learning activities (Fredricks et al., 2004 ; Kahu, 2013 ; Zepke, 2014 ). Indicators of behavioral engagement include time and effort spent participating in learning activities (Coates, 2008 ; Fredricks et al., 2004 ; Kahu, 2013 ; Kuh, 2009 ; Lam et al., 2012 ; Lester, 2013 ; Trowler, 2010 ) and interaction with peers, faculty, and staff (Coates, 2008 ; Kahu, 2013 ; Kuh, 2009 ; Bryson & Hand, 2007 ; Wimpenny & Savin-Baden, 2013 : Zepke & Leach, 2010 ). Indicators of behavioral engagement reflect observable student actions and most closely align with Pace ( 1980 ) and Astin’s ( 1984 ) original conceptualizations of student engagement as quantity and quality of effort towards learning. Emotional engagement is students’ affective reactions to learning (Fredricks et al., 2004 ; Lester, 2013 ; Trowler, 2010 ). Indicators of emotional engagement include attitudes, interests, and values towards learning (Fredricks et al., 2004 ; Kahu, 2013 ; Lester, 2013 ; Trowler, 2010 ; Wimpenny & Savin-Baden, 2013 ; Witkowski & Cornell, 2015 ) and a perceived sense of belonging within a learning community (Fredricks et al., 2004 ; Kahu, 2013 ; Lester, 2013 ; Trowler, 2010 ; Wimpenny & Savin-Baden, 2013 ). Emotional engagement often is assessed using self-report measures (Fredricks et al., 2004 ) and provides insight into how students feel about a particular topic, delivery method, or instructor. Finally, cognitive engagement is the degree to which students invest in learning and expend mental effort to comprehend and master content (Fredricks et al., 2004 ; Lester, 2013 ). Indicators of cognitive engagement include: motivation to learn (Lester, 2013 ; Richardson & Newby, 2006 ; Zepke & Leach, 2010 ); persistence to overcome academic challenges and meet/exceed requirements (Fredricks et al., 2004 ; Kuh, 2009 ; Trowler, 2010 ); and deep processing of information (Fredricks et al., 2004 ; Kahu, 2013 ; Lam et al., 2012 ; Richardson & Newby, 2006 ) through critical thinking (Coates, 2008 ; Witkowski & Cornell, 2015 ), self-regulation (e.g., set goals, plan, organize study effort, and monitor learning; Fredricks et al., 2004 ; Lester, 2013 ), and the active construction of knowledge (Coates, 2008 ; Kuh, 2009 ). While cognitive engagement includes motivational aspects, much of the literature focuses on how students use active learning and higher-order thinking, in some form, to achieve content mastery. For example, there is significant emphasis on the importance of deep learning, which involves analyzing new learning in relation previous knowledge, compared to surface learning, which is limited to memorization, recall, and rehearsal (Fredricks et al., 2004 ; Kahu, 2013 ; Lam et al., 2012 ).

While each type of engagement has distinct features, there is some overlap across cognitive, behavioral, and emotional domains. In instances where an indicator could correspond with more than one type of engagement, we chose to match the indicator to the type of engagement that most closely aligned, based on our review of the engagement literature and our interpretation of the indicators. Similarly, there is also some overlap among indicators. As a result, we combined and subsumed similar indicators found in the literature, where appropriate, to avoid redundancy. Achieving an in-depth understanding of student engagement and associated indicators was an important pre-cursor to our review of the technology literature. Very few articles used the term student engagement as a dependent variable given the concept is so broad and multidimensional. We found that specific indicators (e.g., interaction, sense of belonging, and knowledge construction) of student engagement were more common in the literature as dependent variables. Next, we will provide a synthesis of the findings regarding how different types of technology influence behavioral, emotional, and cognitive student engagement and associated indicators.

Influence of technology on student engagement

We identified five technologies post-literature search (i.e., web-conferencing, blogs, wikis, social networking sites , and digital games) to include in our review, based on frequency in which they appeared in the literature over the past 5 years. One commonality among these technologies is their potential value in supporting a constructivist approach to learning, characterized by the active discovery of knowledge through reflection of experiences with one’s environment, the connection of new knowledge to prior knowledge, and interaction with others (Boghossian, 2006 ; Clements, 2015 ). Another commonality is that most of the technologies, except perhaps for digital games, are designed primarily to promote interaction and collaboration with others. Our search yielded very few studies on how informational technologies, such as video lectures and podcasts, influence student engagement. Therefore, these technologies are notably absent from our review. Unlike the technologies we identified earlier, informational technologies reflect a behaviorist approach to learning in which students are passive recipients of knowledge that is transmitted from an expert (Boghossian, 2006 ). The lack of recent research on how informational technologies affect student engagement may be due to the increasing shift from instructor-centered, behaviorist approaches to student-centered, constructivist approaches within higher education (Haggis, 2009 ; Wright, 2011 ) along with the ubiquity of web 2.0 technologies.

  • Web-conferencing

Web-conferencing software provides a virtual meeting space where users login simultaneously and communicate about a given topic. While each software application is unique, many share similar features such as audio, video, or instant messaging options for real-time communication; screen sharing, whiteboards, and digital pens for presentations and demonstrations; polls and quizzes for gauging comprehension or eliciting feedback; and breakout rooms for small group work (Bower, 2011 ; Hudson, Knight, & Collins, 2012 ; Martin, Parker, & Deale, 2012 ; McBrien, Jones, & Cheng, 2009 ). Of the technologies included in this literature review, web-conferencing software most closely mimics the face-to-face classroom environment, providing a space where instructors and students can hear and see each other in real-time as typical classroom activities (i.e., delivering lectures, discussing course content, asking/answering questions) are carried out (Francescucci & Foster, 2013 ; Hudson et al., 2012 ). Studies on web-conferencing software deployed Adobe Connect, Cisco WebEx, Horizon Wimba, or Blackboard Collaborate and made use of multiple features, such as screen sharing, instant messaging, polling, and break out rooms. In addition, most of the studies integrated web-conferencing software into courses on a voluntary basis to supplement traditional instructional methods (Andrew, Maslin-Prothero, & Ewens, 2015 ; Armstrong & Thornton, 2012 ; Francescucci & Foster, 2013 ; Hudson et al., 2012 ; Martin et al., 2012 ; Wdowik, 2014 ). Existing studies on web-conferencing pertain to all three types of student engagement.

Studies on web-conferencing and behavioral engagement reveal mixed findings. For example, voluntary attendance in web-conferencing sessions ranged from 54 to 57% (Andrew et al., 2015 ; Armstrong & Thornton, 2012 ) and, in a comparison between a blended course with regular web-conferencing sessions and a traditional, face-to-face course, researchers found no significant difference in student attendance in courses. However, students in the blended course reported higher levels of class participation compared to students in the face-to-face course (Francescucci & Foster, 2013 ). These findings suggest while web-conferencing may not boost attendance, especially if voluntary, it may offer more opportunities for class participation, perhaps through the use of communication channels typically not available in a traditional, face-to-face course (e.g., instant messaging, anonymous polling). Studies on web-conferencing and interaction, another behavioral indicator, support this assertion. For example, researchers found that students use various features of web-conferencing software (e.g., polling, instant message, break-out rooms) to interact with peers and the instructor by asking questions, expressing opinions and ideas, sharing resources, and discussing academic content (Andrew et al., 2015 ; Armstrong & Thornton, 2012 ; Hudson et al., 2012 ; Martin et al., 2012 ; Wdowik, 2014 ).

Studies on web-conferencing and cognitive engagement are more conclusive than those for behavioral engagement, although are fewer in number. Findings suggest that students who participated in web-conferencing demonstrated critical reflection and enhanced learning through interactions with others (Armstrong & Thornton, 2012 ), higher-order thinking (e.g., problem-solving, synthesis, evaluation) in response to challenging assignments (Wdowik, 2014 ), and motivation to learn, particularly when using polling features (Hudson et al., 2012 ). There is only one study examining how web-conferencing affects emotional engagement, although it is positive suggesting that students who participated in web-conferences had higher levels of interest in course content than those who did not (Francescucci & Foster, 2013 ). One possible reason for the positive cognitive and emotional engagement findings may be that web-conferencing software provides many features that promote active learning. For example, whiteboards and breakout rooms provide opportunities for real-time, collaborative problem-solving activities and discussions. However, additional studies are needed to isolate and compare specific web-conferencing features to determine which have the greatest effect on student engagement.

A blog, which is short for Weblog, is a collection of personal journal entries, published online and presented chronologically, to which readers (or subscribers) may respond by providing additional commentary or feedback. In order to create a blog, one must compose content for an entry, which may include text, hyperlinks, graphics, audio, or video, publish the content online using a blogging application, and alert subscribers that new content is posted. Blogs may be informal and personal in nature or may serve as formal commentary in a specific genre, such as in politics or education (Coghlan et al., 2007 ). Fortunately, many blog applications are free, and many learning management systems (LMSs) offer a blogging feature that is seamlessly integrated into the online classroom. The ease of blogging has attracted attention from educators, who currently use blogs as an instructional tool for the expression of ideas, opinions, and experiences and for promoting dialogue on a wide range of academic topics (Garrity, Jones, VanderZwan, de la Rocha, & Epstein, 2014 ; Wang, 2008 ).

Studies on blogs show consistently positive findings for many of the behavioral and emotional engagement indicators. For example, students reported that blogs promoted interaction with others, through greater communication and information sharing with peers (Chu, Chan, & Tiwari, 2012 ; Ivala & Gachago, 2012 ; Mansouri & Piki, 2016 ), and analyses of blog posts show evidence of students elaborating on one another’s ideas and sharing experiences and conceptions of course content (Sharma & Tietjen, 2016 ). Blogs also contribute to emotional engagement by providing students with opportunities to express their feelings about learning and by encouraging positive attitudes about learning (Dos & Demir, 2013 ; Chu et al., 2012 ; Yang & Chang, 2012 ). For example, Dos and Demir ( 2013 ) found that students expressed prejudices and fears about specific course topics in their blog posts. In addition, Yang and Chang ( 2012 ) found that interactive blogging, where comment features were enabled, lead to more positive attitudes about course content and peers compared to solitary blogging, where comment features were disabled.

The literature on blogs and cognitive engagement is less consistent. Some studies suggest that blogs may help students engage in active learning, problem-solving, and reflection (Chawinga, 2017 ; Chu et al., 2012 ; Ivala & Gachago, 2012 ; Mansouri & Piki, 2016 ), while other studies suggest that students’ blog posts show very little evidence of higher-order thinking (Dos & Demir, 2013 ; Sharma & Tietjen, 2016 ). The inconsistency in findings may be due to the wording of blog instructions. Students may not necessarily demonstrate or engage in deep processing of information unless explicitly instructed to do so. Unfortunately, it is difficult to determine whether the wording of blog assignments contributed to the mixed results because many of the studies did not provide assignment details. However, studies pertaining to other technologies suggest that assignment wording that lacks specificity or requires low-level thinking can have detrimental effects on student engagement outcomes (Hou, Wang, Lin, & Chang, 2015 ; Prestridge, 2014 ). Therefore, blog assignments that are vague or require only low-level thinking may have adverse effects on cognitive engagement.

A wiki is a web page that can be edited by multiple users at once (Nakamaru, 2012 ). Wikis have gained popularity in educational settings as a viable tool for group projects where group members can work collaboratively to develop content (i.e., writings, hyperlinks, images, graphics, media) and keep track of revisions through an extensive versioning system (Roussinos & Jimoyiannis, 2013 ). Most studies on wikis pertain to behavioral engagement, with far fewer studies on cognitive engagement and none on emotional engagement. Studies pertaining to behavioral engagement reveal mixed results, with some showing very little enduring participation in wikis beyond the first few weeks of the course (Nakamaru, 2012 ; Salaber, 2014 ) and another showing active participation, as seen in high numbers of posts and edits (Roussinos & Jimoyiannis, 2013 ). The most notable difference between these studies is the presence of grading, which may account for the inconsistencies in findings. For example, in studies where participation was low, wikis were ungraded, suggesting that students may need extra motivation and encouragement to use wikis (Nakamaru, 2012 ; Salaber, 2014 ). Findings regarding the use of wikis for promoting interaction are also inconsistent. In some studies, students reported that wikis were useful for interaction, teamwork, collaboration, and group networking (Camacho, Carrión, Chayah, & Campos, 2016 ; Martínez, Medina, Albalat, & Rubió, 2013 ; Morely, 2012 ; Calabretto & Rao, 2011 ) and researchers found evidence of substantial collaboration among students (e.g., sharing ideas, opinions, and points of view) in wiki activity (Hewege & Perera, 2013 ); however, Miller, Norris, and Bookstaver ( 2012 ) found that only 58% of students reported that wikis promoted collegiality among peers. The findings in the latter study were unexpected and may be due to design flaws in the wiki assignments. For example, the authors noted that wiki assignments were not explicitly referred to in face-to-face classes; therefore, this disconnect may have prevented students from building on interactive momentum achieved during out-of-class wiki assignments (Miller et al., 2012 ).

Studies regarding cognitive engagement are limited in number but more consistent than those concerning behavioral engagement, suggesting that wikis promote high levels of knowledge construction (i.e., evaluation of arguments, the integration of multiple viewpoints, new understanding of course topics; Hewege & Perera, 2013 ), and are useful for reflection, reinforcing course content, and applying academic skills (Miller et al., 2012 ). Overall, there is mixed support for the use of wikis to promote behavioral engagement, although making wiki assignments mandatory and explicitly referring to wikis in class may help bolster participation and interaction. In addition, there is some support for using wikis to promote cognitive engagement, but additional studies are needed to confirm and expand on findings as well as explore the effect of wikis on emotional engagement.

Social networking sites

Social networking is “the practice of expanding knowledge by making connections with individuals of similar interests” (Gunawardena et al., 2009 , p. 4). Social networking sites, such as Facebook, Twitter, Instagram, and LinkedIn, allow users to create and share digital content publicly or with others to whom they are connected and communicate privately through messaging features. Two of the most popular social networking sites in the educational literature are Facebook and Twitter (Camus, Hurt, Larson, & Prevost, 2016 ; Manca & Ranieri, 2013 ), which is consistent with recent statistics suggesting that both sites also are exceedingly popular among the general population (Greenwood, Perrin, & Duggan, 2016 ). In the sections that follow, we examine how both Facebook and Twitter influence different types of student engagement.

Facebook is a web-based service that allows users to create a public or private profile and invite others to connect. Users may build social, academic, and professional connections by posting messages in various media formats (i.e., text, pictures, videos) and commenting on, liking, and reacting to others’ messages (Bowman & Akcaoglu, 2014 ; Maben, Edwards, & Malone, 2014 ; Hou et al., 2015 ). Within an educational context, Facebook has often been used as a supplementary instructional tool to lectures or LMSs to support class discussions or develop, deliver, and share academic content and resources. Many instructors have opted to create private Facebook groups, offering an added layer of security and privacy because groups are not accessible to strangers (Bahati, 2015 ; Bowman & Akcaoglu, 2014 ; Clements, 2015 ; Dougherty & Andercheck, 2014 ; Esteves, 2012 ; Shraim, 2014 ; Maben et al., 2014 ; Manca & Ranieri, 2013 ; Naghdipour & Eldridge, 2016 ; Rambe, 2012 ). The majority of studies on Facebook address behavioral indicators of student engagement, with far fewer focusing on emotional or cognitive engagement.

Studies that examine the influence of Facebook on behavioral engagement focus both on participation in learning activities and interaction with peers and instructors. In most studies, Facebook activities were voluntary and participation rates ranged from 16 to 95%, with an average of rate of 47% (Bahati, 2015 ; Bowman & Akcaoglu, 2014 ; Dougherty & Andercheck, 2014 ; Fagioli, Rios-Aguilar, & Deil-Amen, 2015 ; Rambe, 2012 ; Staines & Lauchs, 2013 ). Participation was assessed by tracking how many students joined course- or university-specific Facebook groups (Bahati, 2015 ; Bowman & Akcaoglu, 2014 ; Fagioli et al., 2015 ), visited or followed course-specific Facebook pages (DiVall & Kirwin, 2012 ; Staines & Lauchs, 2013 ), or posted at least once in a course-specific Facebook page (Rambe, 2012 ). The lowest levels of participation (16%) arose from a study where community college students were invited to use the Schools App, a free application that connects students to their university’s private Facebook community. While the authors acknowledged that building an online community of college students is difficult (Fagioli et al., 2015 ), downloading the Schools App may have been a deterrent to widespread participation. In addition, use of the app was not tied to any specific courses or assignments; therefore, students may have lacked adequate incentive to use it. The highest level of participation (95%) in the literature arose from a study in which the instructor created a Facebook page where students could find or post study tips or ask questions. Followership to the page was highest around exams, when students likely had stronger motivations to access study tips and ask the instructor questions (DiVall & Kirwin, 2012 ). The wide range of participation in Facebook activities suggests that some students may be intrinsically motivated to participate, while other students may need some external encouragement. For example, Bahati ( 2015 ) found that when students assumed that a course-specific Facebook was voluntary, only 23% participated, but when the instructor confirmed that the Facebook group was, in fact, mandatory, the level of participation rose to 94%.

While voluntary participation in Facebook activities may be lower than desired or expected (Dyson, Vickers, Turtle, Cowan, & Tassone, 2015 ; Fagioli et al., 2015 ; Naghdipour & Eldridge, 2016 ; Rambe, 2012 ), students seem to have a clear preference for Facebook compared to other instructional tools (Clements, 2015 ; DiVall & Kirwin, 2012 ; Hurt et al., 2012 ; Hou et al., 2015 ; Kent, 2013 ). For example, in one study where an instructor shared course-related information in a Facebook group, in the LMS, and through email, the level of participation in the Facebook group was ten times higher than in email or the LMS (Clements, 2015 ). In other studies, class discussions held in Facebook resulted in greater levels of participation and dialogue than class discussions held in LMS discussion forums (Camus et al., 2016 ; Hurt et al., 2012 ; Kent, 2013 ). Researchers found that preference for Facebook over the university’s LMS is due to perceptions that the LMS is outdated and unorganized and reports that Facebook is more familiar, convenient, and accessible given that many students already visit the social networking site multiple times per day (Clements, 2015 ; Dougherty & Andercheck, 2014 ; Hurt et al., 2012 ; Kent, 2013 ). In addition, students report that Facebook helps them stay engaged in learning through collaboration and interaction with both peers and instructors (Bahati, 2015 ; Shraim, 2014 ), which is evident in Facebook posts where students collaborated to study for exams, consulted on technical and theoretical problem solving, discussed course content, exchanged learning resources, and expressed opinions as well as academic successes and challenges (Bowman & Akcaoglu, 2014 ; Dougherty & Andercheck, 2014 ; Esteves, 2012 Ivala & Gachago, 2012 ; Maben et al., 2014 ; Rambe, 2012 ; van Beynen & Swenson, 2016 ).

There is far less evidence in the literature about the use of Facebook for emotional and cognitive engagement. In terms of emotional engagement, studies suggest that students feel positively about being part of a course-specific Facebook group and that Facebook is useful for expressing feelings about learning and concerns for peers, through features such as the “like” button and emoticons (Bowman & Akcaoglu, 2014 ; Dougherty & Andercheck, 2014 ; Naghdipour & Eldridge, 2016 ). In addition, being involved in a course-specific Facebook group was positively related to students’ sense of belonging in the course (Dougherty & Andercheck, 2014 ). The research on cognitive engagement is less conclusive, with some studies suggesting that Facebook participation is related to academic persistence (Fagioli et al., 2015 ) and self-regulation (Dougherty & Andercheck, 2014 ) while other studies show low levels of knowledge construction in Facebook posts (Hou et al., 2015 ), particularly when compared to discussions held in the LMS. One possible reason may be because the LMS is associated with formal, academic interactions while Facebook is associated with informal, social interactions (Camus et al., 2016 ). While additional research is needed to confirm the efficacy of Facebook for promoting cognitive engagement, studies suggest that Facebook may be a viable tool for increasing specific behavioral and emotional engagement indicators, such as interactions with others and a sense of belonging within a learning community.

Twitter is a web-based service where subscribers can post short messages, called tweets, in real-time that are no longer than 140 characters in length. Tweets may contain hyperlinks to other websites, images, graphics, and/or videos and may be tagged by topic using the hashtag symbol before the designated label (e.g., #elearning). Twitter subscribers may “follow” other users and gain access to their tweets and also may “retweet” messages that have already been posted (Hennessy, Kirkpatrick, Smith, & Border, 2016 ; Osgerby & Rush, 2015 ; Prestridge, 2014 ; West, Moore, & Barry, 2015 ; Tiernan, 2014 ;). Instructors may use Twitter to post updates about the course, clarify expectations, direct students to additional learning materials, and encourage students to discuss course content (Bista, 2015 ; Williams & Whiting, 2016 ). Several of the studies on the use of Twitter included broad, all-encompassing measures of student engagement and produced mixed findings. For example, some studies suggest that Twitter increases student engagement (Evans, 2014 ; Gagnon, 2015 ; Junco, Heibergert, & Loken, 2011 ) while other studies suggest that Twitter has little to no influence on student engagement (Junco, Elavsky, & Heiberger, 2013 ; McKay, Sanko, Shekhter, & Birnbach, 2014 ). In both studies suggesting little to no influence on student engagement, Twitter use was voluntary and in one of the studies faculty involvement in Twitter was low, which may account for the negative findings (Junco et al., 2013 ; McKay et al., 2014 ). Conversely, in the studies that show positive findings, Twitter use was mandatory and often directly integrated with required assignments (Evans, 2014 ; Gagnon, 2015 ; Junco et al., 2011 ). Therefore, making Twitter use mandatory, increasing faculty involvement in Twitter, and integrating Twitter into assignments may help to increase student engagement.

