The present and future of AI

Finale doshi-velez on how ai is shaping our lives and how we can shape ai.

image of Finale Doshi-Velez, the John L. Loeb Professor of Engineering and Applied Sciences

Finale Doshi-Velez, the John L. Loeb Professor of Engineering and Applied Sciences. (Photo courtesy of Eliza Grinnell/Harvard SEAS)

How has artificial intelligence changed and shaped our world over the last five years? How will AI continue to impact our lives in the coming years? Those were the questions addressed in the most recent report from the One Hundred Year Study on Artificial Intelligence (AI100), an ongoing project hosted at Stanford University, that will study the status of AI technology and its impacts on the world over the next 100 years.

The 2021 report is the second in a series that will be released every five years until 2116. Titled “Gathering Strength, Gathering Storms,” the report explores the various ways AI is  increasingly touching people’s lives in settings that range from  movie recommendations  and  voice assistants  to  autonomous driving  and  automated medical diagnoses .

Barbara Grosz , the Higgins Research Professor of Natural Sciences at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) is a member of the standing committee overseeing the AI100 project and Finale Doshi-Velez , Gordon McKay Professor of Computer Science, is part of the panel of interdisciplinary researchers who wrote this year’s report. 

We spoke with Doshi-Velez about the report, what it says about the role AI is currently playing in our lives, and how it will change in the future.  

Q: Let's start with a snapshot: What is the current state of AI and its potential?

Doshi-Velez: Some of the biggest changes in the last five years have been how well AIs now perform in large data regimes on specific types of tasks.  We've seen [DeepMind’s] AlphaZero become the best Go player entirely through self-play, and everyday uses of AI such as grammar checks and autocomplete, automatic personal photo organization and search, and speech recognition become commonplace for large numbers of people.  

In terms of potential, I'm most excited about AIs that might augment and assist people.  They can be used to drive insights in drug discovery, help with decision making such as identifying a menu of likely treatment options for patients, and provide basic assistance, such as lane keeping while driving or text-to-speech based on images from a phone for the visually impaired.  In many situations, people and AIs have complementary strengths. I think we're getting closer to unlocking the potential of people and AI teams.

There's a much greater recognition that we should not be waiting for AI tools to become mainstream before making sure they are ethical.

Q: Over the course of 100 years, these reports will tell the story of AI and its evolving role in society. Even though there have only been two reports, what's the story so far?

There's actually a lot of change even in five years.  The first report is fairly rosy.  For example, it mentions how algorithmic risk assessments may mitigate the human biases of judges.  The second has a much more mixed view.  I think this comes from the fact that as AI tools have come into the mainstream — both in higher stakes and everyday settings — we are appropriately much less willing to tolerate flaws, especially discriminatory ones. There's also been questions of information and disinformation control as people get their news, social media, and entertainment via searches and rankings personalized to them. So, there's a much greater recognition that we should not be waiting for AI tools to become mainstream before making sure they are ethical.

Q: What is the responsibility of institutes of higher education in preparing students and the next generation of computer scientists for the future of AI and its impact on society?

First, I'll say that the need to understand the basics of AI and data science starts much earlier than higher education!  Children are being exposed to AIs as soon as they click on videos on YouTube or browse photo albums. They need to understand aspects of AI such as how their actions affect future recommendations.

But for computer science students in college, I think a key thing that future engineers need to realize is when to demand input and how to talk across disciplinary boundaries to get at often difficult-to-quantify notions of safety, equity, fairness, etc.  I'm really excited that Harvard has the Embedded EthiCS program to provide some of this education.  Of course, this is an addition to standard good engineering practices like building robust models, validating them, and so forth, which is all a bit harder with AI.

I think a key thing that future engineers need to realize is when to demand input and how to talk across disciplinary boundaries to get at often difficult-to-quantify notions of safety, equity, fairness, etc. 

Q: Your work focuses on machine learning with applications to healthcare, which is also an area of focus of this report. What is the state of AI in healthcare? 