Studies pertaining to specific behavioral student engagement indicators also reveal mixed findings. For example, in studies where course-related Twitter use was voluntary, 45-91% of students reported using Twitter during the term (Hennessy et al., 2016 ; Junco et al., 2013 ; Ross, Banow, & Yu, 2015 ; Tiernan, 2014 ; Williams & Whiting, 2016 ), but only 30-36% reported making contributions to the course-specific Twitter page (Hennessy et al., 2016 ; Tiernan, 2014 ; Ross et al., 2015 ; Williams & Whiting, 2016 ). The study that reported a 91% participation rate was unique because the course-specific Twitter page was accessible via a public link. Therefore, students who chose only to view the content (58%), rather than contribute to the page, did not have to create a Twitter account (Hennessy et al., 2016 ). The convenience of not having to create an account may be one reason for much higher participation rates. In terms of low participation rates, a lack of literacy, familiarity, and interest in Twitter , as well as a preference for Facebook , are cited as contributing factors (Bista, 2015 ; McKay et al., 2014 ; Mysko & Delgaty, 2015 ; Osgerby & Rush, 2015 ; Tiernan, 2014 ). However, when the use of Twitter was required and integrated into class discussions, the participation rate was 100% (Gagnon, 2015 ). Similarly, 46% of students in one study indicated that they would have been more motivated to participate in Twitter activities if they were graded (Osgerby & Rush, 2015 ), again confirming the power of extrinsic motivating factors.

Studies also show mixed results for the use of Twitter to promote interactions with peers and instructors. Researchers found that when instructors used Twitter to post updates about the course, ask and answer questions, and encourage students to tweet about course content, there was evidence of student-student and student-instructor interactions in tweets (Hennessy et al., 2016 ; Tiernan, 2014 ). Some students echoed these findings, suggesting that Twitter is useful for sharing ideas and resources, discussing course content, asking the instructor questions, and networking (Chawinga, 2017 ; Evans, 2014 ; Gagnon, 2015 ; Hennessy et al., 2016 ; Mysko & Delgaty, 2015 ; West et al., 2015 ) and is preferable over speaking aloud in class because it is more comfortable, less threatening, and more concise due to the 140 character limit (Gagnon, 2015 ; Mysko & Delgaty, 2015 ; Tiernan, 2014 ). Conversely, other students reported that Twitter was not useful for improving interaction because they viewed it predominately for social, rather than academic, interactions and they found the 140 character limit to be frustrating and restrictive. A theme among the latter studies was that a large proportion of the sample had never used Twitter before (Bista, 2015 ; McKay et al., 2014 ; Osgerby & Rush, 2015 ), which may have contributed to negative perceptions.

The literature on the use of Twitter for cognitive and emotional engagement is minimal but nonetheless promising in terms of promoting knowledge gains, the practical application of content, and a sense of belonging among users. For example, using Twitter to respond to questions that arose in lectures and tweet about course content throughout the term is associated with increased understanding of course content and application of knowledge (Kim et al., 2015 ; Tiernan, 2014 ; West et al., 2015 ). While the underlying mechanisms pertaining to why Twitter promotes an understanding of content and application of knowledge are not entirely clear, Tiernan ( 2014 ) suggests that one possible reason may be that Twitter helps to break down communication barriers, encouraging shy or timid students to participate in discussions that ultimately are richer in dialogue and debate. In terms of emotional engagement, students who participated in a large, class-specific Twitter page were more likely to feel a sense of community and belonging compared to those who did not participate because they could more easily find support from and share resources with other Twitter users (Ross et al., 2015 ). Despite the positive findings about the use of Twitter for cognitive and emotional engagement, more studies are needed to confirm existing results regarding behavioral engagement and target additional engagement indicators such as motivation, persistence, and attitudes, interests, and values about learning. In addition, given the strong negative perceptions of Twitter that still exist, additional studies are needed to confirm Twitter ’s efficacy for promoting different types of behavioral engagement among both novice and experienced Twitter users, particularly when compared to more familiar tools such as Facebook or LMS discussion forums.

  • Digital games

Digital games are “applications using the characteristics of video and computer games to create engaging and immersive learning experiences for delivery of specified learning goals, outcomes and experiences” (de Freitas, 2006 , p. 9). Digital games often serve the dual purpose of promoting the achievement of learning outcomes while making learning fun by providing simulations of real-world scenarios as well as role play, problem-solving, and drill and repeat activities (Boyle et al., 2016 ; Connolly, Boyle, MacArthur, Hainey, & Boyle, 2012 ; Scarlet & Ampolos, 2013 ; Whitton, 2011 ). In addition, gamified elements, such as digital badges and leaderboards, may be integrated into instruction to provide additional motivation for completing assigned readings and other learning activities (Armier, Shepherd, & Skrabut, 2016 ; Hew, Huang, Chu, & Chiu, 2016 ). The pedagogical benefits of digital games are somewhat distinct from the other technologies addressed in this review, which are designed primarily for social interaction. While digital games may be played in teams or allow one player to compete against another, the focus of their design often is on providing opportunities for students to interact with academic content in a virtual environment through decision-making, problem-solving, and reward mechanisms. For example, a digital game may require students to adopt a role as CEO in a computer-simulated business environment, make decisions about a series of organizational issues, and respond to the consequences of those decisions. In this example and others, digital games use adaptive learning principles, where the learning environment is re-configured or modified in response to the actions and needs of students (Bower, 2016 ). Most of the studies on digital games focused on cognitive and emotional indicators of student engagement, in contrast to the previous technologies addressed in this review which primarily focused on behavioral indicators of engagement.

Existing studies provide support for the influence of digital games on cognitive engagement, through achieving a greater understanding of course content and demonstrating higher-order thinking skills (Beckem & Watkins, 2012 ; Farley, 2013 ; Ke, Xie, & Xie, 2016 ; Marriott, Tan, & Marriott, 2015 ), particularly when compared to traditional instructional methods, such as giving lectures or assigning textbook readings (Lu, Hallinger, & Showanasai, 2014 ; Siddique, Ling, Roberson, Xu, & Geng, 2013 ; Zimmermann, 2013 ). For example, in a study comparing courses that offered computer simulations of business challenges (e.g, implementing a new information technology system, managing a startup company, and managing a brand of medicine in a simulated market environment) and courses that did not, students in simulation-based courses reported higher levels of action-directed learning (i.e., connecting theory to practice in a business context) than students in traditional, non-simulation-based courses (Lu et al., 2014 ). Similarly, engineering students who participated in a car simulator game, which was designed to help students apply and reinforce the knowledge gained from lectures, demonstrated higher levels of critical thinking (i.e., analysis, evaluation) on a quiz than students who only attended lectures (Siddique et al., 2013 ).

Motivation is another cognitive engagement indicator that is linked to digital games (Armier et al., 2016 ; Chang & Wei, 2016 ; Dichev & Dicheva, 2017 ; Grimley, Green, Nilsen, & Thompson, 2012 ; Hew et al., 2016 ; Ibáñez, Di-Serio, & Delgado-Kloos, 2014 ; Ke et al., 2016 ; Liu, Cheng, & Huang, 2011 ; Nadolny & Halabi, 2016 ). Researchers found that incorporating gamified elements into courses, such as giving students digital rewards (e.g., redeemable points, trophies, and badges) for participating in learning activities or creating competition through the use of leaderboards where students can see how they rank against other students positively affects student motivation to complete learning tasks (Armier et al., 2016 ; Chang & Wei, 2016 ; Hew et al., 2016 ; Nadolny & Halabi, 2016 ). In addition, students who participated in gamified elements, such as trying to earn digital badges, were more motivated to complete particularly difficult learning activities (Hew et al., 2016 ) and showed persistence in exceeding learning requirements (Ibáñez et al., 2014 ). Research on emotional engagement may help to explain these findings. Studies suggest that digital games positively affect student attitudes about learning, evident in student reports that games are fun, interesting, and enjoyable (Beckem & Watkins, 2012 ; Farley, 2013 ; Grimley et al., 2012 ; Hew et al., 2016 ; Liu et al., 2011 ; Zimmermann, 2013 ), which may account for higher levels of student motivation in courses that offered digital games.

Research on digital games and behavioral engagement is more limited, with only one study suggesting that games lead to greater participation in educational activities (Hew et al., 2016 ). Therefore, more research is needed to explore how digital games may influence behavioral engagement. In addition, research is needed to determine whether the underlying technology associated with digital games (e.g., computer-based simulations and virtual realities) produce positive engagement outcomes or whether common mechanisms associated with both digital and non-digital games (e.g., role play, rewards, and competition) account for those outcomes. For example, studies in which non-digital, face-to-face games were used also showed positive effects on student engagement (Antunes, Pacheco, & Giovanela, 2012 ; Auman, 2011 ; Coffey, Miller, & Feuerstein, 2011 ; Crocco, Offenholley, & Hernandez, 2016 ; Poole, Kemp, Williams, & Patterson, 2014 ; Scarlet & Ampolos, 2013 ); therefore, it is unclear if and how digitizing games contributes to student engagement.

Discussion and implications

Student engagement is linked to a number of academic outcomes, such as retention, grade point average, and graduation rates (Carini et al., 2006 ; Center for Postsecondary Research, 2016 ; Hu & McCormick, 2012 ). As a result, universities have shown a strong interest in how to increase student engagement, particularly given rising external pressures to improve learning outcomes and prepare students for academic success (Axelson & Flick, 2011 ; Kuh, 2009 ). There are various models of student engagement that identify factors that influence student engagement (Kahu, 2013 ; Lam et al., 2012 ; Nora et al., 2005 ; Wimpenny & Savin-Baden, 2013 ; Zepke & Leach, 2010 ); however, none include the overt role of technology despite the growing trend and student demands to integrate technology into the learning experience (Amirault, 2012 ; Cook & Sonnenberg, 2014 ; Revere & Kovach, 2011 ; Sun & Chen, 2016 ; Westera, 2015 ). Therefore, the primary purpose of our literature review was to explore whether technology influences student engagement. The secondary purpose was to address skepticism and uncertainty about pedagogical benefits of technology (Ashrafzadeh & Sayadian, 2015 ; Kopcha et al., 2016 ; Reid, 2014 ) by reviewing the literature regarding the efficacy of specific technologies (i.e., web-conferencing software, blogs, wikis, social networking sites, and digital games) for promoting student engagement and offering recommendations for effective implementation, which are included at the end of this paper. In the sections that follow, we provide an overview of the findings, an explanation of existing methodological limitations and areas for future research, and a list of best practices for integrating the technologies we reviewed into the teaching and learning process.

Summary of findings

Findings from our literature review provide preliminary support for including technology as a factor that influences student engagement in existing models (Table 1 ). One overarching theme is that most of the technologies we reviewed had a positive influence on multiple indicators of student engagement, which may lead to a larger return on investment in terms of learning outcomes. For example, digital games influence all three types of student engagement and six of the seven indicators we identified, surpassing the other technologies in this review. There were several key differences in the design and pedagogical use between digital games and other technologies that may explain these findings. First, digital games were designed to provide authentic learning contexts in which students could practice skills and apply learning (Beckem & Watkins, 2012 ; Farley, 2013 ; Grimley et al., 2012 ; Ke et al., 2016 ; Liu et al., 2011 ; Lu et al., 2014 ; Marriott et al., 2015 ; Siddique et al., 2013 ), which is consistent with experiential learning and adult learning theories. Experiential learning theory suggests that learning occurs through interaction with one’s environment (Kolb, 2014 ) while adult learning theory suggests that adult learners want to be actively involved in the learning process and be able apply learning to real life situations and problems (Cercone, 2008 ). Second, students reported that digital games (and gamified elements) are fun, enjoyable, and interesting (Beckem & Watkins, 2012 ; Farley, 2013 ; Grimley et al., 2012 ; Hew et al., 2016 ; Liu et al., 2011 ; Zimmermann, 2013 ), feelings that are associated with a flow-like state where one is completely immersed in and engaged with the activity (Csikszentmihalyi, 1988 ; Weibel, Wissmath, Habegger, Steiner, & Groner, 2008 ). Third, digital games were closely integrated into the curriculum as required activities (Farley, 2013 ; Grimley et al., 2012 , Ke et al., 2016 ; Liu et al., 2011 ; Marriott et al., 2015 ; Siddique et al., 2013 ) as opposed to wikis, Facebook , and Twitter , which were often voluntary and used to supplement lectures (Dougherty & Andercheck, 2014 Nakamaru, 2012 ; Prestridge, 2014 ; Rambe, 2012 ).

Web-conferencing software and Facebook also yielded the most positive findings, influencing four of the seven indicators of student engagement, compared to other collaborative technologies, such as blogs, wikis, and Twitter . Web-conferencing software was unique due to the sheer number of collaborative features it offers, providing multiple ways for students to actively engage with course content (screen sharing, whiteboards, digital pens) and interact with peers and the instructor (audio, video, text chats, breakout rooms) (Bower, 2011 ; Hudson et al., 2012 ; Martin et al., 2012 ; McBrien et al., 2009 ); this may account for the effects on multiple indicators of student engagement. Positive findings regarding Facebook ’s influence on student engagement could be explained by a strong familiarity and preference for the social networking site (Clements, 2015 ; DiVall & Kirwin, 2012 ; Hurt et al., 2012 ; Hou et al., 2015 ; Kent, 2013 ; Manca & Ranieri, 2013 ), compared to Twitter which was less familiar or interesting to students (Bista, 2015 ; McKay et al., 2014 ; Mysko & Delgaty, 2015 ; Osgerby & Rush, 2015 ; Tiernan, 2014 ). Wikis had the lowest influence on student engagement, with mixed findings regarding behavioral engagement, limited, but conclusive findings, regarding one indicator of cognitive engagement (deep processing of information), and no studies pertaining to other indicators of cognitive engagement (motivation, persistence) or emotional engagement.

Another theme that arose was the prevalence of mixed findings across multiple technologies regarding behavioral engagement. Overall, the vast majority of studies addressed behavioral engagement, and we expected that technologies designed specifically for social interaction, such as web-conferencing, wikis, and social networking sites, would yield more conclusive findings. However, one possible reason for the mixed findings may be that the technologies were voluntary in many studies, resulting in lower than desired participation rates and missed opportunities for interaction (Armstrong & Thornton, 2012 ; Fagioli et al., 2015 ; Nakamaru, 2012 ; Rambe, 2012 ; Ross et al., 2015 ; Williams & Whiting, 2016 ), and mandatory in a few studies, yielding higher levels of participation and interaction (Bahati, 2015 ; Gagnon, 2015 ; Roussinos & Jimoyiannis, 2013 ). Another possible reason for the mixed findings is that measures of variables differed across studies. For example, in some studies participation meant that a student signed up for a Twitter account (Tiernan, 2014 ), used the Twitter account for class (Williams & Whiting, 2016 ), or viewed the course-specific Twitter page (Hennessy et al., 2016 ). The pedagogical uses of the technologies also varied considerably across studies, making it difficult to make comparisons. For example, Facebook was used in studies to share learning materials (Clements, 2015 ; Dyson et al., 2015 ), answer student questions about academic content or administrative issues (Rambe, 2012 ), prepare for upcoming exams and share study tips (Bowman & Akcaoglu, 2014 ; DiVall & Kirwin, 2012 ), complete group work (Hou et al., 2015 ; Staines & Lauchs, 2013 ), and discuss course content (Camus et al., 2016 ; Kent, 2013 ; Hurt et al., 2012 ). Finally, cognitive indicators (motivation and persistence) drew the fewest amount of studies, which suggests that research is needed to determine whether technologies affect these indicators.

Methodological limitations

While there appears to be preliminary support for the use of many of the technologies to promote student engagement, there are significant methodological limitations in the literature and, as a result, findings should be interpreted with caution. First, many studies used small sample sizes and were limited to one course, one degree level, and one university. Therefore, generalizability is limited. Second, very few studies used experimental or quasi-experimental designs; therefore, very little evidence exists to substantiate a cause and effect relationship between technologies and student engagement indicators. In addition, in many studies that did use experimental or quasi-experimental designs, participants were not randomized; rather, participants who volunteered to use a specific technology were compared to those who chose not to use the technology. As a result, there is a possibility that fundamental differences between users and non-users could have affected the engagement results. Furthermore, many of the studies did not isolate specific technological features (e.g, using only the breakout rooms for group work in web-conferencing software, rather than using the chat feature, screen sharing, and breakout rooms for group work). Using multiple features at once could have conflated student engagement results. Third, many studies relied on one source to measure technological and engagement variables (single source bias), such as self-report data (i.e., reported usage of technology and perceptions of student engagement), which may have affected the validity of the results. Fourth, many studies were conducted during a very brief timeframe, such as one academic term. As a result, positive student engagement findings may be attributed to a “novelty effect” (Dichev & Dicheva, 2017 ) associated with using a new technology. Finally, many studies lack adequate details about learning activities, raising questions about whether poor instructional design may have adversely affected results. For example, an instructor may intend to elicit higher-order thinking from students, but if learning activity instructions are written using low-level verbs, such as identify, describe, and summarize, students will be less likely to engage in higher-order thinking.

Areas for future research

The findings of our literature review suggest that the influence of technology on student engagement is still a developing area of knowledge that requires additional research to build on promising, but limited, evidence, clarify mixed findings, and address several gaps in the literature. As such, our recommendations for future areas of research are as follows:

Examine the effect of collaborative technologies (i.e., web-conferencing, blogs, wikis, social networking sites ) on emotional and cognitive student engagement. There are significant gaps in the literature regarding whether these technologies affect attitudes, interests, and values about learning; a sense of belonging within a learning community; motivation to learn; and persistence to overcome academic challenges and meet or exceed requirements.

Clarify mixed findings, particularly regarding how web-conferencing software, wikis, and Facebook and Twitter affect participation in learning activities. Researchers should make considerable efforts to gain consensus or increase consistency on how participation is measured (e.g., visited Facebook group or contributed one post a week) in order to make meaningful comparisons and draw conclusions about the efficacy of various technologies for promoting behavioral engagement. In addition, further research is needed to clarify findings regarding how wikis and Twitter influence interaction and how blogs and Facebook influence deep processing of information. Future research studies should include justifications for the pedagogical use of specific technologies and detailed instructions for learning activities to minimize adverse findings from poor instructional design and to encourage replication.

Conduct longitudinal studies over several academic terms and across multiple academic disciplines, degree levels, and institutions to determine long-term effects of specific technologies on student engagement and to increase generalizability of findings. Also, future studies should take individual factors into account, such as gender, age, and prior experience with the technology. Studies suggest that a lack of prior experience or familiarity with Twitter was a barrier to Twitter use in educational settings (Bista, 2015 , Mysko & Delgaty, 2015 , Tiernan, 2014 ); therefore, future studies should take prior experience into account.

Compare student engagement outcomes between and among different technologies and non-technologies. For example, studies suggest that students prefer Facebook over Twitter (Bista, 2015 ; Osgerby & Rush, 2015 ), but there were no studies that compared these technologies for promoting student engagement. Also, studies are needed to isolate and compare different features within the same technology to determine which might be most effective for increasing engagement. Finally, studies on digital games (Beckem & Watkins, 2012 ; Grimley et al., 2012 ; Ke et al., 2016 ; Lu et al., 2014 ; Marriott et al., 2015 ; Siddique et al., 2013 ) and face-to-face games (Antunes et al., 2012 ; Auman, 2011 ; Coffey et al., 2011 ; Crocco et al., 2016 ; Poole et al., 2014 ; Scarlet & Ampolos, 2013 ) show similar, positive effects on student engagement, therefore, additional research is needed to determine the degree to which the delivery method (i.e.., digital versus face-to-face) accounts for positive gains in student engagement.

Determine whether other technologies not included in this review influence student engagement. Facebook and Twitter regularly appear in the literature regarding social networking, but it is unclear how other popular social networking sites, such as LinkedIn, Instagram, and Flickr, influence student engagement. Future research should focus on the efficacy of these and other popular social networking sites for promoting student engagement. In addition, there were very few studies about whether informational technologies, which involve the one-way transmission of information to students, affect different types of student engagement. Future research should examine whether informational technologies, such as video lectures, podcasts, and pre-recorded narrated Power Point presentations or screen casts, affect student engagement. Finally, studies should examine the influence of mobile software and technologies, such as educational apps or smartphones, on student engagement.

Achieve greater consensus on the meaning of student engagement and its distinction from similar concepts in the literature, such as social and cognitive presence (Garrison & Arbaugh, 2007 )

Recommendations for practice

Despite the existing gaps and mixed findings in the literature, we were able to compile a list of recommendations for when and how to use technology to increase the likelihood of promoting student engagement. What follows is not an exhaustive list; rather, it is a synthesis of both research findings and lessons learned from the studies we reviewed. There may be other recommendations to add to this list; however, our intent is to provide some useful information to help address barriers to technology integration among faculty who feel uncertain or unprepared to use technology (Ashrafzadeh & Sayadian, 2015 ; Hauptman, 2015 ; Kidd et al., 2016 ; Reid, 2014 ) and to add to the body of practical knowledge in instructional design and delivery. Our recommendations for practice are as follows:

Consider context before selecting technologies. Contextual factors such as existing technological infrastructure and requirements, program and course characteristics, and the intended audience will help determine which technologies, if any, are most appropriate (Bullen & Morgan, 2011 ; Bullen, Morgan, & Qayyum, 2011 ). For example, requiring students to use a blog that is not well integrated with the existing LMS may prove too frustrating for both the instructor and students. Similarly, integrating Facebook- and Twitter- based learning activities throughout a marketing program may be more appropriate, given the subject matter, compared to doing so in an engineering or accounting program where social media is less integral to the profession. Finally, do not assume that students appreciate or are familiar with all technologies. For example, students who did not already have Facebook or Twitter accounts were less likely to use either for learning purposes and perceived setting up an account to be an increase in workload (Bista, 2015 , Clements, 2015 ; DiVall & Kirwin, 2012 ; Hennessy et al., 2016 ; Mysko & Delgaty, 2015 , Tiernan, 2014 ). Therefore, prior to using any technology, instructors may want to determine how many students already have accounts and/or are familiar with the technology.