A lot of AI in healthcare has been on the business end, used for optimizing billing, scheduling surgeries, that sort of thing.  When it comes to AI for better patient care, which is what we usually think about, there are few legal, regulatory, and financial incentives to do so, and many disincentives. Still, there's been slow but steady integration of AI-based tools, often in the form of risk scoring and alert systems.

In the near future, two applications that I'm really excited about are triage in low-resource settings — having AIs do initial reads of pathology slides, for example, if there are not enough pathologists, or get an initial check of whether a mole looks suspicious — and ways in which AIs can help identify promising treatment options for discussion with a clinician team and patient.

Q: Any predictions for the next report?

I'll be keen to see where currently nascent AI regulation initiatives have gotten to. Accountability is such a difficult question in AI,  it's tricky to nurture both innovation and basic protections.  Perhaps the most important innovation will be in approaches for AI accountability.

Topics: AI / Machine Learning , Computer Science

Cutting-edge science delivered direct to your inbox.

Join the Harvard SEAS mailing list.

Scientist Profiles

Finale Doshi-Velez

Finale Doshi-Velez

Herchel Smith Professor of Computer Science

Press Contact

Leah Burrows | 617-496-1351 | [email protected]

Related News

A group of Harvard SEAS students standing behind a wooden table, in front of a sign that says "Agents of Change"

Exploring the depths of AI

 New SEAS club spends Spring Break meeting AI technology professionals in San Francisco

AI / Machine Learning , Computer Science , Student Organizations

Head shot of SEAS Ph.D. alum Jacomo Corbo

Alumni profile: Jacomo Corbo, Ph.D. '08

Racing into the future of machine learning 

AI / Machine Learning , Computer Science

Harvard SEAS Ph.D. student Lucas Monteiro Paes wearing a white shirt and black glasses

Ph.D. student Monteiro Paes named Apple Scholar in AI/ML

Monteiro Paes studies fairness and arbitrariness in machine learning models

AI / Machine Learning , Applied Mathematics , Awards , Graduate Student Profile

Issue Cover

  • Previous Article
  • Next Article

Promises and Pitfalls of Technology

Politics and privacy, private-sector influence and big tech, state competition and conflict, author biography, how is technology changing the world, and how should the world change technology.

[email protected]

  • Split-Screen
  • Article contents
  • Figures & tables
  • Supplementary Data
  • Peer Review
  • Open the PDF for in another window
  • Guest Access
  • Get Permissions
  • Cite Icon Cite
  • Search Site

Josephine Wolff; How Is Technology Changing the World, and How Should the World Change Technology?. Global Perspectives 1 February 2021; 2 (1): 27353. doi: https://doi.org/10.1525/gp.2021.27353

Download citation file:

  • Ris (Zotero)
  • Reference Manager

Technologies are becoming increasingly complicated and increasingly interconnected. Cars, airplanes, medical devices, financial transactions, and electricity systems all rely on more computer software than they ever have before, making them seem both harder to understand and, in some cases, harder to control. Government and corporate surveillance of individuals and information processing relies largely on digital technologies and artificial intelligence, and therefore involves less human-to-human contact than ever before and more opportunities for biases to be embedded and codified in our technological systems in ways we may not even be able to identify or recognize. Bioengineering advances are opening up new terrain for challenging philosophical, political, and economic questions regarding human-natural relations. Additionally, the management of these large and small devices and systems is increasingly done through the cloud, so that control over them is both very remote and removed from direct human or social control. The study of how to make technologies like artificial intelligence or the Internet of Things “explainable” has become its own area of research because it is so difficult to understand how they work or what is at fault when something goes wrong (Gunning and Aha 2019) .

This growing complexity makes it more difficult than ever—and more imperative than ever—for scholars to probe how technological advancements are altering life around the world in both positive and negative ways and what social, political, and legal tools are needed to help shape the development and design of technology in beneficial directions. This can seem like an impossible task in light of the rapid pace of technological change and the sense that its continued advancement is inevitable, but many countries around the world are only just beginning to take significant steps toward regulating computer technologies and are still in the process of radically rethinking the rules governing global data flows and exchange of technology across borders.

These are exciting times not just for technological development but also for technology policy—our technologies may be more advanced and complicated than ever but so, too, are our understandings of how they can best be leveraged, protected, and even constrained. The structures of technological systems as determined largely by government and institutional policies and those structures have tremendous implications for social organization and agency, ranging from open source, open systems that are highly distributed and decentralized, to those that are tightly controlled and closed, structured according to stricter and more hierarchical models. And just as our understanding of the governance of technology is developing in new and interesting ways, so, too, is our understanding of the social, cultural, environmental, and political dimensions of emerging technologies. We are realizing both the challenges and the importance of mapping out the full range of ways that technology is changing our society, what we want those changes to look like, and what tools we have to try to influence and guide those shifts.

Technology can be a source of tremendous optimism. It can help overcome some of the greatest challenges our society faces, including climate change, famine, and disease. For those who believe in the power of innovation and the promise of creative destruction to advance economic development and lead to better quality of life, technology is a vital economic driver (Schumpeter 1942) . But it can also be a tool of tremendous fear and oppression, embedding biases in automated decision-making processes and information-processing algorithms, exacerbating economic and social inequalities within and between countries to a staggering degree, or creating new weapons and avenues for attack unlike any we have had to face in the past. Scholars have even contended that the emergence of the term technology in the nineteenth and twentieth centuries marked a shift from viewing individual pieces of machinery as a means to achieving political and social progress to the more dangerous, or hazardous, view that larger-scale, more complex technological systems were a semiautonomous form of progress in and of themselves (Marx 2010) . More recently, technologists have sharply criticized what they view as a wave of new Luddites, people intent on slowing the development of technology and turning back the clock on innovation as a means of mitigating the societal impacts of technological change (Marlowe 1970) .

At the heart of fights over new technologies and their resulting global changes are often two conflicting visions of technology: a fundamentally optimistic one that believes humans use it as a tool to achieve greater goals, and a fundamentally pessimistic one that holds that technological systems have reached a point beyond our control. Technology philosophers have argued that neither of these views is wholly accurate and that a purely optimistic or pessimistic view of technology is insufficient to capture the nuances and complexity of our relationship to technology (Oberdiek and Tiles 1995) . Understanding technology and how we can make better decisions about designing, deploying, and refining it requires capturing that nuance and complexity through in-depth analysis of the impacts of different technological advancements and the ways they have played out in all their complicated and controversial messiness across the world.

These impacts are often unpredictable as technologies are adopted in new contexts and come to be used in ways that sometimes diverge significantly from the use cases envisioned by their designers. The internet, designed to help transmit information between computer networks, became a crucial vehicle for commerce, introducing unexpected avenues for crime and financial fraud. Social media platforms like Facebook and Twitter, designed to connect friends and families through sharing photographs and life updates, became focal points of election controversies and political influence. Cryptocurrencies, originally intended as a means of decentralized digital cash, have become a significant environmental hazard as more and more computing resources are devoted to mining these forms of virtual money. One of the crucial challenges in this area is therefore recognizing, documenting, and even anticipating some of these unexpected consequences and providing mechanisms to technologists for how to think through the impacts of their work, as well as possible other paths to different outcomes (Verbeek 2006) . And just as technological innovations can cause unexpected harm, they can also bring about extraordinary benefits—new vaccines and medicines to address global pandemics and save thousands of lives, new sources of energy that can drastically reduce emissions and help combat climate change, new modes of education that can reach people who would otherwise have no access to schooling. Regulating technology therefore requires a careful balance of mitigating risks without overly restricting potentially beneficial innovations.

Nations around the world have taken very different approaches to governing emerging technologies and have adopted a range of different technologies themselves in pursuit of more modern governance structures and processes (Braman 2009) . In Europe, the precautionary principle has guided much more anticipatory regulation aimed at addressing the risks presented by technologies even before they are fully realized. For instance, the European Union’s General Data Protection Regulation focuses on the responsibilities of data controllers and processors to provide individuals with access to their data and information about how that data is being used not just as a means of addressing existing security and privacy threats, such as data breaches, but also to protect against future developments and uses of that data for artificial intelligence and automated decision-making purposes. In Germany, Technische Überwachungsvereine, or TÜVs, perform regular tests and inspections of technological systems to assess and minimize risks over time, as the tech landscape evolves. In the United States, by contrast, there is much greater reliance on litigation and liability regimes to address safety and security failings after-the-fact. These different approaches reflect not just the different legal and regulatory mechanisms and philosophies of different nations but also the different ways those nations prioritize rapid development of the technology industry versus safety, security, and individual control. Typically, governance innovations move much more slowly than technological innovations, and regulations can lag years, or even decades, behind the technologies they aim to govern.