Carefully select technologies based on their strengths and limitations and the intended learning outcome. For example, Twitter is limited to 140 characters, making it a viable tool for learning activities that require brevity. In one study, an instructor used Twitter for short pop quizzes during lectures, where the first few students to tweet the correct answer received additional points (Kim et al., 2015 ), which helped students practice applying knowledge. In addition, studies show that students perceive Twitter and Facebook to be primarily for social interactions (Camus et al., 2016 ; Ross et al., 2015 ), which may make these technologies viable tools for sharing resources, giving brief opinions about news stories pertaining to course content, or having casual conversations with classmates rather than full-fledged scholarly discourse.

Incentivize students to use technology, either by assigning regular grades or giving extra credit. The average participation rates in voluntary web-conferencing, Facebook , and Twitter learning activities in studies we reviewed was 52% (Andrew et al., 2015 ; Armstrong & Thornton, 2012 ; Bahati, 2015 ; Bowman & Akcaoglu, 2014 ; Divall & Kirwin, 2012 ; Dougherty & Andercheck, 2014 ; Fagioli et al., 2015 ; Hennessy et al., 2016 ; Junco et al., 2013 ; Rambe, 2012 ; Ross et al., 2015 ; Staines & Lauchs, 2013 ; Tiernan, 2014 ; Williams & Whiting, 2016 ). While there were far fewer studies on the use of technology for graded or mandatory learning activities, the average participation rate reported in those studies was 97% (Bahati2015; Gagnon, 2015 ), suggesting that grading may be a key factor in ensuring students participate.

Communicate clear guidelines for technology use. Prior to the implementation of technology in a course, students may benefit from an overview the technology, including its navigational features, privacy settings, and security (Andrew et al., 2015 ; Hurt et al., 2012 ; Martin et al., 2012 ) and a set of guidelines for how to use the technology effectively and professionally within an educational setting (Miller et al., 2012 ; Prestridge, 2014 ; Staines & Lauchs, 2013 ; West et al., 2015 ). In addition, giving students examples of exemplary and poor entries and posts may also help to clarify how they are expected to use the technology (Shraim, 2014 ; Roussinos & Jimoyiannis, 2013 ). Also, if instructors expect students to use technology to demonstrate higher-order thinking or to interact with peers, there should be explicit instructions to do so. For example, Prestridge ( 2014 ) found that students used Twitter to ask the instructor questions but very few interacted with peers because they were not explicitly asked to do so. Similarly, Hou et al., 2015 reported low levels of knowledge construction in Facebook , admitting that the wording of the learning activity (e.g., explore and present applications of computer networking) and the lack of probing questions in the instructions may have been to blame.

Use technology to provide authentic and integrated learning experiences. In many studies, instructors used digital games to simulate authentic environments in which students could apply new knowledge and skills, which ultimately lead to a greater understanding of content and evidence of higher-order thinking (Beckem & Watkins, 2012 ; Liu et al., 2011 ; Lu et al., 2014 ; Marriott et al., 2015 ; Siddique et al., 2013 ). For example, in one study, students were required to play the role of a stock trader in a simulated trading environment and they reported that the simulation helped them engage in critical reflection, enabling them to identify their mistakes and weaknesses in their trading approaches and strategies (Marriott et al., 2015 ). In addition, integrating technology into regularly-scheduled classroom activities, such as lectures, may help to promote student engagement. For example, in one study, the instructor posed a question in class, asked students to respond aloud or tweet their response, and projected the Twitter page so that everyone could see the tweets in class, which lead to favorable comments about the usefulness of Twitter to promote engagement (Tiernan, 2014 ).

Actively participate in using the technologies assigned to students during the first few weeks of the course to generate interest (Dougherty & Andercheck, 2014 ; West et al., 2015 ) and, preferably, throughout the course to answer questions, encourage dialogue, correct misconceptions, and address inappropriate behavior (Bowman & Akcaoglu, 2014 ; Hennessy et al., 2016 ; Junco et al., 2013 ; Roussinos & Jimoyiannis, 2013 ). Miller et al. ( 2012 ) found that faculty encouragement and prompting was associated with increases in students’ expression of ideas and the degree to which they edited and elaborated on their peers’ work in a course-specific wiki.

Be mindful of privacy, security, and accessibility issues. In many studies, instructors took necessary steps to help ensure privacy and security by creating closed Facebook groups and private Twitter pages, accessible only to students in the course (Bahati, 2015 ; Bista, 2015 ; Bowman & Akcaoglu, 2014 ; Esteves, 2012 ; Rambe, 2012 ; Tiernan, 2014 ; Williams & Whiting, 2016 ) and by offering training to students on how to use privacy and security settings (Hurt et al., 2012 ). Instructors also made efforts to increase accessibility of web-conferencing software by including a phone number for students unable to access audio or video through their computer and by recording and archiving sessions for students unable to attend due to pre-existing conflicts (Andrew et al., 2015 ; Martin et al., 2012 ). In the future, instructors should also keep in mind that some technologies, like Facebook and Twitter , are not accessible to students living in China; therefore, alternative arrangements may need to be made.

In 1985, Steve Jobs predicted that computers and software would revolutionize the way we learn. Over 30 years later, his prediction has yet to be fully confirmed in the student engagement literature; however, our findings offer preliminary evidence that the potential is there. Of the technologies we reviewed, digital games, web-conferencing software, and Facebook had the most far-reaching effects across multiple types and indicators of student engagement, suggesting that technology should be considered a factor that influences student engagement in existing models. Findings regarding blogs, wikis, and Twitter, however, are less convincing, given a lack of studies in relation to engagement indicators or mixed findings. Significant methodological limitations may account for the wide range of findings in the literature. For example, small sample sizes, inconsistent measurement of variables, lack of comparison groups, and missing details about specific, pedagogical uses of technologies threaten the validity and reliability of findings. Therefore, more rigorous and robust research is needed to confirm and build upon limited but positive findings, clarify mixed findings, and address gaps particularly regarding how different technologies influence emotional and cognitive indicators of engagement.

Abbreviations

Learning management system

Amirault, R. J. (2012). Distance learning in the 21 st century university. Quarterly Review of Distance Education, 13 (4), 253–265.

Google Scholar  

Anderson, M. (2016). More Americans using smartphones for getting directions, streaming TV . Washington, D.C.: Pew Research Center Retrieved from http://www.pewresearch.org/fact-tank/2016/01/29/us-smartphone-use/ .

Anderson, M., & Horrigan, J. B. (2016). Smartphones help those without broadband get online, but don’t necessary bridge the digital divide . Washington, D.C.: Pew Research Center Retrieved from http://www.pewresearch.org/fact-tank/2016/10/03/smartphones-help-those-without-broadband-get-online-but-dont-necessarily-bridge-the-digital-divide/ .

Andrew, L., Maslin-Prothero, S., & Ewens, B. (2015). Enhancing the online learning experience using virtual interactive classrooms. Australian Journal of Advanced Nursing, 32 (4), 22–31.

Antunes, M., Pacheco, M. R., & Giovanela, M. (2012). Design and implementation of an educational game for teaching chemistry in higher education. Journal of Chemical Education, 89 (4), 517–521. doi: 10.1021/ed2003077 .

Article   Google Scholar  

Armier, D. J., Shepherd, C. E., & Skrabut, S. (2016). Using game elements to increase student engagement in course assignments. College Teaching, 64 (2), 64–72 https://doi.org/10.1080/87567555.2015.1094439 .

Armstrong, A., & Thornton, N. (2012). Incorporating Brookfield’s discussion techniques synchronously into asynchronous online courses. Quarterly Review of Distance Education, 13 (1), 1–9.

Ashrafzadeh, A., & Sayadian, S. (2015). University instructors’ concerns and perceptions of technology integration. Computers in Human Behavior, 49 , 62–73. doi: 10.1016/j.chb.2015.01.071 .

Astin, A. W. (1984). Student involvement: A developmental theory for higher education. Journal of College Student Personnel, 25 (4), 297–308.

Auman, C. (2011). Using simulation games to increase student and instructor engagement. College Teaching, 59 (4), 154–161. doi: 10.1080/87567555 .

Axelson, R. D., & Flick, A. (2011). Defining student engagement. Change: The magazine of higher learning, 43 (1), 38–43.

Bahati, B. (2015). Extending student discussions beyond lecture room walls via Facebook. Journal of Education and Practice, 6 (15), 160–171.

Bakker, A. B., Vergel, A. I. S., & Kuntze, J. (2015). Student engagement and performance: A weekly diary study on the role of openness. Motivation and Emotion, 39 (1), 49–62. doi: 10.1007/s11031-014-9422-5 .

Beckem, J. I., & Watkins, M. (2012). Bringing life to learning: Immersive experiential learning simulations for online and blended courses. Journal if Asynchronous Learning Networks, 16 (5), 61–70 https://doi.org/10.24059/olj.v16i5.287 .

Bista, K. (2015). Is Twitter an effective pedagogical tool in higher education? Perspectives of education graduate students. Journal of the Scholarship Of Teaching And Learning, 15 (2), 83–102 https://doi.org/10.14434/josotl.v15i2.12825 .

Boghossian, P. (2006). Behaviorism, constructivism, and Socratic pedagogy. Educational Philosophy and Theory, 38 (6), 713–722 https://doi.org/10.1111/j.1469-5812.2006.00226.x .

Bower, M. (2011). Redesigning a web-conferencing environment to scaffold computing students’ creative design processes. Journal of Educational Technology & Society, 14 (1), 27–42.

MathSciNet   Google Scholar  

Bower, M. (2016). A framework for adaptive learning design in a Web-conferencing environment. Journal of Interactive Media in Education, 2016 (1), 11 http://doi.org/10.5334/jime.406 .

Article   MathSciNet   Google Scholar  

Bowman, N. D., & Akcaoglu, M. (2014). “I see smart people!”: Using Facebook to supplement cognitive and affective learning in the university mass lecture. The Internet and Higher Education, 23 , 1–8. doi: 10.1016/j.iheduc.2014.05.003 .

Boyle, E. A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., et al. (2016). An update to the systematic literature review of empirical evidence of the impacts and outcomes of computer games and serious games. Computers & Education, 94 , 178–192. doi: 10.1016/j.compedu.2015.11.003 .

Bryson, C., & Hand, L. (2007). The role of engagement in inspiring teaching and learning. Innovations in Education and Teaching International, 44 (4), 349–362. doi: 10.1080/14703290701602748 .

Buchanan, T., Sainter, P., & Saunders, G. (2013). Factors affecting faculty use of learning technologies: Implications for models of technology adoption. Journal of Computer in Higher Education, 25 (1), 1–11.

Bullen, M., & Morgan, T. (2011). Digital learners not digital natives. La Cuestión Universitaria, 7 , 60–68.

Bullen, M., Morgan, T., & Qayyum, A. (2011). Digital learners in higher education: Generation is not the issue. Canadian Journal of Learning and Technology, 37 (1), 1–24.

Calabretto, J., & Rao, D. (2011). Wikis to support collaboration of pharmacy students in medication management workshops -- a pilot project. International Journal of Pharmacy Education & Practice, 8 (2), 1–12.

Camacho, M. E., Carrión, M. D., Chayah, M., & Campos, J. M. (2016). The use of wiki to promote students’ learning in higher education (Degree in Pharmacy). International Journal of Educational Technology in Higher Education, 13 (1), 1–8 https://doi.org/10.1186/s41239-016-0025-y .

Camus, M., Hurt, N. E., Larson, L. R., & Prevost, L. (2016). Facebook as an online teaching tool: Effects on student participation, learning, and overall course performance. College Teaching, 64 (2), 84–94 https://doi.org/10.1080/87567555.2015.1099093 .

Carini, R. M., Kuh, G. D., & Klein, S. P. (2006). Student engagement and student learning: Testing the linkages. Research in Higher Education, 47 (1), 1–32. doi: 10.1007/s11162-005-8150-9 .

Cassidy, E. D., Colmenares, A., Jones, G., Manolovitz, T., Shen, L., & Vieira, S. (2014). Higher Education and Emerging Technologies: Shifting Trends in Student Usage. The Journal of Academic Librarianship, 40 , 124–133. doi: 10.1016/j.acalib.2014.02.003 .

Center for Postsecondary Research (2016). Engagement insights: Survey findings on the quality of undergraduate education . Retrieved from http://nsse.indiana.edu/NSSE_2016_Results/pdf/NSSE_2016_Annual_Results.pdf .

Center for Postsecondary Research (2017). About NSSE. Retrieved on February 15, 2017 from http://nsse.indiana.edu/html/about.cfm

Cercone, K. (2008). Characteristics of adult learners with implications for online learning design. AACE Journal, 16 (2), 137–159.

Chang, J. W., & Wei, H. Y. (2016). Exploring Engaging Gamification Mechanics in Massive Online Open Courses. Educational Technology & Society, 19 (2), 177–203.

Chawinga, W. D. (2017). Taking social media to a university classroom: teaching and learning using Twitter and blogs. International Journal of Educational Technology in Higher Education, 14 (1), 3 https://doi.org/10.1186/s41239-017-0041-6 .

Chen, B., Seilhamer, R., Bennett, L., & Bauer, S. (2015). Students’ mobile learning practices in higher education: A multi-year study. In EDUCAUSE Review Retrieved from http://er.educause.edu/articles/2015/6/students-mobile-learning-practices-in-higher-education-a-multiyear-study .

Chu, S. K., Chan, C. K., & Tiwari, A. F. (2012). Using blogs to support learning during internship. Computers & Education, 58 (3), 989–1000. doi: 10.1016/j.compedu.2011.08.027 .

Clements, J. C. (2015). Using Facebook to enhance independent student engagement: A case study of first-year undergraduates. Higher Education Studies, 5 (4), 131–146 https://doi.org/10.5539/hes.v5n4p131 .

Coates, H. (2008). Attracting, engaging and retaining: New conversations about learning . Camberwell: Australian Council for Educational Research Retrieved from http://research.acer.edu.au/cgi/viewcontent.cgi?article=1015&context=ausse .

Coffey, D. J., Miller, W. J., & Feuerstein, D. (2011). Classroom as reality: Demonstrating campaign effects through live simulation. Journal of Political Science Education, 7 (1), 14–33.

Coghlan, E., Crawford, J. Little, J., Lomas, C., Lombardi, M., Oblinger, D., & Windham, C. (2007). ELI Discovery Tool: Guide to Blogging . Retrieved from https://net.educause.edu/ir/library/pdf/ELI8006.pdf .

Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A systematic literature review of empirical evidence on computer games and serious games. Computers & Education, 59 , 661–686. doi: 10.1016/j.compedu.2012.03.004 .

Cook, C. W., & Sonnenberg, C. (2014). Technology and online education: Models for change. ASBBS E-Journal, 10 (1), 43–59.

Crocco, F., Offenholley, K., & Hernandez, C. (2016). A proof-of-concept study of game-based learning in higher education. Simulation & Gaming, 47 (4), 403–422. doi: 10.1177/1046878116632484 .

Csikszentmihalyi, M. (1988). The flow experience and its significance for human psychology. In M. Csikszentmihalyi & I. Csikszentmihalyi (Eds.), Optimal experience: Psychological studies of flow in consciousness (pp. 15–13). Cambridge, UK: Cambridge University Press.

Chapter   Google Scholar  

Dahlstrom, E. (2012). ECAR study of undergraduate students and information technology, 2012 (Research Report). Retrieved from http://net.educause.edu/ir/library/pdf/ERS1208/ERS1208.pdf

de Freitas, S. (2006). Learning in immersive worlds: A review of game-based learning . Retrieved from https://curve.coventry.ac.uk/open/file/aeedcd86-bc4c-40fe-bfdf-df22ee53a495/1/learning%20in%20immersive%20worlds.pdf .

Dichev, C., & Dicheva, D. (2017). Gamifying education: What is known, what is believed and what remains uncertain: A critical review. International Journal of Educational Technology in Higher Education, 14 (9), 1–36. doi: 10.1186/s41239-017-0042-5 .

DiVall, M. V., & Kirwin, J. L. (2012). Using Facebook to facilitate course-related discussion between students and faculty members. American Journal of Pharmaceutical Education, 76 (2), 1–5 https://doi.org/10.5688/ajpe76232 .

Dos, B., & Demir, S. (2013). The analysis of the blogs created in a blended course through the reflective thinking perspective. Educational Sciences: Theory & Practice, 13 (2), 1335–1344.

Dougherty, K., & Andercheck, B. (2014). Using Facebook to engage learners in a large introductory course. Teaching Sociology, 42 (2), 95–104 https://doi.org/10.1177/0092055x14521022 .

Dyson, B., Vickers, K., Turtle, J., Cowan, S., & Tassone, A. (2015). Evaluating the use of Facebook to increase student engagement and understanding in lecture-based classes. Higher Education: The International Journal of Higher Education and Educational Planning, 69 (2), 303–313 https://doi.org/10.1007/s10734-014-9776-3.

Esteves, K. K. (2012). Exploring Facebook to enhance learning and student engagement: A case from the University of Philippines (UP) Open University. Malaysian Journal of Distance Education, 14 (1), 1–15.

Evans, C. (2014). Twitter for teaching: Can social media be used to enhance the process of learning? British Journal of Educational Technology, 45 (5), 902–915 https://doi.org/10.1111/bjet.12099 .

Fagioli, L., Rios-Aguilar, C., & Deil-Amen, R. (2015). Changing the context of student engagement: Using Facebook to increase community college student persistence and success. Teachers College Record, 17 , 1–42.

Farley, P. C. (2013). Using the computer game “FoldIt” to entice students to explore external representations of protein structure in a biochemistry course for nonmajors. Biochemistry and Molecular Biology Education, 41 (1), 56–57 https://doi.org/10.1002/bmb.20655 .

Francescucci, A., & Foster, M. (2013). The VIRI classroom: The impact of blended synchronous online courses on student performance, engagement, and satisfaction. Canadian Journal of Higher Education, 43 (3), 78–91.

Fredricks, J., Blumenfeld, P., & Paris, A. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74 (1), 59–109. doi: 10.3102/00346543074001059 .

Gagnon, K. (2015). Using twitter in health professional education: A case study. Journal of Allied Health, 44 (1), 25–33.

Gandhi, P., Khanna, S., & Ramaswamy, S. (2016). Which industries are the most digital (and why?) . Retrieved from https://hbr.org/2016/04/a-chart-that-shows-which-industries-are-the-most-digital-and-why .

Garrison, D. R., & Arbaugh, J. B. (2007). Researching the community of inquiry framework: Review, issues, and future directions. The Internet and Higher Education, 10 (3), 157–172 http://dx.doi.org/10.1016/j.iheduc.2007.04.001 .

Garrity, M. K., Jones, K., VanderZwan, K. J., de la Rocha, A. R., & Epstein, I. (2014). Integrative review of blogging: Implications for nursing education. Journal of Nursing Education, 53 (7), 395–401. doi: 10.3928/01484834-20140620-01 .

Gikas, J., & Grant, M. M. (2013). Mobile computing devices in higher education: Student perspectives on learning with cellphones, smartphones & social media. The Internet and Higher Education, 19 , 18–26 http://dx.doi.org/10.1016/j.iheduc.2013.06.002 .

Gilboy, M. B., Heinerichs, S., & Pazzaglia, G. (2015). Enhancing student engagement using the flipped classroom. Journal of Nutrition Education and Behavior, 47 (1), 109–114 http://dx.doi.org/10.1016/j.jneb.2014.08.008 .

Greenwood, S., Perrin, A., & Duggan, M. (2016). Social media update 2016 . Washington.: Pew Research Center Retrieved from http://www.pewinternet.org/2016/11/11/social-media-update-2016/ .

Grimley, M., Green, R., Nilsen, T., & Thompson, D. (2012). Comparing computer game and traditional lecture using experience ratings from high and low achieving students. Australasian Journal of Educational Technology, 28 (4), 619–638 https://doi.org/10.14742/ajet.831 .

Gunawardena, C. N., Hermans, M. B., Sanchez, D., Richmond, C., Bohley, M., & Tuttle, R. (2009). A theoretical framework for building online communities of practice with social networking tools. Educational Media International, 46 (1), 3–16 https://doi.org/10.1080/09523980802588626 .

Haggis, T. (2009). What have we been thinking of? A critical overview of 40 years of student learning research in higher education. Studies in Higher Education, 34 (4), 377–390. doi: 10.1080/03075070902771903 .

Hauptman, P.H. (2015). Mobile technology in college instruction. Faculty perceptions and barriers to adoption (Doctoral dissertation). Retrieved from ProQuest. (AAI3712404).

Hennessy, C. M., Kirkpatrick, E., Smith, C. F., & Border, S. (2016). Social media and anatomy education: Using twitter to enhance the student learning experience in anatomy. Anatomical Sciences Education, 9 (6), 505–515 https://doi.org/10.1002/ase.1610 .

Hew, K. F., Huang, B., Chu, K. S., & Chiu, D. K. (2016). Engaging Asian students through game mechanics: Findings from two experiment studies. Computers & Education, 93 , 221–236. doi: 10.1016/j.compedu.2015.10.010 .

Hewege, C. R., & Perera, L. R. (2013). Pedagogical significance of wikis: Towards gaining effective learning outcomes. Journal of International Education in Business, 6 (1), 51–70 https://doi.org/10.1108/18363261311314953 .

Hou, H., Wang, S., Lin, P., & Chang, K. (2015). Exploring the learner’s knowledge construction and cognitive patterns of different asynchronous platforms: comparison of an online discussion forum and Facebook. Innovations in Education and Teaching International, 52 (6), 610–620. doi: 10.1080/14703297.2013.847381 .

Hu, S., & McCormick, A. C. (2012). An engagement-based student typology and its relationship to college outcomes. Research in Higher Education, 53 , 738–754. doi: 10.1007/s11162-012-9254-7 .

Hudson, T. M., Knight, V., & Collins, B. C. (2012). Perceived effectiveness of web conferencing software in the digital environment to deliver a graduate course in applied behavior analysis. Rural Special Education Quarterly, 31 (2), 27–39.

Hurt, N. E., Moss, G. S., Bradley, C. L., Larson, L. R., Lovelace, M. D., & Prevost, L. B. (2012). The ‘Facebook’ effect: College students’ perceptions of online discussions in the age of social networking. International Journal for the Scholarship of Teaching & Learning, 6 (2), 1–24 https://doi.org/10.20429/ijsotl.2012.060210 .

Ibáñez, M. B., Di-Serio, A., & Delgado-Kloos, C. (2014). Gamification for engaging computer science students in learning activities: A case study. IEEE Transactions on Learning Technologies, 7 (3), 291–301 https://doi.org/10.1109/tlt.2014.2329293 .

Ivala, E., & Gachago, D. (2012). Social media for enhancing student engagement: The use of facebook and blogs at a university of technology. South African Journal of Higher Education, 26 (1), 152–167.

Johnson, D. R. (2013). Technological change and professional control in the professoriate. Science, Technology & Human Values, 38 (1), 126–149. doi: 10.1177/0162243911430236 .

Junco, R., Elavsky, C. M., & Heiberger, G. (2013). Putting Twitter to the test: Assessing outcomes for student collaboration, engagement and success. British Journal of Educational Technology, 44 (2), 273–287. doi: 10.1111/j.1467-8535.2012.01284.x .

Junco, R., Heibergert, G., & Loken, E. (2011). The effect of Twitter on college student engagement and grades. Journal of Computer Assisted Learning, 27 (2), 119–132. doi: 10.1111/j.1365-2729.2010.00387.x .

Kahu, E. R. (2013). Framing student engagement in higher education. Studies in Higher Education, 38 (5), 758–773. doi: 10.1080/03075079.2011.598505 .

Kaware, S. S., & Sain, S. K. (2015). ICT Application in Education: An Overview. International Journal of Multidisciplinary Approach & Studies, 2 (1), 25–32.

Ke, F., Xie, K., & Xie, Y. (2016). Game-based learning engagement: A theory- and data-driven exploration. British Journal of Educational Technology, 47 (6), 1183–1201 https://doi.org/10.1111/bjet.12314 .

Kent, M. (2013). Changing the conversation: Facebook as a venue for online class discussion in higher education. Journal of Online Learning & Teaching, 9 (4), 546–565 https://doi.org/10.1353/rhe.2015.0000 .

Kidd, T., Davis, T., & Larke, P. (2016). Experience, adoption, and technology: Exploring the phenomenological experiences of faculty involved in online teaching at once school of public health. International Journal of E-Learning, 15 (1), 71–99.

Kim, Y., Jeong, S., Ji, Y., Lee, S., Kwon, K. H., & Jeon, J. W. (2015). Smartphone response system using twitter to enable effective interaction and improve engagement in large classrooms. IEEE Transactions on Education, 58 (2), 98–103 https://doi.org/10.1109/te.2014.2329651 .

Kinchin. (2012). Avoiding technology-enhanced non-learning. British Journal of Educational Technology, 43 (2), E43–E48.

Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development (2nd ed.). Upper Saddle River: Pearson Education, Inc..

Kopcha, T. J., Rieber, L. P., & Walker, B. B. (2016). Understanding university faculty perceptions about innovation in teaching and technology. British Journal of Educational Technology, 47 (5), 945–957. doi: 10.1111/bjet.12361 .

Krause, K., & Coates, H. (2008). Students’ engagement in first-year university. Assessment and Evaluation in Higher Education, 33 (5), 493–505. doi: 10.1080/02602930701698892 .

Kuh, G. D. (2009). The National Survey of Student Engagement: Conceptual and empirical foundations. New Directions for Institutional Research, 141 , 5–20.

Lam, S., Wong, B., Yang, H., & Yi, L. (2012). Understanding student engagement with a contextual model. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of Research on Student Engagement (pp. 403–419). New York: Springer.

Lawrence, B., & Lentle-Keenan, S. (2013). Teaching beliefs and practice, institutional context, and the uptake of Web-based technology. Distance Education, 34 (1), 4–20.

Leach, L. (2016). Enhancing student engagement in one institution. Journal of Further and Higher Education, 40 (1), 23–47.

Lester, D. (2013). A review of the student engagement literature. Focus on Colleges, Universities, and Schools, 7 (1), 1–8.

Lewis, C. C., Fretwell, C. E., Ryan, J., & Parham, J. B. (2013). Faculty use of established and emerging technologies in higher education: A unified theory of acceptance and use of technology perspective. International Journal of Higher Education, 2 (2), 22–34 http://dx.doi.org/10.5430/ijhe.v2n2p22 .

Lin, C., Singer, R., & Ha, L. (2010). Why university members use and resist technology? A structure enactment perspective. Journal of Computing in Higher Education, 22 (1), 38–59. doi: 10.1007/s12528-010-9028-1 .

Linder-VanBerschot, J. A., & Summers, L. L. (2015). Designing instruction in the face of technology transience. Quarterly Review of Distance Education, 16 (2), 107–118.

Liu, C., Cheng, Y., & Huang, C. (2011). The effect of simulation games on the learning of computational problem solving. Computers & Education, 57 (3), 1907–1918 https://doi.org/10.1016/j.compedu.2011.04.002 .

Lu, J., Hallinger, P., & Showanasai, P. (2014). Simulation-based learning in management education: A longitudinal quasi-experimental evaluation of instructional effectiveness. Journal of Management Development, 33 (3), 218–244. doi: 10.1108/JMD-11-2011-0115 .

Maben, S., Edwards, J., & Malone, D. (2014). Online engagement through Facebook groups in face-to-face undergraduate communication courses: A case study. Southwestern Mass Communication Journal, 29 (2), 1–27.

Manca, S., & Ranieri, M. (2013). Is it a tool suitable for learning? A critical review of the literature on Facebook as a technology-enhanced learning environment. Journal of Computer Assisted Learning, 29 (6), 487–504. doi: 10.1111/jcal.12007 .

Mansouri, S. A., & Piki, A. (2016). An exploration into the impact of blogs on students’ learning: Case studies in postgraduate business education. Innovations in Education And Teaching International, 53 (3), 260–273 http://dx.doi.org/10.1080/14703297.2014.997777 .

Marriott, P., Tan, S. W., & Marriot, N. (2015). Experiential learning – A case study of the use of computerized stock market trading simulation in finance education. Accounting Education, 24 (6), 480–497 http://dx.doi.org/10.1080/09639284.2015.1072728 .

Martin, F., Parker, M. A., & Deale, D. F. (2012). Examining interactivity in synchronous virtual classrooms. International Review of Research in Open and Distance Learning, 13 (3), 227–261.

Martin, K., Goldwasser, M., & Galentino, R. (2017). Impact of Cohort Bonds on Student Satisfaction and Engagement. Current Issues in Education, 19 (3), 1–14.

Martínez, A. A., Medina, F. X., Albalat, J. A. P., & Rubió, F. S. (2013). Challenges and opportunities of 2.0 tools for the interdisciplinary study of nutrition: The case of the Mediterranean Diet wiki. International Journal of Educational Technology in Higher Education, 10 (1), 210–225 https://doi.org/10.7238/rusc.v10i1.1341 .

McBrien, J. L., Jones, P., & Cheng, R. (2009). Virtual spaces: Employing a synchronous online classroom to facilitate student engagement in online learning. International Review of Research in Open and Distance Learning, 10 (3), 1–17 https://doi.org/10.19173/irrodl.v10i3.605 .

McClenney, K., Marti, C. N., & Adkins, C. (2012). Student engagement and student outcomes: Key findings from “CCSSE” validation research . Austin: Community College Survey of Student Engagement.

McKay, M., Sanko, J., Shekhter, I., & Birnbach, D. (2014). Twitter as a tool to enhance student engagement during an interprofessional patient safety course. Journal of Interprofessional Care, 28 (6), 565–567 https://doi.org/10.3109/13561820.2014.912618 .

Miller, A. D., Norris, L. B., & Bookstaver, P. B. (2012). Use of wikis in pharmacy hybrid elective courses. Currents in Pharmacy Teaching & Learning, 4 (4), 256–261. doi: 10.1016/j.cptl.2012.05.004 .

Morley, D. A. (2012). Enhancing networking and proactive learning skills in the first year university experience through the use of wikis. Nurse Education Today, 32 (3), 261–266.

Mysko, C., & Delgaty, L. (2015). How and why are students using Twitter for #meded? Integrating Twitter into undergraduate medical education to promote active learning. Annual Review of Education, Communication & Language Sciences, 12 , 24–52.

Nadolny, L., & Halabi, A. (2016). Student participation and achievement in a large lecture course with game-based learning. Simulation and Gaming, 47 (1), 51–72. doi: 10.1177/1046878115620388 .

Naghdipour, B., & Eldridge, N. H. (2016). Incorporating social networking sites into traditional pedagogy: A case of facebook. TechTrends, 60 (6), 591–597 http://dx.doi.org/10.1007/s11528-016-0118-4 .

Nakamaru, S. (2012). Investment and return: Wiki engagement in a “remedial” ESL writing course. Journal of Research on Technology in Education, 44 (4), 273–291.

Nelson, R. (2016). Apple’s app store will hit 5 million apps by 2020, more than doubling its current size . Retrieved from https://sensortower.com/blog/app-store-growth-forecast-2020 .

Nora, A., Barlow, E., & Crisp, G. (2005). Student persistence and degree attainment beyond the first year in college. In A. Seidman (Ed.), College Student Retention (pp. 129–154). Westport: Praeger Publishers.

Osgerby, J., & Rush, D. (2015). An exploratory case study examining undergraduate accounting students’ perceptions of using Twitter as a learning support tool. International Journal of Management Education, 13 (3), 337–348. doi: 10.1016/j.ijme.2015.10.002 .

Pace, C. R. (1980). Measuring the quality of student effort. Current Issues in Higher Education, 2 , 10–16.

Pace, C. R. (1984). Student effort: A new key to assessing quality . Los Angeles: University of California, Higher Education Research Institute.

Paul, J. A., & Cochran, J. D. (2013). Key interactions for online programs between faculty, students, technologies, and educational institutions: A holistic framework. Quarterly Review of Distance Education, 14 (1), 49–62.

Pellas, N. (2014). The influence of computer self-efficacy, metacognitive self-regulation, and self-esteem on student engagement in online learning programs: Evidence from the virtual world of Second Life. Computers in Human Behavior, 35 , 157–170. doi: 10.1016/j.chb.2014.02.048 .

Poole, S. M., Kemp, E., Williams, K. H., & Patterson, L. (2014). Get your head in the game: Using gamification in business education to connect with Generation Y. Journal for Excellence in Business Education, 3 (2), 1–9.

Poushter, J. (2016). Smartphone ownership and internet usage continues to climb in emerging economies . Washington, D.C.: Pew Research Center Retrieved from http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/ .

Prestridge, S. (2014). A focus on students’ use of Twitter - their interactions with each other, content and interface. Active Learning in Higher Education, 15 (2), 101–115.

Rambe, P. (2012). Activity theory and technology mediated interaction: Cognitive scaffolding using question-based consultation on “Facebook”. Australasian Journal of Educational Technology, 28 (8), 1333–1361 https://doi.org/10.14742/ajet.775 .

Reid, P. (2014). Categories for barriers to adoption of instructional technologies. Education and Information Technologies, 19 (2), 383–407.

Revere, L., & Kovach, J. V. (2011). Online technologies for engagement learning: A meaningful synthesis for educators. Quarterly Review of Distance Education, 12 (2), 113–124.

Richardson, J. C., & Newby, T. (2006). The role of students’ cognitive engagement in online learning. American Journal of Distance Education, 20 (1), 23–37 http://dx.doi.org/10.1207/s15389286ajde2001_3 .

Ross, H. M., Banow, R., & Yu, S. (2015). The use of Twitter in large lecture courses: Do the students see a benefit? Contemporary Educational Technology, 6 (2), 126–139.

Roussinos, D., & Jimoyiannis, A. (2013). Analysis of students’ participation patterns and learning presence in a wiki-based project. Educational Media International, 50 (4), 306–324 https://doi.org/10.1080/09523987.2013.863471 .

Salaber, J. (2014). Facilitating student engagement and collaboration in a large postgraduate course using wiki-based activities. International Journal of Management Education, 12 (2), 115–126. doi: 10.1016/j.ijme.2014.03.006 .

Scarlet, J., & Ampolos, L. (2013). Using game-based learning to teach psychopharmacology. Psychology Learning and Teaching, 12 (1), 64–70 https://doi.org/10.2304/plat.2013.12.1.64 .

Sharma, P., & Tietjen, P. (2016). Examining patterns of participation and meaning making in student blogs: A case study in higher education. American Journal of Distance Education, 30 (1), 2–13 http://dx.doi.org/10.1080/08923647.2016.1119605 .

Shraim, K. Y. (2014). Pedagogical innovation within Facebook: A case study in tertiary education in Palestine. International Journal of Emerging Technologies in Learning, 9 (8), 25–31. doi: 10.3991/ijet.v9i8.3805 .

Siddique, Z., Ling, C., Roberson, P., Xu, Y., & Geng, X. (2013). Facilitating higher-order learning through computer games. Journal of Mechanical Design, 135 (12), 121004–121010.

Smith, A., & Anderson, M. (2016). Online Shopping and E-Commerce . Washington, D.C.: Pew Research Center Retrieved from http://www.pewinternet.org/2016/12/19/online-shopping-and-e-commerce/ .

Staines, Z., & Lauchs, M. (2013). Students’ engagement with Facebook in a university undergraduate policing unit. Australasian Journal of Educational Technology, 29 (6), 792–805 https://doi.org/10.14742/ajet.270 .

Sun, A., & Chen, X. (2016). Online education and its effective practice: A research review. Journal of Information Technology Education: Research, 15 , 157–190.

Tiernan, P. (2014). A study of the use of Twitter by students for lecture engagement and discussion. Education and Information Technologies, 19 (4), 673–690 https://doi.org/10.1007/s10639-012-9246-4 .

Trowler, V. (2010). Student engagement literature review . Lancaster: Lancaster University Retrieved from http://www.lancaster.ac.uk/staff/trowler/StudentEngagementLiteratureReview.pdf .

Trowler, V., & Trowler, P. (2010). Student engagement evidence summary . Lancaster: Lancaster University Retrieved from http://eprints.lancs.ac.uk/61680/1/Deliverable_2._Evidence_Summary._Nov_2010.pdf .

van Beynen, K., & Swenson, C. (2016). Exploring peer-to-peer library content and engagement on a student-run Facebook group. College & Research Libraries, 77 (1), 34–50 https://doi.org/10.5860/crl.77.1.34 .

Wang, S. (2008). Blogs in education. In M. Pagani (Ed.), Encyclopedia of Multimedia Technology and Networking (2nd ed., pp. 134–139). Hershey: Information Sciences Reference.

Wdowik, S. (2014). Using a synchronous online learning environment to promote and enhance transactional engagement beyond the classroom. Campus — Wide Information Systems, 31 (4), 264–275. doi: 10.1108/CWIS-10-2013-0057 .

Weibel, D., Wissmath, B., Habegger, S., Steiner, Y., & Groner, R. (2008). Playing online games against computer-vs. human-controlled opponents: Effects on presence, flow, and enjoyment. Computers in Human Behavior, 24 (5), 2274–2291 https://doi.org/10.1016/j.chb.2007.11.002 .

West, B., Moore, H., & Barry, B. (2015). Beyond the tweet: Using Twitter to enhance engagement, learning, and success among first-year students. Journal of Marketing Education, 37 (3), 160–170. doi: 10.1177/0273475315586061 .

Westera, W. (2015). Reframing the role of educational media technologies. Quarterly Review of Distance Education, 16 (2), 19–32.

Whitton, N. (2011). Game engagement theory and adult learning. Simulation & Gaming, 42 (5), 596–609.

Williams, D., & Whiting, A. (2016). Exploring the relationship between student engagement, Twitter, and a learning management system: A study of undergraduate marketing students. International Journal of Teaching & Learning in Higher Education, 28 (3), 302–313.

Wimpenny, K., & Savin-Baden, M. (2013). Alienation, agency, and authenticity: A synthesis of the literature on student engagement. Teaching in Higher Education, 18 (3), 311–326. doi: 10.1080/13562517.2012.725223 .

Witkowski, P., & Cornell, T. (2015). An Investigation into Student Engagement in Higher Education Classrooms. InSight: A Journal of Scholarly Teaching, 10 , 56–67.

Wright, G. B. (2011). Student-centered learning in higher education. International Journal of Teaching and Learning in Higher Education, 23 (3), 92–97.

Yang, C., & Chang, Y. (2012). Assessing the effects of interactive blogging on student attitudes towards peer interaction, learning motivation, and academic achievements. Journal of Computer Assisted Learning, 28 (2), 126–135 https://doi.org/10.1111/j.1365-2729.2011.00423.x .

Zepke, N. (2014). Student engagement research in higher education: questioning an academic orthodoxy. Teaching in Higher Education, 19 (6), 697–708 http://dx.doi.org/10.1080/13562517.2014.901956 .

Zepke, N., & Leach, L. (2010). Improving student engagement: Ten proposals for action. Active Learning in Higher Education, 11 (3), 167–177. doi: 10.1177/1469787410379680 .

Zickuhr, K., & Raine, L. (2014). E-reading rises as device ownership jumps . Washington, D.C.: Pew Research Center Retrieved from http://www.pewinternet.org/2014/01/16/e-reading-rises-as-device-ownership-jumps/ .

Zimmermann, L. K. (2013). Using a virtual simulation program to teach child development. College Teaching, 61 (4), 138–142. doi: 10.1080/87567555.2013.817377 .

Download references

Acknowledgements

Not applicable.

This research was supported in part by a Laureate Education, Incl. David A. Wilson research grant study awarded to the second author, “A Comparative Analysis of Student Engagement and Critical Thinking in Two Approaches to the Online Classroom”.

Availability of data and materials

Authors’ contributions.

The first and second authors contributed significantly to the writing, review, and conceptual thinking of the manuscript. The third author provided a first detailed outline of what the paper could address, and the fourth offer provided input and feedback through critical review. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Ethics approval and consent to participate.

The parent study was approved by the University of Liverpool Online International Online Ethics Review Committee, approval number 04-24-2015-01.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author information

Authors and affiliations.

University of Liverpool Online, Liverpool, UK

Laura A. Schindler & Osama A. Morad

Laureate Education, Inc., Baltimore, USA

Gary J. Burkholder

Walden University, Minneapolis, USA

University of Lincoln, Lincoln, UK

Craig Marsh

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Laura A. Schindler .

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Schindler, L.A., Burkholder, G.J., Morad, O.A. et al. Computer-based technology and student engagement: a critical review of the literature. Int J Educ Technol High Educ 14 , 25 (2017). https://doi.org/10.1186/s41239-017-0063-0

Download citation

Received : 31 March 2017

Accepted : 06 June 2017

Published : 02 October 2017

DOI : https://doi.org/10.1186/s41239-017-0063-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Social networking

educational technology research paper

Classroom Tech Outpaces Research. Why That’s a Problem

educational technology research paper

  • Share article

Classroom tools and technology are changing too fast for traditional research to keep up without significant support to identify best practices and get them into the classroom.

That was the consensus of state education leaders, equity advocates, and ed-tech experts at a symposium on the future of education research and development, held to standing-room-only on Capitol Hill Thursday.

“We know instinctively that what works to teach an 8th grader in Houston who is behind grade level in reading isn’t necessarily the same as what it takes to teach a 1st grader in rural New Mexico how to read, or that what worked for us when we were in high school might not work for kids entering high school today,” said Sara Schapiro, senior fellow and director of social innovation for the Federation of American Scientists, who leads the Alliance for Learning Innovation , a coalition of groups aiming to improve education research. “But without a robust R&D system, we simply can’t know what works, for whom, and under which conditions.”

The Alliance has called for Congress to update its R&D priorities for education research and budget $1.95 billion for research and development at the STEM Education directorate at the National Science Foundation and $900 million for R&D at the U.S. Department of Education’s Institute of Education Sciences. That would require something of a reversal from Congress. From fiscal years 2022 to 2023 Education Department research and development declined from $390 million to $349 million according to the Congressional Research Service.

“What works in terms of effective [education] interventions, programs, and services has always been accessible and available to more affluent communities,” said Augustus Mays, the vice president of partnerships and engagement at the Education Trust, a nonprofit focused on educational equity. “But for those who haven’t had the same opportunities or the same resources, that hasn’t always been available to them. Evidence-based policy making, to me, has always been the difference maker.”

Mays pointed to the move to focus federal pandemic relief money on tutoring programs whose design showed evidence of effectiveness, such as individual or very small groups, and using an aligned curriculum in sessions at least three times a week. This model differed from tutoring provided under the No Child Left Behind Act’s supplemental education services, which were repeatedly found to have no benefit for student achievement—in part because programs varied significantly from district to district.

Richard Culatta, chief executive officer of the International Society for Technology in Education, said education technology is changing classroom practices too quickly for educators to depend on a traditional research grant cycle.

“A five-year [randomized controlled trial] is not going to be very helpful right now, when apps and [artificial intelligence] are changing very quickly and every two weeks there’s a completely new set of functionality,” Culatta said. “We’ve got to think about new approaches to doing that research.”

Education research needs to move faster and be more useful to teachers, experts argue

There has been some growing traction in Congress to create a fifth center within IES dedicated to “quick turnaround, high-reward research ,” dubbed the National Center for the Advanced Development and Education.

The Obama administration in 2011 attempted to make such an R&D center, intended as the education equivalent of the Defense Department’s Advanced Research Projects Agency, the Defense Department’s bleeding-edge research project, credited with developing things like the Internet, stealth technology, and global positioning systems. That attempt failed but helped spawn Investing in Innovation, or i3, grants. I3 has been lauded for helping scale up promising programs and critiqued for still having a yearslong evaluation timeframe and limited success, with only 12 of the 67 completed i3 evaluations showing any benefit for student achievement.

“We need a research agenda that drives a more thoughtful conversation, that isn’t just about what we fund,” Culatta said. Future education research, he said, must be “co-created with educators, where the end goal is not just publishing in a peer-reviewed journal; it’s making [an] impact and demonstrating impact.”

Research policymakers also urged Congress and states to provide more support to ensure teachers stay abreast of the best evidence on learning. “We can learn a whole lot from the research community about how to make learning better and more effective—and if we walk into schools and we’re still talking about ‘left-brain, right-brain’ and ‘learning styles,’ none of that is having the impact that it needs to,” Culatta said, referring to two popular but long-disproven ideas about student learning.

Maryland’s state superintendent Carey Wright agreed. Wright previously led Mississippi’s public schools, where she spearheaded the state’s “science of reading” initiative . Wright said it was easy to find research-backed reading practices, but much more difficult to ensure that all educators understood them.

“I said to my team, ‘We’re not going to assume that anybody knows how to do [science-based reading practices],’ because we had a whole lot of balanced literacy going on,” Wright said. “We were going to stick with what the research has to say that we know works, so we retrained every teacher in the state eventually.”

Sign Up for EdWeek Update

Edweek top school jobs.

Red, Blue, and Purple colors over a fine line etching of the Capitol building. Republicans and Democrats, Partisan Politicians.

Sign Up & Sign In

module image 9

Cyber Security in the Era of Digitalization: Implications for Educational Management

  • Rev. Fr. Dr. Innocent Igbokwe

As educational institutions embrace digital transformation, the integration of technology in educational management has introduced both opportunities and challenges. One of the most pressing challenges is ensuring cyber security. This research paper explores the implications of cyber security in educational management amidst the era of digitalization. The paper discusses the various cyber threats faced by educational institutions, the impact of these threats on educational management, the strategies that can be employed to enhance cyber security and other best practices to mitigate risks.

educational technology research paper

How to Cite

  • Endnote/Zotero/Mendeley (RIS)

Current Issue

Information.

  • For Readers
  • For Authors
  • For Librarians

A publication of Department of Educational Management and Policy, Faculty of Education,  Nnamdi Azikiwe University, Awka.

More information about the publishing system, Platform and Workflow by OJS/PKP.

How Can Emerging Technologies Transform the Teaching of Engineering?

Woman in White Dress in Front of Silver Macbook

The rapid advancement of technology has become a challenge for educators trying to prepare students for futures in engineering. Modern engineers across multiple industries are making use of technological tools that have been innovated to incredible new potentials or even brand new tools just recently invented. Students whose educations don't keep up with these changes will find themselves with skill gaps or struggle to find employment in a competitive workforce. The same tools that are creating these gaps can, however, help to fill them. By using new technological tools created specifically to help in teaching engineering , educators can prepare students to meet new challenges and outcompete less-prepared peers.

These solutions are sorely needed in a worldwide tech industry. Reportedly , 60% of engineering graduates in India face unemployment, 66% of US engineering grads lack critical skills, and 80% of employers in the UK say that engineering grads are not work-ready.

Online Platforms, Artificial Intelligence, and Adaptive Learning

There are few better ways to learn the potential of AI than to engage with it during education. In some modern systems, AI can provide precise analysis of student performance data and chart personalized learning pathways. This technology is already at work in at least one leading institute that uses AI to provide individualized feedback for students in their online master's program.

While online platforms, AI, and adaptive learning offer immense potential, it's important to acknowledge potential challenges. Ensuring equitable access to technology and reliable internet is crucial to avoid exacerbating existing educational disparities. Additionally, over-reliance on AI for instruction shouldn't diminish the importance of human educators who can provide mentorship and guidance and foster critical thinking skills. Effective implementation requires ongoing evaluation and adjustments to ensure these technologies complement, rather than replace, strong pedagogical practices.

Given sufficient data, machine learning has the potential to identify knowledge gaps and learning obstacles, both on a wide scale and on a student-by-student basis. AI tutoring programs can provide tailored curriculum adjustments, interactive practice work, and instant feedback at scale. This allows the kind of quick remediation necessary to make sure that grads are work-ready from the moment their degree is in their hands.

This kind of data should become much more available as online platforms become more sophisticated. Video lectures and chat boards are just the beginning. Platforms specialized for engineering can be enhanced through integrated coding environments, simulations that visualize elements like complex aerodynamics and particle systems, and elements of gamification, all to promote peer-to-peer collaboration that resembles real-world work environments.

Immersive Visuals and Hands-On Fabrication

Leading schools and institutes are increasingly making use of virtual reality and augmented reality systems to create interactive 3D environments that take simulations to the next level. This gives engineering students unparalleled, immersive perspectives of complex systems and structures, which can include prototypes designed by themselves and their peers, or new perspectives of complicated devices to study.

Mass-market fabrication tools, like 3D printers, laser cutters, and CNC machines, can take this even further. Students can design, visualize, fabricate, and implement designs in a safe, educational environment. Some leading institutes have already implemented these systems, creating a tight iterative cycle that sees students designing, producing, analyzing, and improving.

Engineering the Future of Teaching Engineering

Rather than relying solely on traditional lab experiments and classroom learning, the engineering students of the future—and already in many places of today—leverage simulation, modeling, and data analysis to engage with advanced materials, structures, robotics, biological systems, and more. The future of engineering education is being reshaped by the same technologies that will be their greatest challenge and asset in their professional lives, tools that are growing more powerful each year.

For educators, the best choice is to make these technologies an essential part of education, but not at the expense of core pedagogical practices. Emerging technologies should empower educators, not replace them. By strategically integrating these tools and fostering a growth mindset in students, educators can prepare graduates who are not only technically proficient but also possess strong critical thinking, problem-solving, and communication skills—qualities that will ensure their success in a rapidly evolving field. The future of engineering education is a collaborative effort where educators and technology work together to prepare the next generation of innovators.

Most Popular

Cigar-Shaped Glowing UFO Captured on Military-Grade Night Vision in Montana

Cigar-Shaped Glowing UFO Captured on Military-Grade Night Vision in Montana; What Does This Mean for UFO Research?

Centuries-Old Hack That Still Works in Boosting Immune System

Centuries-Old Hack That Still Works in Boosting Immune System

Strange Metal Discovered at Alleged Alien Crash Site Confirms Authenticity of Roswell UFO Report, Experts Reveal

Strange Metal Discovered at Alleged Alien Crash Site Confirms Authenticity of Roswell UFO Report, Experts Reveal

sugar

White Sugar vs. Brown Sugar: Is One Healthier Than the Other?

Dark Energy Density Has Been Changing Over Time Based on DESI Data

Dark Energy Density Has Been Changing Over Time Based on DESI Data

Latest stories.

educational technology research paper

Florida Man's Gut, Loops of Large Intestine Pop Out Due to Sneezing and Coughing; Wound Dehiscence From His Recent Abdominal Surgery Cited as Main Cause

educational technology research paper

Submerged Archaeology? Experts Search For Ancient Sites Within Gulf of Mexico, Looking for Dry Land During Last Ice Age

educational technology research paper

How To Combat Exhaustion: Practical Strategies for Reclaiming Energy and Well-Being

educational technology research paper

Genetic Link Between Blood Group and Obesity Found by Scientists: Could Common Drug Provide the Solution?

Subscribe to the science times.

Sign up for our free newsletter for the Latest coverage!

Recommended Stories

NASA's Legal Battle: US Space Agency Sued for Space Junk That Crashed Florida Home

NASA’s Legal Battle: US Space Agency Sued for Space Junk That Crashed Florida Home

NOAA's GOES-U Will Revolutionize Space Weather Forecast

NOAA's GOES-U Will Revolutionize Space Weather Forecast

France, China Launch Satellite to Hunt Mightiest Explosions in Universe

France, China Launch Satellite to Hunt Mightiest Explosions in Universe

space debris

Metallic Space Debris That Crashed, Tore Through Florida Home Prompts Family To Sue NASA; Is the Agency Really To Blame For the Cosmic Debris Damage?

educational technology research paper

China has become a scientific superpower

From plant biology to superconductor physics the country is at the cutting edge.

The 500-meter Aperture Spherical Telescope (FAST) in Pingtang County, southwest China's Guizhou Province.

Your browser does not support the <audio> element.

I n the atrium of a research building at the Chinese Academy of Sciences ( CAS ) in Beijing is a wall of patents. Around five metres wide and two storeys high, the wall displays 192 certificates, positioned in neat rows and tastefully lit from behind. At ground level, behind a velvet rope, an array of glass jars contain the innovations that the patents protect: seeds.

CAS —the world’s largest research organisation—and institutions around China produce a huge amount of research into the biology of food crops. In the past few years Chinese scientists have discovered a gene that, when removed, boosts the length and weight of wheat grains, another that improves the ability of crops like sorghum and millet to grow in salty soils and one that can increase the yield of maize by around 10%. In autumn last year, farmers in Guizhou completed the second harvest of genetically modified giant rice that was developed by scientists at CAS .

The Chinese Communist Party ( CCP ) has made agricultural research—which it sees as key to ensuring the country’s food security —a priority for scientists. Over the past decade the quality and the quantity of crop research that China produces has grown immensely, and now the country is widely regarded as a leader in the field. According to an editor of a prestigious European plant-sciences journal, there are some months when half of the submissions can come from China.

A journey of a thousand miles

The rise of plant-science research is not unique in China. In 2019 The Economist surveyed the research landscape in the country and asked whether China could one day become a scientific superpower. Today, that question has been unequivocally answered: “yes”. Chinese scientists recently gained the edge in two closely watched measures of high-quality science, and the country’s growth in top-notch research shows no sign of slowing. The old science world order, dominated by America, Europe and Japan, is coming to an end.

educational technology research paper

One way to measure the quality of a country’s scientific research is to tally the number of high-impact papers produced each year—that is, publications that are cited most often by other scientists in their own, later work. In 2003 America produced 20 times more of these high-impact papers than China, according to data from Clarivate, a science analytics company (see chart 1). By 2013 America produced about four times the number of top papers and, in the most recent release of data, which examines papers from 2022, China had surpassed both America and the entire European Union ( EU ).

Metrics based on citations can be gamed, of course. Scientists can, and do, find ways to boost the number of times their paper is mentioned in other studies, and a recent working paper, by Qui Shumin, Claudia Steinwender and Pierre Azoulay, three economists, argues that Chinese researchers cite their compatriots far more than Western researchers do theirs. But China now leads the world on other benchmarks that are less prone to being gamed. It tops the Nature Index, created by the publisher of the same name, which counts the contributions to articles that appear in a set of prestigious journals. To be selected for publication, papers must be approved by a panel of peer reviewers who assess the study’s quality, novelty and potential for impact. When the index was first launched, in 2014, China came second, but its contribution to eligible papers was less than a third of America’s. By 2023 China had reached the top spot.

According to the Leiden Ranking of the volume of scientific research output, there are now six Chinese universities or institutions in the world top ten, and seven according to the Nature Index. They may not be household names in the West yet, but get used to hearing about Shanghai Jiao Tong, Zhejiang and Peking (Beida) Universities in the same breath as Cambridge, Harvard and ETH Zurich. “Tsinghua is now the number one science and technology university in the world,” says Simon Marginson, a professor of higher education at Oxford University. “That’s amazing. They’ve done that in a generation.”

educational technology research paper

Today China leads the world in the physical sciences, chemistry and Earth and environmental sciences, according to both the Nature Index and citation measures (see chart 2). But America and Europe still have substantial leads in both general biology and medical sciences. “Engineering is the ultimate Chinese discipline in the modern period,” says Professor Marginson, “I think that’s partly about military technology and partly because that’s what you need to develop a nation.”

Applied research is a Chinese strength. The country dominates publications on perovskite solar panels, for example, which offer the possibility of being far more efficient than conventional silicon cells at converting sunlight into electricity. Chinese chemists have developed a new way to extract hydrogen from seawater using a specialised membrane to separate out pure water, which can then be split by electrolysis. In May 2023 it was announced that the scientists, in collaboration with a state-owned Chinese energy company, had developed a pilot floating hydrogen farm off the country’s south-eastern coast.

China also now produces more patents than any other country, although many are for incremental tweaks to designs, as opposed to truly original inventions. New developments tend to spread and be adopted more slowly in China than in the West. But its strong industrial base, combined with cheap energy, means that it can quickly spin up large-scale production of physical innovations like materials. “That’s where China really has an advantage on Western countries,” says Jonathan Bean, CEO of Materials Nexus, a British firm that uses AI to discover new materials.

The country is also signalling its scientific prowess in more conspicuous ways. Earlier this month, China’s Chang’e-6 robotic spacecraft touched down in a gigantic crater on the far side of the Moon, scooped up some samples of rock, planted a Chinese flag and set off back towards Earth. If it successfully returns to Earth at the end of the month, it will be the first mission to bring back samples from this hard-to-reach side of the Moon.

First, sharpen your tools

The reshaping of Chinese science has been achieved by focusing on three areas: money, equipment and people. In real terms, China’s spending on research and development ( R & D ) has grown 16-fold since 2000. According to the most recent data from the OECD , from 2021, China still lagged behind America on overall R & D spending, dishing out $668bn, compared with $806bn for America at purchasing-power parity. But in terms of spending by universities and government institutions only, China has nudged ahead. In these places America still spends around 50% more on basic research, accounting for costs, but China is splashing the cash on applied research and experimental development (see chart 3).

educational technology research paper

Money is meticulously directed into strategic areas. In 2006 the CCP published its vision for how science should develop over the next 15 years. Blueprints for science have since been included in the CCP ’s five-year development plans. The current plan, published in 2021, aims to boost research in quantum technologies, AI , semiconductors, neuroscience, genetics and biotechnology, regenerative medicine, and exploration of “frontier areas” like deep space, deep oceans and Earth’s poles.

Creating world-class universities and government institutions has also been a part of China’s scientific development plan. Initiatives like “Project 211”, the “985 programme” and the “China Nine League” gave money to selected labs to develop their research capabilities. Universities paid staff bonuses—estimated at an average of $44,000 each, and up to a whopping $165,000—if they published in high-impact international journals.

Building the workforce has been a priority. Between 2000 and 2019, more than 6m Chinese students left the country to study abroad, according to China’s education ministry. In recent years they have flooded back, bringing their newly acquired skills and knowledge with them. Data from the OECD suggest that, since the late 2000s, more scientists have been returning to the country than leaving. China now employs more researchers than both America and the entire EU .

Many of China’s returning scientists, often referred to as “sea turtles” (a play on the Chinese homonym haigui , meaning “to return from abroad”) have been drawn home by incentives. One such programme launched in 2010, the “Youth Thousand Talents”, offered researchers under 40 one-off bonuses of up to 500,000 yuan (equivalent to roughly $150,000 at purchasing-power parity) and grants of up to 3m yuan to get labs up and running back home. And it worked. A study published in Science last year found that the scheme brought back high-calibre young researchers—they were, on average, in the most productive 15% of their peers (although the real superstar class tended to turn down offers). Within a few years, thanks to access to more resources and academic manpower, these returnees were lead scientists on 2.5 times more papers than equivalent researchers who had remained in America.

As well as pull, there has been a degree of push. Chinese scientists working abroad have been subject to increased suspicion in recent years. In 2018 America launched the China Initiative, a largely unsuccessful attempt to root out Chinese spies from industry and academia. There have also been reports of students being deported because of their association with China’s “military-civilian fusion strategy”. A recent survey of current and former Chinese students studying in America found that the share who had experienced racial abuse or discrimination was rising.

The availability of scientists in China means that, for example in quantum computing, some of the country’s academic labs are more like commercial labs in the West, in terms of scale. “They have research teams of 20, 30, even 40 people working on the same experiments, and they make really good progress,” says Christian Andersen, a quantum researcher at Delft University. In 2023 researchers working in China broke the record for the number of quantum bits, or qubits, entangled inside a quantum computer.

China has also splurged on scientific kit. In 2019, when The Economist last surveyed the state of the country’s scientific research, it already had an enviable inventory of flashy hardware including supercomputers, the world’s largest filled-aperture radio telescope and an underground dark-matter detector. The list has only grown since then. The country is now home to the world’s most sensitive ultra-high-energy cosmic-ray detector (which has recently been used to test aspects of Albert Einstein’s special theory of relativity), the world’s strongest steady-state magnetic field (which can probe the properties of materials) and soon will have one of the world’s most sensitive neutrino detectors (which will be used to work out which type of these fundamental subatomic particles has the highest mass). Europe and America have plenty of cool kit of their own, but China is rapidly adding hardware.

Individual labs in China’s top institutions are also well equipped. Niko McCarty, a journalist and former researcher at the Massachusetts Institute of Technology who was recently given a tour of synthetic biology labs in China, was struck by how, in academic institutions, “the machines are just more impressive and more expansive” than in America. At the Advanced Biofoundry at the Shenzhen Institute of Advanced Technology, which the country hopes will be the centre of China’s answer to Silicon Valley, Mr McCarty described an “amazing building with four floors of robots”. As Chinese universities fill with state-of-the-art equipment and elite researchers, and salaries become increasingly competitive, Western institutions look less appealing to young and ambitious Chinese scientists. “Students in China don’t think about America as some “scientific Mecca” in the same way their advisers might have done,” said Mr McCarty.

Students visit Handan Artificial Intelligence Education Base during the science and technology week in Handan City, north China's Hebei Province.

Take AI , for example. In 2019 just 34% of Chinese students working in the field stayed in the country for graduate school or work. By 2022 that number was 58%, according to data from the AI talent tracker by MacroPolo, an American think-tank (in America the figure for 2022 was around 98%). China now contributes to around 40% of the world’s research papers on AI , compared with around 10% for America and 15% for the EU and Britain combined. One of the most highly cited research papers of all time, demonstrating how deep neural networks could be trained on image recognition, was written by AI researchers working in China, albeit for Microsoft, an American company. “China’s AI research is world-class,” said Zachary Arnold, an AI analyst at the Georgetown Centre for Emerging Security and Technology. “In areas like computer vision and robotics, they have a significant lead in research publications.”

Growth in the quality and quantity of Chinese science looks unlikely to stop anytime soon. Spending on science and technology research is still increasing—the government has announced a 10% increase in funding in 2024. And the country is training an enormous number of young scientists. In 2020 Chinese universities awarded 1.4m engineering degrees, seven times more than America did. China has now educated, at undergraduate level, 2.5 times more of the top-tier AI researchers than America has. And by 2025, Chinese universities are expected to produce nearly twice as many P h D graduates in science and technology as America.

To see further, ascend another floor

Although China is producing more top-tier work, it still produces a vast amount of lower-quality science too. On average, papers from China tend to have lower impact, as measured by citations, than those from America, Britain or the EU . And while the chosen few universities have advanced, mid-level universities have been left behind. China’s second-tier institutions still produce work that is of relatively poor quality compared with their equivalents in Europe or America. “While China has fantastic quality at the top level, it’s on a weak base,” explains Caroline Wagner, professor of science policy at Ohio State University.

When it comes to basic, curiosity-driven research (rather than applied) China is still playing catch-up—the country publishes far fewer papers than America in the two most prestigious science journals, Nature and Science . This may partly explain why China seems to punch below its weight in the discovery of completely new technologies. Basic research is particularly scant within Chinese companies, creating a gap between the scientists making discoveries and the industries that could end up using them. “For more original innovation, that might be a minus,” says Xu Xixiang, chief scientist at LONG i Green Energy Technology, a Chinese solar company.

Incentives to publish papers have created a market for fake scientific publications. A study published earlier this year in the journal Research Ethics , featured anonymous interviews from Chinese academics, one of whom said he had “no choice but to commit [research] misconduct”, to keep up with pressures to publish and retain his job. “Citation cartels” have emerged, where groups of researchers band together to write low-quality papers that cite each other’s work in an effort to drive up their metrics. In 2020 China’s science agencies announced that such cash-for-publication schemes should end and, in 2021, the country announced a nationwide review of research misconduct. That has led to improvements—the rate at which Chinese researchers cite themselves, for example, is falling, according to research published in 2023. And China’s middle-ranking universities are slowly catching up with their Western equivalents, too.

The areas where America and Europe still hold the lead are, therefore, unlikely to be safe for long. Biological and health sciences rely more heavily on deep subject-specific knowledge and have historically been harder for China to “bring back and accelerate”, says Tim Dafforn, a professor of biotechnology at University of Birmingham and former adviser to Britain’s department for business. But China’s profile is growing in these fields. Although America currently produces roughly four times more highly influential papers in clinical medicine, in many areas China is producing the most papers that cite this core research, a sign of developing interest that presages future expansion. “On the biology side, China is growing remarkably quickly,” says Jonathan Adams, chief scientist at the Institute for Scientific Information at Clarivate. “Its ability to switch focus into a new area is quite remarkable.”

The rise of Chinese science is a double-edged sword for Western governments. China’s science system is inextricably linked with its state and armed forces—many Chinese universities have labs explicitly working on defence and several have been accused of engaging in espionage or cyber-attacks. China has also been accused of intellectual-property theft and increasingly stringent regulations have made it more difficult for international collaborators to take data out of the country; notoriously, in 2019, the country cut off access to American-funded work on coronaviruses at the Wuhan Institute of Virology. There are also cases of Chinese researchers failing to adhere to the ethical standards expected by Western scientists.

Despite the concerns, Chinese collaborations are common for Western researchers. Roughly a third of papers on telecommunications by American authors involve Chinese collaborators. In imaging science, remote sensing, applied chemistry and geological engineering, the figures are between 25% and 30%. In Europe the numbers are lower, around 10%, but still significant. These partnerships are beneficial for both countries. China tends to collaborate more in areas where it is already strong like materials and physics. A preprint study, released last year, found that for AI research, having a co-author from America or China was equally beneficial to authors from the other country, conferring on average 75% more citations.

Several notable successes have come from working together, too. During the covid-19 pandemic a joint venture between Oxford University’s Engineering Department and the Oxford Suzhou Centre for Advanced Research developed a rapid covid test that was used across British airports. In 2015 researchers at University of Cardiff and South China Agricultural University identified a gene that made bacteria resistant to the antibiotic colistin. Following this, China, the biggest consumer of the drug, banned its use in animal feed, and levels of colistin resistance in both animals and humans declined.

In America and Europe, political pressure is limiting collaborations with China. In March, America’s Science and Technology Agreement with China, which states that scientists from both countries can collaborate on topics of mutual benefit, was quietly renewed for a further six months. Although Beijing appears keen to renew the 45-year-old agreement, many Republicans fear that collaboration with China is helping the country achieve its national-security goals. In Europe, with the exception of environmental and climate projects, Chinese universities have been effectively barred from accessing funding through the Horizon programme, a huge European research initiative.

There are also concerns among scientists that China is turning inwards. The country has explicit aims to become self-reliant in many areas of science and technology and also shift away from international publications as a way of measuring research output. Many researchers cannot talk to the press—finding sources in China for this story was challenging. One Chinese plant scientist, who asked to remain anonymous, said that she had to seek permission a year in advance to attend overseas conferences. “It’s contradictory—on the one hand, they set restrictions so that scientists don’t have freedoms like being able to go abroad to communicate with their colleagues. But on the other hand, they don’t want China to fall behind.”

Live until old, learn until old

The overwhelming opinion of scientists in China and the West is that collaboration must continue or, better, increase. And there is room to do more. Though China’s science output has grown dramatically, the share that is conducted with international collaborators has remained stable at around 20%—Western scientists tend to have far more international collaborations. Western researchers could pay more attention to the newest science from China, too. Data from a study published last year in Nature Human Behaviour showed that, for work of equivalent quality, Chinese scientists cite Western papers far more than vice versa. Western scientists rarely visit, work or study in China, depriving them of opportunities to learn from Chinese colleagues in the way Chinese scientists have done so well in the West.

Closing the door to Chinese students and researchers wishing to come to Western labs would also be disastrous for Western science. Chinese researchers form the backbone of many departments in top American and European universities. In 2022 more of the top-tier AI researchers working in America hailed from China than from America. The West’s model of science currently depends on a huge number of students, often from overseas, to carry out most day-to-day research.

There is little to suggest that the Chinese scientific behemoth will not continue growing stronger. China’s ailing economy may eventually force the CCP to slow spending on research, and if the country were to become completely cut off from the Western science community its research would suffer. But neither of these looks imminent. In 2019 we also asked if research could flourish in an authoritarian system. Perhaps over time its limits will become clear. But for now, and at least for the hard sciences, the answer is that it can thrive. “I think it’d be very unwise to call limits on the Chinese miracle,” says Prof Marginson. “Because it has had no limits up until now.” ■

Curious about the world? To enjoy our mind-expanding science coverage, sign up to  Simply Science , our weekly subscriber-only newsletter.

Explore more

This article appeared in the Science & technology section of the print edition under the headline “Soaring dragons”

The rise of Chinese science: Welcome or worrying?

From the June 15th 2024 edition

Discover stories from this section and more in the list of contents

More from Science and technology

educational technology research paper

What The Economist thought about solar power

A look back through our archives: sometimes prescient, sometimes not

educational technology research paper

A flower’s female sex organs can speed up fertilisation

They can also stop it from happening

educational technology research paper

How physics can improve image-generating AI

The laws governing electromagnetism and even the weak nuclear force could be worth mimicking

The dominant model of the universe is creaking

Dark energy could break it apart

Only 5% of therapies tested on animals are approved for human use

More rigorous experiments could improve those odds

The secret to taking better penalties

Practise with an augmented-reality headset

Advertisement

Advertisement

Usability research in educational technology: a state-of-the-art systematic review

  • Research Article
  • Published: 22 August 2022
  • Volume 70 , pages 1951–1992, ( 2022 )

Cite this article

educational technology research paper

  • Jie Lu   ORCID: orcid.org/0000-0002-7466-6177 1 ,
  • Matthew Schmidt 1 ,
  • Minyoung Lee 1 &
  • Rui Huang 1  

7023 Accesses

24 Citations

1 Altmetric

Explore all metrics

This paper presents a systematic literature review characterizing the methodological properties of usability studies conducted on educational and learning technologies in the past 20 years. PRISMA guidelines were followed to identify, select, and review relevant research and report results. Our rigorous review focused on (1) categories of educational and learning technologies that have been the focus of usability evaluation, (2) specific usability evaluation methods used, (3) outcome measures, and (4) research limitations. Findings revealed a diverse range of usability evaluation methods employed for different types of educational/learning technologies and the contexts in which those methods were used, with the majority of usability studies being performed on e-learning technologies within higher education contexts. Specific methods, instrumentation, and types of usability research found to be dominant in reviewed studies were further analyzed and classified, with findings suggesting inquiry methods using questionnaires were most prevalent. Prevalent outcome measures were also synthesized, with findings suggesting that the majority of usability research focuses on issues of technological usability, with very few studies considering pedagogical and socio-cultural aspects of usability. A number of limitations were found, including conceptual and procedural flaws, fundamental misunderstanding of usability evaluation methods, and inappropriate application of usability methods, suggesting potentially problematic and unreliable results. These findings are discussed in-depth, and implications for future research are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

educational technology research paper

Similar content being viewed by others

educational technology research paper

A Systematic Review of Research on Personalized Learning: Personalized by Whom, to What, How, and for What Purpose(s)?

educational technology research paper

“Extending the Technology Acceptance Model (TAM) to Predict University Students’ Intentions to Use Metaverse-Based Learning Platforms”

educational technology research paper

Empowering education development through AIGC: A systematic literature review

Abulfaraj, A., & Steele, A. (2020). Coherent heuristic evaluation (CoHE): toward increasing the effectiveness of heuristic evaluation for novice evaluators. In A. Marcus & E. Rosenzweig (Eds.), International Conference on Human-Computer Interaction (pp. 3–20). Springer.

Google Scholar  

Ackerman, R., Parush, A., Nassar, F., & Shtub, A. (2016). Metacognition and system usability: Incorporating metacognitive research paradigm into usability testing. Computers in Human Behavior, 54 , 101–113. https://doi.org/10.1016/j.chb.2015.07.041

Article   Google Scholar  

Alaswad, Z., & Nadolny, L. (2015). Designing for Game-Based Learning: The Effective Integration of Technology to Support Learning. Journal of Educational Technology Systems, 43 (4), 389–402. https://doi.org/10.1177/0047239515588164

Albert, B., & Tullis, T. (2013). Measuring the User Experience: Collecting, Analyzing, and Presenting Usability Metrics . Newnes.

Ally, M., & Prieto-Blázquez, J. (2014). What is the future of mobile learning in education? International Journal of Educational Technology in Higher Education, 11 (1), 142–151. https://doi.org/10.7238/rusc.v11i1.2033

Alroobaea, R. S., Al-Badi, A. H., & Mayhew, P. J. (2013). AlRoobaea, R., Al-Badi, A. H., & Mayhew, P. J. (2013, March). A framework for generating domain-specific heuristics for evaluating online educational websites-Further validation. In 2nd International Conference on Human Computer Interaction and Learning Technology (ICHCILT 2013), Abu Dhabi, UAE .

Ardito, C., Costabile, M. F., Marsico, M. D., Lanzilotti, R., Levialdi, S., Roselli, T., & Rossano, V. (2006). An approach to usability evaluation of e-learning applications. Universal Access in the Information Society, 4 (3), 270–283. https://doi.org/10.1007/s10209-005-0008-6

Arruda Filho, E. J. M., Nogueira, A. C. L., & da Costa, E. M. S. (2021). Social Influence effect on consumers’ intention to adopt mobile banking services. Information Systems Management . https://doi.org/10.1080/10580530.2021.1965678

Babatunde, F. O., MacDermid, J., Grewal, R., Macedo, L., & Szekeres, M. (2020). Development and Usability Testing of a Web-Based and Therapist-Assisted Coping Skills Program for Managing Psychosocial Problems in Individuals With Hand and Upper Limb Injuries: Mixed Methods Study. JMIR Human Factors, 7 (2), e17088. https://doi.org/10.2196/17088

Barbosa, D., Schneider, G., Mossmann, J., & Santos, P. D. (2020). Usability and gameplay evaluation on mobile games: A user-centred application proposal. International Journal of Learning Technology, 15 (2), 107–129. https://doi.org/10.1504/IJLT.2020.109570

Barrie, M., Socha, J. J., Mansour, L., & Patterson, E. S. (2019). Mixed reality in medical education: a narrative literature review. Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care . https://doi.org/10.1177/2327857919081006

Batra, S., & Bishu, R. R. (2007). Web usability and evaluation: issues and concerns. In N. Aykin (Ed.), International Conference on Usability and Internationalization (pp. 243–249). Springer.

Benson, L., Elliott, D., Grant, M., Holschuh, D., Kim, B., Kim, H., Lauber, E., Loh, S., & Reeves, T. C. (2002). Usability and instructional design heuristics for e-learning evaluation (pp. 1615–1621). Association for the Advancement of Computing in Education (AACE).

Bernard, L., Raina, S., Taylor, B., & Kaza, S. (2021). Minimizing Cognitive Overload in Cybersecurity Learning Materials: An Experimental Study Using Eye-Tracking. IFIP World Conference on Information Security Education (pp. 47–63). Springer.

Bernhaupt, R. (2010). User experience evaluation in entertainment. In R. Bernhaupt (Ed.), Evaluating user experience in games (pp. 3–7). Springer.

Chapter   Google Scholar  

Bernsen, N. O., & Dybkjær, L. (2009). Multimodal usability. Springer Science & Business Media . https://doi.org/10.1007/978-1-84882-553-6

Bertolino, A., Braione, P., Angelis, G. D., Gazzola, L., Kifetew, F., Mariani, L.,…Tonella, P. (2021). A Survey of Field-based Testing Techniques. ACM Computing Surveys (CSUR), 54 (5), 1–39.

Bourges-Waldegg, P., Moreno, L., & Rojano, T. (2000). The role of usability on the implementation and evaluation of educational technology. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences (pp. 7-pp). IEEE. https://doi.org/10.1109/HICSS.2000.926722

Bowman, D. A., Gabbard, J. L., & Hix, D. (2002). A Survey of Usability Evaluation in Virtual Environments: Classification and Comparison of Methods. Presence: Teleoperators and Virtual Environments, 11 (4), 404–424. https://doi.org/10.1162/105474602760204309

Buzhardt, J., Abbott, M., Greenwood, C., & Tapia, Y. (2004). Usability Testing of the ClassWide Peer Tutoring-Learning Management System. Journal of Special Education Technology, 20 (1), 19–29. https://doi.org/10.1177/016264340502000102

Calhoun, C., Sahay, S., & Wilson, M. (2021). Instructional Design Evaluation. Design for Learning . https://edtechbooks.org/id/instructional_design_evaluation

Cassino, R., & Tucci, M. (2011). Developing usable web interfaces with the aid of automatic verification of their formal specification. Journal of Visual Languages & Computing, 22 (2), 140–149. https://doi.org/10.1016/j.jvlc.2010.12.001

Cayola, L., & Macías, J. A. (2018). Systematic guidance on usability methods in user-centered software development. Information and Software Technology, 97 , 163–175.

Chang, V. (2016). Review and discussion: E-learning for academia and industry. International Journal of Information Management, 36 (3), 476–485. https://doi.org/10.1016/j.ijinfomgt.2015.12.007

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20 (1), 37–46.

Conn, V. S., Valentine, J. C., Cooper, H. M., & Rantz, M. J. (2003). Grey Literature in Meta-Analyses. Nursing Research, 52 (4), 256–261. https://doi.org/10.1097/00006199-200307000-00008

Connan, V., Marcon, M. A., Mahmud, F. H., Assor, E., Martincevic, I., Bandsma, R. H., Vresk, L., & Walsh, C. M. (2019). Online education for gluten-free diet teaching: Development and usability testing of an e-learning module for children with concurrent celiac disease and type 1 diabetes. Pediatric Diabetes, 20 (3), 293–303. https://doi.org/10.1111/pedi.12815

Costabile, M. F., De Marsico, M., Lanzilotti, R., Plantamura, V. L., & Roselli, T. (2005). On the usability evaluation of e-learning applications. In Proceedings of the 38th Annual Hawaii International Conference on System Sciences (pp. 6b-6b). IEEE. https://doi.org/10.1109/HICSS.2005.468

Coursaris, C. K., & Kim, D. J. (2011). A meta-analytical review of empirical mobile usability studies. Journal of Usability Studies, 6 (3), 117–171.

Criollo-C, S., Guerrero-Arias, A., Jaramillo-Alcázar, Á., & Luján-Mora, S. (2021). Mobile learning technologies for education: benefits and pending issues. Applied Sciences, 11 (9), 4111. https://doi.org/10.3390/app11094111

Crowther, M. S., Keller, C. C., & Waddoups, G. L. (2004). Improving the quality and effectiveness of computer-mediated instruction through usability evaluations. British Journal of Educational Technology, 35 (3), 289–303. https://doi.org/10.1111/j.0007-1013.2004.00390.x

Dabbagh, N., Fake, H., & Zhang, Z. (2019). Student Perspectives of Technology use for Learning in Higher Education. Revista Iberoamericana De Educación a Distancia, 22 (1), 127. https://doi.org/10.5944/ried.22.1.22102

Darren, B., & Thom, N. (2015). New tools and techniques for understanding non-conscious consumer decisions. Applied Marketing Analytics, 1 (3), 214–220.

Davids, M. R., Chikte, U. M. E., & Halperin, M. L. (2013). An efficient approach to improve the usability of e-learning resources: The role of heuristic evaluation. Advances in Physiology Education, 37 (3), 242–248. https://doi.org/10.1152/advan.00043.2013

Davis, R., Gardner, J., & Schnall, R. (2020). A review of usability evaluation methods and their use for testing eHealth HIV interventions. Current HIV/AIDS Reports, 17 (3), 203–218. https://doi.org/10.1007/s11904-020-00493-3

de Abreu Cybis, W., Betiol, A. H., & Faust, R. (2015). Ergonomia e Usabilidade 3ª edição: Conhecimentos, Métodos e Aplicações . Novatec Editora.

de Lima Salgado, A., & Freire, A. P. (2014). Lima Salgado, A. D., & Freire, A. P. (2014, June). Heuristic evaluation of mobile usability: A mapping study. In: International Conference on Human-Computer Interaction (pp. 178–188). Springer, Cham. https://doi.org/10.1007/978-3-319-07227-2_18

Derouin, R. E., Fritzsche, B. A., & Salas, E. (2005). E-Learning in Organizations. Journal of Management, 31 (6), 920–940. https://doi.org/10.1177/0149206305279815

Dingli, A., & Cassar, S. (2014). An intelligent framework for website usability. Advances in Human-Computer Interaction . https://doi.org/10.1155/2014/479286

Falkowska, J., Sobecki, J., & Pietrzak, M. (2016). Eye tracking usability testing enhanced with EEG analysis. International Conference of Design, User Experience, and Usability (pp. 399–411). Cham: Springer.

Fernandez, A., Insfran, E., & Abrahão, S. (2011). Usability evaluation methods for the web: A systematic mapping study. Information and Software Technology, 53 (8), 789–817. https://doi.org/10.1016/j.infsof.2011.02.007

Flagg, B. N. (2013). Formative Evaluation for Educational Technologies . Routledge.

Book   Google Scholar  

Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76 (5), 378.

Fleiss, J. L., Levin, B., & Paik, M. C. (2013). Statistical methods for rates and proportions . John Wiley & Sons.

Frøkjær, E., Hertzum, M., & Hornbæk, K. (2000). Measuring usability: are effectiveness, efficiency, and satisfaction really correlated?. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (pp. 345–352). https://doi.org/10.1145/332040.332455

Gladman, T., Tylee, G., Gallagher, S., Mair, J., Rennie, S. C., & Grainger, R. (2020). A tool for rating the value of health education mobile apps to enhance student learning (MARuL): Development and usability study. JMIR MHealth and UHealth, 8 (7), e18015. https://doi.org/10.2196/18015

Goldberg, J., & Wichansky, A. (2003). Eye tracking in usability evaluation: A practitioner’s guide. The Mind’s Eye (pp. 493–516). Elsevier.

Grant, M. M. (2019). Difficulties in defining mobile learning: Analysis, design characteristics, and implications. Educational Technology Research and Development, 67 (2), 361–388. https://doi.org/10.1007/s11423-018-09641-4

Haddaway, N. R., Collins, A. M., Coughlin, D., & Kirk, S. (2015). The role of google scholar in evidence reviews and its applicability to grey literature searching. PLoS ONE, 10 (9), e0138237. https://doi.org/10.1371/journal.pone.0138237

Hadjerrouit, S. (2012). Investigating technical and pedagogical usability issues of collaborative learning with Wikis. Informatics in Education, 11 (1), 45–64.

Haq, R., Li, B., Jovicic, A., Dastur, D., Trinkaus, M., & Kong, A. (2018). Web-based oncology educational tool for medical trainees on oncology rotation—results of a pilot study. Journal of Cancer Education, 33 (4), 788–797. https://doi.org/10.1007/s13187-016-1151-x

Hasan, L., Morris, A., & Probets, S. (2013). E-commerce websites for developing countries – a usability evaluation framework. Online Information Review, 37 (2), 231–251. https://doi.org/10.1108/OIR-10-2011-0166

Hinkle, D., Wiersma, W., & Jurs, S. (2003). Applied statistics for the behavioral sciences . Houghton Mifflin.

Hornbæk, K. (2006). Current practice in measuring usability: Challenges to usability studies and research. International Journal of Human-Computer Studies, 64 (2), 79–102. https://doi.org/10.1016/j.ijhcs.2005.06.002

Huizenga, J. C., ten Dam, G. T. M., Voogt, J. M., & Admiraal, W. F. (2017). Teacher perceptions of the value of game-based learning in secondary education. Computers & Education, 110 , 105–115. https://doi.org/10.1016/j.compedu.2017.03.008

Ingrassia, P. L., Mormando, G., Giudici, E., Strada, F., Carfagna, F., Lamberti, F., & Bottino, A. (2020). Augmented reality learning environment for basic life support and defibrillation training: Usability study. Journal of Medical Internet Research, 22 (5), e14910. https://doi.org/10.2196/14910

Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. PLoS Medicine, 2 (8), e124. https://doi.org/10.1371/journal.pmed.0020124

ISO. (2011). ISO/IEC 25010:2011(en), Systems and software engineering—Systems and software Quality Requirements and Evaluation (SQuaRE)—System and software quality models . (n.d.). Retrieved September 9, 2021, from https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en:sec:4.4

ISO. (2019). ISO 9241–210:2019(en), Ergonomics of human-system interaction—Part 210: Human-centred design for interactive systems . Retrieved September 9, 2021, from https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-2:v1:en

Issa, T., & Isaias, P. (2015). Usability and human computer interaction (HCI). In T. Issa & P. Isaias (Eds.), Sustainable design (pp. 19–36). London: Springer.

Ivory, M. Y., & Hearst, M. A. (2001). The state of the art in automating usability evaluation of user interfaces. ACM Computing Surveys, 33 (4), 470–516. https://doi.org/10.1145/503112.503114

Jackson, J. L., & Kuriyama, A. (2019). How often do systematic reviews exclude articles not published in english? Journal of General Internal Medicine, 34 (8), 1388–1389. https://doi.org/10.1007/s11606-019-04976-x

Jahnke, I., Schmidt, M., Pham, M., & Singh, K. (2020). Sociotechnical-Pedagogical Usability for Designing and Evaluating Learner Experience in Technology-Enhanced Environments. Learner and User Experience Research .

Jeffries, R., & Desurvire, H. (1992). Usability testing vs heuristic evaluation: was there a contest? ACM SIGCHI Bulletin, 24 (4), 39–41.

Kahiigi, E. K., Ekenberg, L., Hansson, H., Danielson, F. F. T., & Danielson, M. (2008). Exploring the e-Learning State of Art. Electronic Journal of E-Learning, 6 (2), 149–160.

Kavitha, V., & Lohani, R. (2019). A critical study on the use of artificial intelligence, e-Learning technology and tools to enhance the learners experience. Cluster Comput, 22 , 6985–6989. https://doi.org/10.1007/s10586-018-2017-2

Kearney, M., Schuck, S., Burden, K., & Aubusson, P. (2012). Viewing mobile learning from a pedagogical perspective. Research in Learning Technology . https://doi.org/10.3402/rlt.v20i0.14406

Keegan, D., & Ireland, D. (2005). The incorporation of mobile learning into mainstream education and training. In World Conference on Mobile Learning, Cape Town (Vol. 11, pp. 1–17).

Khajouei, R., Ameri, A., & Jahani, Y. (2018). Evaluating the agreement of users with usability problems identified by heuristic evaluation. International Journal of Medical Informatics, 117 , 13–18. https://doi.org/10.1016/j.ijmedinf.2018.05.012

Khajouei, R., & Farahani, F. (2020). A combination of two methods for evaluating the usability of a hospital information system. BMC Medical Informatics and Decision Making, 20 (1), 84. https://doi.org/10.1186/s12911-020-1083-6

Khanum, M. A., & Trivedi, M. C. (2013). Exploring verbalization and collaboration during usability evaluation with children in context. arXiv preprint arXiv:1306.4094 .

King, L. A. (2009). Visual navigation patterns and cognitive load. In International Conference on Foundations of Augmented Cognition (pp. 254–259). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02812-0_30

Kirkwood, A., & Price, L. (2014). Technology-enhanced learning and teaching in higher education: What is ‘enhanced’ and how do we know? A critical literature review. Learning, Media and Technology, 39 (1), 6–36. https://doi.org/10.1080/17439884.2013.770404

Koszalka, T. A., Russ-Eft, D. F., & Reiser, R. (2013). Instructional Designer Competencies: The Standards (Fourth Edition) . IAP.

Kraemer, H. C., Kupfer, D. J., Clarke, D. E., Narrow, W. E., & Regier, D. A. (2012). DSM-5: How reliable is reliable enough? American Journal of Psychiatry, 169 (1), 13–15.

Krug, S. (2009). Rocket surgery made easy: The do-it-yourself guide to finding and fixing usability problems . New Riders.

Kumar, B. A., & Goundar, M. S. (2019). Usability heuristics for mobile learning applications. Education and Information Technologies, 24 (2), 1819–1833. https://doi.org/10.1007/s10639-019-09860-z

Kumar, B. A., Goundar, M. S., & Chand, S. S. (2020). A framework for heuristic evaluation of mobile learning applications. Education and Information Technologies, 25 (4), 3189–3204. https://doi.org/10.1007/s10639-020-10112-8

Kumar, B. A., & Mohite, P. (2018). Usability of mobile learning applications: A systematic literature review. Journal of Computers in Education, 5 (1), 1–17. https://doi.org/10.1007/s40692-017-0093-6

Lai, J. W. M., & Bower, M. (2019). How is the use of technology in education evaluated? A systematic review. Computers & Education, 133 , 27–42. https://doi.org/10.1016/j.compedu.2019.01.010

Lam, J., Yau, J., & Cheung, S. K. S. (2010). A review of mobile learning in the mobile age. In International Conference on Hybrid Learning (pp. 306–315). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14657-2_28

Lau, R. W. H., Yen, N. Y., Li, F., & Wah, B. (2014). Recent development in multimedia e-learning technologies. World Wide Web, 17 (2), 189–198. https://doi.org/10.1007/s11280-013-0206-8

Law, E.L.-C., & Abrahão, S. (2014). Interplay between User Experience (UX) evaluation and system development. International Journal of Human-Computer Studies, 72 (6), 523–525. https://doi.org/10.1016/j.ijhcs.2014.03.003

Law, E.L.-C., & Sun, X. (2012). Evaluating user experience of adaptive digital educational games with Activity Theory. International Journal of Human-Computer Studies, 70 (7), 478–497. https://doi.org/10.1016/j.ijhcs.2012.01.007

Lee, M. J. W., Georgieva, M., Alexander, B., Craig, E., & Richter, J. (2021). State of XR & Immersive Learning Outlook Report 2021. Walnut, CA: Immersive Learning Research Network.

Leow, M. C., Wang, L. Y. K., Lau, S. H., & Tan, C. K. (2016). Usability of RPG-based Learning Framework. International Journal of Human-Computer Interaction, 32 (8), 643–653. https://doi.org/10.1080/10447318.2016.1183863

Lim, C. J., & Lee, S. (2007). Pedagogical usability checklist for ESL/EFL e-learning websites. Journal of Convergence and Information Technology, 2 (3), 67–76.

Liu, D., Bhagat, K. K., Gao, Y., Chang, T.-W., & Huang, R. (2017). The potentials and trends of virtual reality in education. In Virtual, augmented, and mixed realities in education (pp. 105–130). Springer, Singapore. https://doi.org/10.1007/978-981-10-5490-7_7

Lyons, L., & Mallavarapu, A. (2021). Collective Usability: Using Simulation Tools to Explore Embodied Design Challenges in Immersive, Shared Mixed-Reality Experiences. Educational Technology & Society , 24 (2), 120–135. https://www.jstor.org/stable/27004936

Lyzara, R., Purwandari, B., & Zulfikar, M. F. (2019). E-government usability evaluation: Insights from a systematic literature review. In Proceedings of the 2nd International Conference on Software Engineering and Information Management (pp. 249–253).

Machado Neto, O., & Pimentel, M. da G. (2013). Heuristics for the assessment of interfaces of mobile devices. In Proceedings of the 19th Brazilian Symposium on Multimedia and the Web . https://doi.org/10.1145/2526188.2526237

Machado, A., Oliveira, A., Jácome, C., Pereira, M., Moreira, J., Rodrigues, J., Aparício, J., Jesus, L. M. T., & Marques, A. (2018). Usability of Computerized Lung Auscultation-Sound Software (CLASS) for learning pulmonary auscultation. Medical & Biological Engineering & Computing, 56 (4), 623–633. https://doi.org/10.1007/s11517-017-1697-8

Mankoff, J., Dey, A. K., Hsieh, G., Kientz, J., Lederer, S., & Ames, M. (2003). Heuristic evaluation of ambient displays. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 169–176). Association for Computing Machinery, New York. https://doi.org/10.1145/642611.642642

Maramba, I., Chatterjee, A., & Newman, C. (2019). Methods of usability testing in the development of eHealth applications: A scoping review. International Journal of Medical Informatics, 126 , 95–104. https://doi.org/10.1016/j.ijmedinf.2019.03.018

Marell-Olsson, E., & Jahnke, I. (2019). Wearable technology in a dentistry study program: Potential and challenges of smart glasses for learning at the workplace. In I. Buchem, R. Klamma, & F. Wild (Eds.), Perspectives on wearable enhanced learning (WELL) (pp. 433–451). Springer.

Martin, F., & Ertzberger, J. (2013). Here and now mobile learning: An experimental study on the use of mobile technology. Computers & Education, 68 , 76–85. https://doi.org/10.1016/j.compedu.2013.04.021

Martin, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M., & Peire, J. (2011). New technology trends in education: Seven years of forecasts and convergence. Computers & Education, 57 (3), 1893–1906. https://doi.org/10.1016/j.compedu.2011.04.003

Martín-Gutiérrez, J., Mora, C. E., Añorbe-Díaz, B., & González-Marrero, A. (2017). Virtual technologies trends in education. Eurasia Journal of Mathematics, Science and Technology Education, 13 (2), 469–486.

McDonald, J. K., & Yanchar, S. C. (2020). Towards a view of originary theory in instructional design. Educational Technology Research and Development, 68 (2), 633–651. https://doi.org/10.1007/s11423-019-09734-8

McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22 (3), 276–282.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Group, T. P. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Medicine, 6 (7), e1000097. https://doi.org/10.1371/journal.pmed.1000097

Moore, J. L., Dickson-Deane, C., & Liu, M. Z. (2014). Designing CMS courses from a pedagogical usability perspective. In A. Benson & D. Whitworth (Eds.), Perspectives in instructional technology and distance education: Research on course management systems in higher education (pp. 143–169). Charlotte, NC: Information Age.

Moore, J. L., Dickson-Deane, C., & Galyen, K. (2011). e-Learning, online learning, and distance learning environments: Are they the same? The Internet and Higher Education, 14 (2), 129–135.

Moradian, S., Krzyzanowska, M. K., Maguire, R., Morita, P. P., Kukreti, V., Avery, J., Liu, G., Cafazzo, J., & Howell, D. (2018). Usability evaluation of a mobile phone-based system for remote monitoring and management of chemotherapy-related side effects in cancer patients: Mixed-methods study. JMIR Cancer, 4 (2), e10932. https://doi.org/10.2196/10932

Moubayed, A., Injadat, M., Nassif, A. B., Lutfiyya, H., & Shami, A. (2018). E-Learning: Challenges and research opportunities using machine learning & data analytics. IEEE Access, 6 , 39117–39138. https://doi.org/10.1109/ACCESS.2018.2851790

Nakamura, W., Teixeira de Oliveira, E., & Conte, T. (2018). Applying design science research to develop a technique to evaluate the usability and user experience of learning management systems. Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE), 29 (2), 953. https://doi.org/10.5753/cbie.sbie.2018.953

Navarro, C. X., Molina, A. I., Redondo, M. A., & Juárez-Ramírez, R. (2016). Framework to evaluate M-learning systems: A Technological and pedagogical approach. IEEE Revista Iberoamericana De Tecnologias Del Aprendizaje, 11 (1), 33–40. https://doi.org/10.1109/RITA.2016.2518459

Nayebi, F., Desharnais, J.-M., & Abran, A. (2012). The state of the art of mobile application usability evaluation. In 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (pp. 1–4). IEEE. https://doi.org/10.1109/CCECE.2012.6334930

Nicholson, P. (2007). A History of E-Learning. In B. Fernández-Manjón, J. M. Sánchez-Pérez, J. A. Gómez-Pulido, M. A. Vega-Rodríguez, & J. Bravo-Rodríguez (Eds.), Computers and Education. Springer.

Nielsen, J. (1994b). Enhancing the explanatory power of usability heuristics. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (CHI ’94) , pp. 152–158.

Nielsen, J. (1994a). 10 Usability Heuristics for User Interface Design . Nielsen Norman Group. https://www.nngroup.com/articles/ten-usability-heuristics/

Nielsen, J. (1990). Evaluating hypertext usability. In D. H. Jonassen & H. Mandl (Eds.), Designing hypermedia for learning (pp. 147–168). Springer.

Nokelainen, P. (2004). Conceptual definition of the technical and pedagogical usability criteria for digital learning material. In EdMedia+ Innovate Learning (pp. 4249–4254). Association for the Advancement of Computing in Education (AACE). https://www.learntechlib.org/primary/p/11688/

Nokelainen, P. (2005). The technical and pedagogical usability criteria for digital learning material. In EdMedia+ Innovate Learning (pp. 1011–1016). Association for the Advancement of Computing in Education (AACE). https://www.learntechlib.org/primary/p/20212/

Nokelainen, P. (2006). An empirical assessment of pedagogical usability criteria for digital learning material with elementary school students. Journal of Educational Technology & Society, 9 (2), 178–197.

Nyang’or, J., Villiers, R. D., & Ssemugabi, S. (2013). A framework for usability evaluation of an offline e-learning tutorial and its application in usability testing. In EdMedia+ Innovate Learning (pp. 1097–1105). Association for the Advancement of Computing in Education (AACE). https://www.learntechlib.org/primary/p/112097/

Oliver, M. (2000). An introduction to the evaluation of learning technology. Journal of Educational Technology & Society, 3 (4), 20–30.

Oztekin, A., Delen, D., Turkyilmaz, A., & Zaim, S. (2013). A machine learning-based usability evaluation method for eLearning systems. Decision Support Systems, 56 , 63–73.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10 , 89. https://doi.org/10.1186/s13643-021-01626-4

Park, B. K., Kim, J. Y., & Rogers, V. E. (2020). Development and usability evaluation of a facebook-based intervention program for childhood cancer patients: mixed methods study. Journal of Medical Internet Research, 22 (7), e18779. https://doi.org/10.2196/18779

Paz, F., & Pow-Sang, J. A. (2014). Current trends in usability evaluation methods: A systematic review. In 2014 7th International Conference on Advanced Software Engineering and Its Applications, 2014, pp. 11–15. https://doi.org/10.1109/ASEA.2014.10

Paz, F., & Pow-Sang, J. A. (2016). A systematic mapping review of usability evaluation methods for software development process. International Journal of Software Engineering and Its Applications, 10 (1), 165–178.

Pérez-Sanagustín, M., Nussbaum, M., Hilliger, I., Alario-Hoyos, C., Heller, R. S., Twining, P., & Tsai, C.-C. (2017). Research on ICT in K-12 schools – A review of experimental and survey-based studies in computers & education 2011 to 2015. Computers & Education, 104 , A1–A15. https://doi.org/10.1016/j.compedu.2016.09.006

Perry, G. T., Kulpa, C. C., Pinheiro, E., & Eichler, M. L. (2012). Lessons from an educational game usability evaluation. International Journal of Interactive Mobile Technologies (IJIM), 6 (2), 23. https://doi.org/10.3991/ijim.v6i2.1888

Pham, M., Singh, K., & Jahnke, I. (2021). Socio-technical-pedagogical usability of online courses for older adult learners. Interactive Learning Environments . https://doi.org/10.1080/10494820.2021.1912784

Piasecki, J., Waligora, M., & Dranseika, V. (2018). Google Search as an Additional Source in Systematic Reviews. Science and Engineering Ethics, 24 (2), 809–810. https://doi.org/10.1007/s11948-017-0010-4

Plantak Vukovac, D., Kirinic, V., & Klicek, B. (2010). A comparison of usability evaluation methods for e-learning systems. DAAAM International Scientific Book . https://doi.org/10.2507/daaam.scibook.2010.27

Plass, J. L., Homer, B. D., & Kinzer, C. K. (2015). Foundations of Game-Based Learning. Educational Psychologist, 50 (4), 258–283. https://doi.org/10.1080/00461520.2015.1122533

Polly, D., Allman, B., Casto, A., & Norwood, J. (2018). Sociocultural perspectives of learning. In R. E. West (Eds.), Foundations of learning and instructional design technology: The past, present, and future of learning and instructional design technology. EdTech Books. Retrieved from https://edtechbooks.org/lidtfoundations/sociocultural_perspectives_of_learning

Punchoojit, L., & Hongwarittorrn, N. (2017). Usability Studies on Mobile User Interface Design Patterns: A Systematic Literature Review. Advances in Human-Computer Interaction, 2017 , e6787504. https://doi.org/10.1155/2017/6787504

Quiñones, D., & Rusu, C. (2017). How to develop usability heuristics: A systematic literature review. Computer Standards & Interfaces, 53 , 89–122. https://doi.org/10.1016/j.csi.2017.03.009

Quiñones, D., Rusu, C., & Rusu, V. (2018). A methodology to develop usability/user experience heuristics. Computer Standards & Interfaces, 59 , 109–129. https://doi.org/10.1016/j.csi.2018.03.002

Rajanen, D., Clemmensen, T., Iivari, N., Inal, Y., Rızvanoğlu, K., Sivaji, A., & Roche, A. (2017). UX professionals’ definitions of usability and UX–A comparison between Turkey, Finland, Denmark, France and Malaysia. In R. Bernhaupt, G. Dalvi, A. Joshi, D. K. Balkrishan, J. O’Neill, & M. Winckler (Eds.), Ifip conference on human-computer interaction (pp. 218–239). Springer.

Rebelo, F., Noriega, P., Duarte, E., & Soares, M. (2012). Using virtual reality to assess user experience. Human Factors, 54 (6), 964–982. https://doi.org/10.1177/0018720812465006

Reeves, T. C. (1994). Evaluating what really matters in computer-based education. In M. Wild & D. Kirkpatrick (Eds.), Computer education: New perspectives (pp. 219–246). MASTEC.

Reeves, T. C., & Hedberg, J. C. (2003). Interactive learning systems evaluation . Educational Technology Publications.

Resnik, L. (2011). Development and testing of new upper-limb prosthetic devices: Research designs for usability testing. The Journal of Rehabilitation Research and Development, 48 (6), 697. https://doi.org/10.1682/JRRD.2010.03.0050

Robinson, H. A., Sheffield, A., Phillips, A. S., & Moore, M. (2017). “Introduction to Teaching Online”: Usability Evaluation of Interactivity in an Online Social Constructivist Course. TechTrends, 61 (6), 533–540. https://doi.org/10.1007/s11528-017-0187-z

Rodrigues, H., Almeida, F., Figueiredo, V., & Lopes, S. L. (2019). Tracking e-learning through published papers: A systematic review. Computers & Education, 136 , 87–98. https://doi.org/10.1016/j.compedu.2019.03.007

Rosell-Aguilar, F. (2017). State of the app: A taxonomy and framework for evaluating language learning mobile applications. CALICO Journal, 34 (2), 243–258.

Rosenbaum, S. (2000). Not just a hammer: when and how to employ multiple methods in usability programs. In Proceedings of UPA .

Rosenbaum, S. (2008). The Future of Usability Evaluation: Increasing Impact on Value. In E. L. C. Law, E. T. Hvannberg, & G. Cockton (Eds.), Maturing Usability: Quality in Software, Interaction and Value (pp. 344–378). Springer.

Ruiz, J. G., Mintzer, M. J., & Leipzig, R. M. (2006). The impact of E-learning in medical education. Academic Medicine: Journal of the Association of American Medical Colleges, 81 (3), 207–212. https://doi.org/10.1097/00001888-200603000-00002

Russell, J. D., & Blake, B. L. (1988). Formative and Summative Evaluation of Instructional Products and Learners. Educational Technology, 28(9), 22–28. http://www.jstor.org/stable/44426917

Santoso, H. B., Schrepp, M., Isal, R. Y. K., Utomo, A. Y., & Priyogi, B. (2016). Measuring User experience of the student-centered e-Learning environment. Journal of Educators Online, 13 (1), 58–79.

Scanlon, E., & Issroff, K. (2005). Activity theory and higher education: Evaluating learning technologies. Journal of Computer Assisted Learning, 21 (6), 430–439. https://doi.org/10.1111/j.1365-2729.2005.00153.x

Schmidt, M., Tawfik, A. A., Jahnke, I., & Earnshaw, Y. (2020). Learner and User Experience Research . EdTech Books. https://edtechbooks.org/ux

Schmidt, M. & Tawfik, A. A. (2022). Activity Theory as a Lens for Developing and Applying Personas and Scenarios in Learning Experience Design. The Journal of Applied Instructional Design, 11(1). https://edtechbooks.org/jaid_11_1/activity_theory_as_a

Schmidt, M., & Huang, R. (2022). Defining learning experience design: Voices from the field of learning design & technology. TechTrends, 66 , 141–158. https://doi.org/10.1007/s11528-021-00656-y

Schnall, R., Cho, H., & Liu, J. (2018). Health Information Technology Usability Evaluation Scale (Health-ITUES) for usability assessment of mobile health technology: Validation study. JMIR mHealth and uHealth, 6 (1), e8851. https://doi.org/10.2196/mhealth.8851

Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia, 126 (5), 1763–1768.

Seppälä, P., & Alamäki, H. (2003). Mobile learning in teacher training. Journal of Computer Assisted Learning, 19 (3), 330–335. https://doi.org/10.1046/j.0266-4909.2003.00034.x

Sharples, M. (2000). The design of personal mobile technologies for lifelong learning. Computers & Education, 34 (3), 177–193. https://doi.org/10.1016/S0360-1315(99)00044-5

Shekhar, A., & Marsden, N. (2018). Cognitive Walkthrough of a learning management system with gendered personas. In Proceedings of the 4th Conference on Gender & IT . https://doi.org/10.1145/3196839.3196869

Shilbayeh, S. A. R., & Ismail, S. A. E. R. (2020). Patient experience with an educational mobile health application: A pilot study on usability and feasibility in a Saudi population. Cogent Psychology, 7 (1), 1843883. https://doi.org/10.1080/23311908.2020.1843883

Silius, K., Tervakari, A. M., & Pohjolainen, S. (2003). A multidisciplinary tool for the evaluation of usability, pedagogical usability, accessibility and informational quality of web-based courses. The Eleventh International PEG Conference: Powerful ICT for Teaching and Learning, 28 , 1–10.

Spitzer, R. L., Williams, J. B., & Endicott, J. (2012). Standards for DSM-5 reliability. American Journal of Psychiatry, 169 (5), 537–537.

Squires, D., & Preece, J. (1996). Usability and learning: Evaluating the potential of educational software. Computers & Education, 27 (1), 15–22. https://doi.org/10.1016/0360-1315(96)00010-3

Squires, D., & Preece, J. (1999). Predicting quality in educational software. Interacting with Computers, 11 (5), 467–483.

Srikong, M., & Wannapiroon, P. (2020). Immersive technology for medical education: Technology enhance immersive learning experiences. Siriraj Medical Journal, 72 (3), 265–271. https://doi.org/10.33192/Smj.2020.36

Stern, C., Jordan, Z., & McArthur, A. (2014). Developing the review question and inclusion criteria. AJN the American Journal of Nursing, 114 (4), 53–56.

Stevens, D., & Kitchenham, A. (2011). An analysis of mobile learning in education, business, and medicine. In A. Kitchenham (Ed.), Models for interdisciplinary mobile learning: Delivering information to students (pp. 1–25). IGI Global.

Storey, M. A., Phillips, B., Maczewski, M., & Wang, M. (2002). Evaluating the usability of Web-based learning tools. Journal of Educational Technology & Society, 5 (3), 91–100.

Sugar, W. (2014). Development and formative evaluation of multimedia case studies for Instructional Design and Technology students. TechTrends, 58 (5), 36–52. https://doi.org/10.1007/s11528-014-0785-z

Tan, W., Liu, D., & Bishu, R. (2009). Web evaluation: Heuristic evaluation vs. user testing. International Journal of Industrial Ergonomics, 39 (4), 621–627. https://doi.org/10.1016/j.ergon.2008.02.012

Tawfik, A. A., Gatewood, J., Gish-Lieberman, J. J., & Hampton, A. J. (2021). Toward a definition of learning experience design. Technology, Knowledge and Learning, 27 (1), 309–334. https://doi.org/10.1007/s10758-020-09482-2

Tessmer. (1993). Planning and Conducting Formative Evaluations. Routledge . https://doi.org/10.4324/9780203061978

Tondello, G. F., Kappen, D. L., Ganaba, M., & Nacke, L. E. (2019). Gameful design heuristics: a gamification inspection tool. In M. Kurosu (Ed.), International Conference on Human-Computer Interaction (pp. 224–244). Springer.

Turner, C. W., Lewis, J. R., & Nielsen, J. (2006). Determining usability test sample size. International Encyclopedia of Ergonomics and Human Factors, 3 (2), 3084–3088.

Van Der Linden, J., Amadieu, F., Vayre, E., & Van De Leemput, C. (2019). User experience and social influence: A new perspective for UX theory. In A. Marcus & W. Wang (Eds.), International Conference on Human-Computer Interaction (pp. 98–112). Springer.

Walji, M. F., Kalenderian, E., Piotrowski, M., Tran, D., Kookal, K. K., Tokede, O., White, J. M., Vaderhobli, R., Ramoni, R., Stark, P. C., Kimmes, N. S., Lagerweij, M., & Patel, V. L. (2014). Are three methods better than one? A comparative assessment of usability evaluation methods in an EHR. International Journal of Medical Informatics, 83 (5), 361–367. https://doi.org/10.1016/j.ijmedinf.2014.01.010

Wang, J. Y., Wu, H. K., & Hsu, Y. S. (2017). Using mobile applications for learning: Effects of simulation design, visual-motor integration, and spatial ability on high school students’ conceptual understanding. Computers in Human Behavior, 66 , 103–113.

Weston, T. (2004). Formative evaluation for implementation: evaluating educational technology applications and lessons. American Journal of Evaluation, 25 (1), 51–64. https://doi.org/10.1177/109821400402500104

Yáñez Gómez, R., Cascado Caballero, D., & Sevillano, J.-L. (2014). Heuristic evaluation on mobile interfaces: A New Checklist. The Scientific World Journal, 2014 , 1–19. https://doi.org/10.1155/2014/434326

Yang, T., Linder, J., & Bolchini, D. (2012). DEEP: Design-oriented evaluation of perceived usability. International Journal of Human-Computer Interaction, 28 (5), 308–346.

Yukselturk, E., Altıok, S., & Başer, Z. (2018). Using game-based learning with kinect technology in foreign language education course. Journal of Educational Technology & Society, 21 (3), 159–173.

Yun, S. J., Kang, M.-G., Yang, D., Choi, Y., Kim, H., Oh, B.-M., & Seo, H. G. (2020). Cognitive training using fully immersive, enriched environment virtual reality for patients with mild cognitive impairment and mild dementia: feasibility and usability study. JMIR Serious Games, 8 (4), e18127. https://doi.org/10.2196/18127

Zabed Ahmed, S. M. (2008). A comparison of usability techniques for evaluating information retrieval system interfaces. Performance Measurement and Metrics, 9 (1), 48–58. https://doi.org/10.1108/14678040810869422

Zaharias, P., & Koutsabasis, P. (2012). Heuristic evaluation of e-learning courses: A comparative analysis of two e-learning heuristic sets. Campus-Wide Information Systems, 29 (1), 45–60. https://doi.org/10.1108/10650741211192046

Zali, Z., & Fadzlah, A. F. A. (2016). An initial theoretical usability evaluation model for assessing defence mobile e-based application system. International Conference on Information and Communication Technology (ICICTM), 2016 , 198–202. https://doi.org/10.1109/ICICTM.2016.7890800

Zardari, B. A., Hussain, Z., Arain, A. A., Rizvi, W. H., & Vighio, M. S. (2021). QUEST e-learning portal: Applying heuristic evaluation, usability testing and eye tracking. Universal Access in the Information Society, 20 (3), 531–543. https://doi.org/10.1007/s10209-020-00774-z

Zeng, J., Parks, S., & Shang, J. (2020). To learn scientifically, effectively, and enjoyably: A review of educational games. Human Behavior and Emerging Technologies, 2 (2), 186–195. https://doi.org/10.1002/hbe2.188

Zhang, J., Johnson, T. R., Patel, V. L., Paige, D. L., & Kubose, T. (2003). Using usability heuristics to evaluate patient safety of medical devices. Journal of Biomedical Informatics, 36 (1), 23–30. https://doi.org/10.1016/S1532-0464(03)00060-1

Zurita, G., Baloian, N., Peñafiel, S., & Jerez, O. (2019). Applying pedagogical usability for designing a mobile learning application that support reading comprehension. Multidisciplinary Digital Publishing Institute Proceedings, 31 (1), 6. https://doi.org/10.3390/proceedings2019031006

Download references

Acknowledgements

We thank Dr. Noah Glaser for his guidance on the methodology used in this research study.

Research reported in this manuscript was not funded.

Author information

Authors and affiliations.

University of Florida, 2423 Norman Hall, PO BOX 117048, Gainesville, FL, 32611, USA

Jie Lu, Matthew Schmidt, Minyoung Lee & Rui Huang

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Matthew Schmidt .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Ethical approval

The research study described in this manuscript did not involve human subjects and/or animals other than the authors themselves.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

See Table 6 .

See Table 7 .

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Lu, J., Schmidt, M., Lee, M. et al. Usability research in educational technology: a state-of-the-art systematic review. Education Tech Research Dev 70 , 1951–1992 (2022). https://doi.org/10.1007/s11423-022-10152-6

Download citation

Accepted : 09 August 2022

Published : 22 August 2022

Issue Date : December 2022

DOI : https://doi.org/10.1007/s11423-022-10152-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Usability research
  • Learning design and technology
  • Usability evaluation methods
  • Methodological limitations
  • Find a journal
  • Publish with us
  • Track your research

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

A technique for more effective multipurpose robots

Press contact :, media download.

Four photos show, on top level, a simulation of a robot hand using a spatula, knife, hammer and wrench. The second row shows a real robot hand performing the tasks, and the bottom row shows a human hand performing the tasks.

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license . You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Four photos show, on top level, a simulation of a robot hand using a spatula, knife, hammer and wrench. The second row shows a real robot hand performing the tasks, and the bottom row shows a human hand performing the tasks.

Previous image Next image

Let’s say you want to train a robot so it understands how to use tools and can then quickly learn to make repairs around your house with a hammer, wrench, and screwdriver. To do that, you would need an enormous amount of data demonstrating tool use.

Existing robotic datasets vary widely in modality — some include color images while others are composed of tactile imprints, for instance. Data could also be collected in different domains, like simulation or human demos. And each dataset may capture a unique task and environment.

It is difficult to efficiently incorporate data from so many sources in one machine-learning model, so many methods use just one type of data to train a robot. But robots trained this way, with a relatively small amount of task-specific data, are often unable to perform new tasks in unfamiliar environments.

In an effort to train better multipurpose robots, MIT researchers developed a technique to combine multiple sources of data across domains, modalities, and tasks using a type of generative AI known as diffusion models.

They train a separate diffusion model to learn a strategy, or policy, for completing one task using one specific dataset. Then they combine the policies learned by the diffusion models into a general policy that enables a robot to perform multiple tasks in various settings.

In simulations and real-world experiments, this training approach enabled a robot to perform multiple tool-use tasks and adapt to new tasks it did not see during training. The method, known as Policy Composition (PoCo), led to a 20 percent improvement in task performance when compared to baseline techniques.

“Addressing heterogeneity in robotic datasets is like a chicken-egg problem. If we want to use a lot of data to train general robot policies, then we first need deployable robots to get all this data. I think that leveraging all the heterogeneous data available, similar to what researchers have done with ChatGPT, is an important step for the robotics field,” says Lirui Wang, an electrical engineering and computer science (EECS) graduate student and lead author of a paper on PoCo .      

Wang’s coauthors include Jialiang Zhao, a mechanical engineering graduate student; Yilun Du, an EECS graduate student; Edward Adelson, the John and Dorothy Wilson Professor of Vision Science in the Department of Brain and Cognitive Sciences and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL); and senior author Russ Tedrake, the Toyota Professor of EECS, Aeronautics and Astronautics, and Mechanical Engineering, and a member of CSAIL. The research will be presented at the Robotics: Science and Systems Conference.

Combining disparate datasets

A robotic policy is a machine-learning model that takes inputs and uses them to perform an action. One way to think about a policy is as a strategy. In the case of a robotic arm, that strategy might be a trajectory, or a series of poses that move the arm so it picks up a hammer and uses it to pound a nail.

Datasets used to learn robotic policies are typically small and focused on one particular task and environment, like packing items into boxes in a warehouse.

“Every single robotic warehouse is generating terabytes of data, but it only belongs to that specific robot installation working on those packages. It is not ideal if you want to use all of these data to train a general machine,” Wang says.

The MIT researchers developed a technique that can take a series of smaller datasets, like those gathered from many robotic warehouses, learn separate policies from each one, and combine the policies in a way that enables a robot to generalize to many tasks.

They represent each policy using a type of generative AI model known as a diffusion model. Diffusion models, often used for image generation, learn to create new data samples that resemble samples in a training dataset by iteratively refining their output.

But rather than teaching a diffusion model to generate images, the researchers teach it to generate a trajectory for a robot. They do this by adding noise to the trajectories in a training dataset. The diffusion model gradually removes the noise and refines its output into a trajectory.

This technique, known as Diffusion Policy , was previously introduced by researchers at MIT, Columbia University, and the Toyota Research Institute. PoCo builds off this Diffusion Policy work. 

The team trains each diffusion model with a different type of dataset, such as one with human video demonstrations and another gleaned from teleoperation of a robotic arm.

Then the researchers perform a weighted combination of the individual policies learned by all the diffusion models, iteratively refining the output so the combined policy satisfies the objectives of each individual policy.

Greater than the sum of its parts

“One of the benefits of this approach is that we can combine policies to get the best of both worlds. For instance, a policy trained on real-world data might be able to achieve more dexterity, while a policy trained on simulation might be able to achieve more generalization,” Wang says.

Because the policies are trained separately, one could mix and match diffusion policies to achieve better results for a certain task. A user could also add data in a new modality or domain by training an additional Diffusion Policy with that dataset, rather than starting the entire process from scratch.

The researchers tested PoCo in simulation and on real robotic arms that performed a variety of tools tasks, such as using a hammer to pound a nail and flipping an object with a spatula. PoCo led to a 20 percent improvement in task performance compared to baseline methods.

“The striking thing was that when we finished tuning and visualized it, we can clearly see that the composed trajectory looks much better than either one of them individually,” Wang says.

In the future, the researchers want to apply this technique to long-horizon tasks where a robot would pick up one tool, use it, then switch to another tool. They also want to incorporate larger robotics datasets to improve performance.

“We will need all three kinds of data to succeed for robotics: internet data, simulation data, and real robot data. How to combine them effectively will be the million-dollar question. PoCo is a solid step on the right track,” says Jim Fan, senior research scientist at NVIDIA and leader of the AI Agents Initiative, who was not involved with this work.

This research is funded, in part, by Amazon, the Singapore Defense Science and Technology Agency, the U.S. National Science Foundation, and the Toyota Research Institute.

Share this news article on:

Related links.

  • Project website
  • Edward Adelson
  • Russ Tedrake
  • Computer Science and Artificial Intelligence Laboratory
  • Department of Electrical Engineering and Computer Science
  • Department of Mechanical Engineering
  • Department of Aeronautics and Astronautics
  • Department of Brain and Cognitive Sciences

Related Topics

  • Artificial intelligence
  • Computer science and technology
  • Mechanical engineering
  • Computer Science and Artificial Intelligence Laboratory (CSAIL)
  • Electrical Engineering & Computer Science (eecs)
  • Aeronautical and astronautical engineering
  • Brain and cognitive sciences
  • National Science Foundation (NSF)

Related Articles

Multiple robotic arms working in close proximity inside a warehouse setting

Method rapidly verifies that a robot will avoid collisions

15 photos in a sequential 3x5 grid show two robotic arms working together to pick up an item.

A new optimization framework for robot motion planning

Top view of a demo showing 2 robot arms, manipulating a white bucket labeled “Mr. Bucket.”

AI helps robots manipulate objects with their whole bodies

Photo of a robotic arm holding a squeegee in preparation to wipe up a blob of pink liquid

Soft robots that grip with the right amount of force

Previous item Next item

More MIT News

In a darkened room, Katie Chun steps out of the Momo habitat, a geodesic dome-like structure.

Designing for outer space

Read full story →

Mary-Lou Pardue, wearing a red academic robe, poses for a photo in front of a grassy MIT courtyard

Professor Emerita Mary-Lou Pardue, pioneering cellular and molecular biologist, dies at 90

Five people standing together.

Helping nonexperts build advanced generative AI models

Sally Kornbluth speaking at a podium

New Ragon Institute building opens in the heart of Kendall Square

Peggy Ghasemlou looks to the side while posing for portrait at MIT campus at nighttime.

Toward socially and environmentally responsible real estate

Heidi Shyu and Eric Evans stand side-by-side holding up a plaque between them. Evans has a medal pinned to his lapel.

Eric Evans receives Department of Defense Medal for Distinguished Public Service

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

IMAGES

  1. (PDF) Current trends in educational technology research

    educational technology research paper

  2. Research Paper

    educational technology research paper

  3. Essay About Technology In Education

    educational technology research paper

  4. (PDF) Educational Technology: A Review of the Integration, Resources

    educational technology research paper

  5. 📗 Research Paper Example on Technology in Education

    educational technology research paper

  6. (PDF) Insights from the Journal Analysis Series: What We Have Learned

    educational technology research paper

VIDEO

  1. How Technology Has Affected Education?

  2. Indian Council of Educational Technology Research And Charitable

  3. Meeting of systematic review method in educational technology research

  4. ChatGPT 4 ලෝකය වෙනස් කරයිද ?

  5. Educational Technology in Context: The Big Picture

  6. Top 5 EdTech trends at Bett 2023

COMMENTS

  1. Home

    Overview. Educational Technology Research and Development is a scholarly journal focusing on research and development in educational technology. Publishes rigorous original quantitative, qualitative, or mixed methods studies on topics relating to applications of technology or instructional design in educational settings.

  2. Understanding the role of digital technologies in education: A review

    The primary research objectives of this paper are as under: RO1: - To study the need for digital technologies in education; ... Educational Technology Research and Development, 69 (2) (2021), pp. 515-532. CrossRef View in Scopus Google Scholar [72] N.A. Kudratilloev, B.A. Akhmedov.

  3. Education reform and change driven by digital technology: a

    Selwyn's contributions to the educational sociology perspective include extensive research on the impact of digital technology on education, highlighting the spatiotemporal extension of ...

  4. Education Technology: An Evidence-Based Review

    This paper synthesizes and discusses experimental evidence on the effectiveness of technology-based approaches in education across four categories. It draws upon literature from developed and developing countries and outlines areas for future inquiry.

  5. Educational Technology Research and Development

    1964-1977 •. 1953-1963 •. Educational Technology Research and Development is the only scholarly journal in the field focusing entirely on research and development in educational technology. The Research Section assigns highest priority in reviewing manuscripts to rigorous original quantitative, qualitative, or mixed methods studies on ...

  6. Journal of Educational Technology Systems: Sage Journals

    The Journal of Educational Technology Systems (ETS) deals with systems in which technology and education interface and is designed to inform educators who are interested in making optimum use of technology. More importantly, the Journal focuses on techniques and curriculum that utilize technology in all types of educational systems.

  7. British Journal of Educational Technology

    An official journal of the British Educational Research Association, the British Journal of Educational Technology (BJET) is a primary source for academics and professionals in the fields of digital educational and training technology throughout the world.. We publish theoretical perspectives, methodological developments, and high-quality empirical research demonstrating whether and how ...

  8. Educational Technology Adoption: A systematic review

    The interest of researchers worldwide in educational technology acceptance and adoption is evident (see Fig. 2).Most of the identified studies were conducted in Taiwan (N=7), followed by relevant research carried out in South Korea and USA (N=4), Spain (N=3), Canada, China, Hong Kong, Malaysia, Pakistan, Singapore and Turkey (N=2).

  9. Journal of Research on Technology in Education

    Altmetric. Most cited. Explore the current issue of Journal of Research on Technology in Education, Volume 56, Issue 3, 2024.

  10. Educational technology: what it is and how it works

    This paper presents an argument that education—the giving and receiving of systematic instruction, the process of facilitating learning, constituted from countless methods, tools, and structures, operated by teachers and many others—may usefully be seen as a technological phenomenon; that all educators are thus educational technologists (albeit that their choices of technology may vary ...

  11. Educational Technology Research: Contexts, Complexity and Challenges

    The paper discusses some key contemporary trends in educational technology research. These are identified as personalisation, social learning, learning design, machine learning, and data driven ...

  12. The nature and building blocks of educational technology research

    Weller (2020) outlined the history of educational technology from 1994 by indicating one peak educational technology for each year. The 25 technologies on the list illustrate the coevolution of learning practices and technology, such as computer-mediated communication, constructivism, LMS, WEB 2.0, and MOOCs.

  13. PDF Educational Technology Research: Contexts, Complexity and Challenges

    This paper explores the development of educational technology research over the last 50 years. This is done by considering what has influenced this development and what ... Technology Enhanced Learning or educational technology research (TEL) is a relatively . young area of research. The work of educational technologists and others involved

  14. AI technologies for education: Recent research & future directions

    5. Conclusion. AI technology is rapidly advancing and its application in education is expected to grow rapidly in the near future. In the USA, for example, education sectors are predicted with an approximate 48% of growth in AI market in the near future, from 2018 to 2022 ( BusinessWire.com, 2018).

  15. PDF Education Technology: An Evidence-Based Review

    future inquiry. In particular, we examine RCTs across the following categories of education technology: (1) access to technology, (2) computer-assisted learning, (3) technology-enabled behavioral interventions in education, and (4) online learning. While this review focuses on

  16. Mapping research in student engagement and educational technology in

    Digital technology has become a central aspect of higher education, inherently affecting all aspects of the student experience. It has also been linked to an increase in behavioural, affective and cognitive student engagement, the facilitation of which is a central concern of educators. In order to delineate the complex nexus of technology and student engagement, this article systematically ...

  17. PDF 1:1 Technology and its Effect on Student Academic Achievement and ...

    This study set out to determine whether one to one technology (1:1 will be used hereafter) truly impacts and effects the academic achievement of students. This study's second goal was to determine whether 1:1 Technology also effects student motivation to learn. Data was gathered from students participating in this study through the Pearson ...

  18. (PDF) Impact of modern technology in education

    This research paper is a study of the efficacy of the flipped learning approach in teaching 'Wh' questions to first-year undergraduate ESL learners. ... Education feeds technology which in ...

  19. Educational technology: what it is and how it works

    Abstract. This theoretical paper elucidates the nature of educational technology and, in the process, sheds light on a number of phenomena in educational systems, from the no-significant ...

  20. Computer-based technology and student engagement: a ...

    Computer-based technology has infiltrated many aspects of life and industry, yet there is little understanding of how it can be used to promote student engagement, a concept receiving strong attention in higher education due to its association with a number of positive academic outcomes. The purpose of this article is to present a critical review of the literature from the past 5 years related ...

  21. Education Insights: Technology Trends Shaping Classrooms in 2024

    Get Ready for the Next Great Education Technology at Tulane . Technology has transformed classrooms in 2024, from AI-driven music software to virtual reality, content-creation tools, and intelligent tutoring systems. ... demand well-trained educators who can expertly weigh their pros and cons and assess their efficacy based on available research.

  22. Trends and Topics in Educational Technology, 2022 Edition

    This editorial continues our annual effort to identify and catalog trends and popular topics in the field of educational technology. Continuing our approach from previous years (Kimmons, 2020; Kimmons et al., 2021), we use public internet data mining methods (Kimmons & Veletsianos, 2018) to extract and analyze data from three large data sources: the Scopus research article database, the ...

  23. The impact of mentoring in higher education on student career

    Conceptual background. In the absence of an overarching mentoring-career development framework, an initial review of the literature suggests a broad three-pronged approach to career development outcomes in HE: first, outcomes related to career choice such as developing the confidence to make a career decision, and the actual decision for a specific career itself (cf. Crisp and Cruz Citation ...

  24. Classroom Tech Outpaces Research. Why That's a Problem

    The Obama administration in 2011 attempted to make such an R&D center, intended as the education equivalent of the Defense Department's Advanced Research Projects Agency, the Defense Department ...

  25. Cyber Security in the Era of Digitalization: Implications for

    This research paper explores the implications of cyber security in educational management amidst the era of digitalization. The paper discusses the various cyber threats faced by educational institutions, the impact of these threats on educational management, the strategies that can be employed to enhance cyber security and other best practices ...

  26. How Can Emerging Technologies Transform the Teaching of Engineering?

    The rapid advancement of technology has become a challenge for educators trying to prepare students for futures in engineering. Modern engineers across multiple industries are making use of ...

  27. A Comprehensive Review of Educational Technology on ...

    Rapid advances in technology during the last few decades have provided a multitude of new options for teaching and learning. Although technology is being widely adopted in education, there is a shortage of research on the effects that this technology might have on student learning, and why those effects occur. We conducted a comprehensive review of the literature on various uses of digital ...

  28. China has become a scientific superpower

    I n the atrium of a research building at the Chinese Academy of Sciences (CAS) in Beijing is a wall of patents.Around five metres wide and two storeys high, the wall displays 192 certificates ...

  29. Usability research in educational technology: a state-of-the-art

    This paper presents a systematic literature review characterizing the methodological properties of usability studies conducted on educational and learning technologies in the past 20 years. PRISMA guidelines were followed to identify, select, and review relevant research and report results. Our rigorous review focused on (1) categories of educational and learning technologies that have been ...

  30. A technique for more effective multipurpose robots

    PoCo is a solid step on the right track," says Jim Fan, senior research scientist at NVIDIA and leader of the AI Agents Initiative, who was not involved with this work. This research is funded, in part, by Amazon, the Singapore Defense Science and Technology Agency, the U.S. National Science Foundation, and the Toyota Research Institute.