In addition to this varied set of national regulatory approaches, a variety of international and nongovernmental organizations also contribute to the process of developing standards, rules, and norms for new technologies, including the International Organization for Standardization­ and the International Telecommunication Union. These multilateral and NGO actors play an especially important role in trying to define appropriate boundaries for the use of new technologies by governments as instruments of control for the state.

At the same time that policymakers are under scrutiny both for their decisions about how to regulate technology as well as their decisions about how and when to adopt technologies like facial recognition themselves, technology firms and designers have also come under increasing criticism. Growing recognition that the design of technologies can have far-reaching social and political implications means that there is more pressure on technologists to take into consideration the consequences of their decisions early on in the design process (Vincenti 1993; Winner 1980) . The question of how technologists should incorporate these social dimensions into their design and development processes is an old one, and debate on these issues dates back to the 1970s, but it remains an urgent and often overlooked part of the puzzle because so many of the supposedly systematic mechanisms for assessing the impacts of new technologies in both the private and public sectors are primarily bureaucratic, symbolic processes rather than carrying any real weight or influence.

Technologists are often ill-equipped or unwilling to respond to the sorts of social problems that their creations have—often unwittingly—exacerbated, and instead point to governments and lawmakers to address those problems (Zuckerberg 2019) . But governments often have few incentives to engage in this area. This is because setting clear standards and rules for an ever-evolving technological landscape can be extremely challenging, because enforcement of those rules can be a significant undertaking requiring considerable expertise, and because the tech sector is a major source of jobs and revenue for many countries that may fear losing those benefits if they constrain companies too much. This indicates not just a need for clearer incentives and better policies for both private- and public-sector entities but also a need for new mechanisms whereby the technology development and design process can be influenced and assessed by people with a wider range of experiences and expertise. If we want technologies to be designed with an eye to their impacts, who is responsible for predicting, measuring, and mitigating those impacts throughout the design process? Involving policymakers in that process in a more meaningful way will also require training them to have the analytic and technical capacity to more fully engage with technologists and understand more fully the implications of their decisions.

At the same time that tech companies seem unwilling or unable to rein in their creations, many also fear they wield too much power, in some cases all but replacing governments and international organizations in their ability to make decisions that affect millions of people worldwide and control access to information, platforms, and audiences (Kilovaty 2020) . Regulators around the world have begun considering whether some of these companies have become so powerful that they violate the tenets of antitrust laws, but it can be difficult for governments to identify exactly what those violations are, especially in the context of an industry where the largest players often provide their customers with free services. And the platforms and services developed by tech companies are often wielded most powerfully and dangerously not directly by their private-sector creators and operators but instead by states themselves for widespread misinformation campaigns that serve political purposes (Nye 2018) .

Since the largest private entities in the tech sector operate in many countries, they are often better poised to implement global changes to the technological ecosystem than individual states or regulatory bodies, creating new challenges to existing governance structures and hierarchies. Just as it can be challenging to provide oversight for government use of technologies, so, too, oversight of the biggest tech companies, which have more resources, reach, and power than many nations, can prove to be a daunting task. The rise of network forms of organization and the growing gig economy have added to these challenges, making it even harder for regulators to fully address the breadth of these companies’ operations (Powell 1990) . The private-public partnerships that have emerged around energy, transportation, medical, and cyber technologies further complicate this picture, blurring the line between the public and private sectors and raising critical questions about the role of each in providing critical infrastructure, health care, and security. How can and should private tech companies operating in these different sectors be governed, and what types of influence do they exert over regulators? How feasible are different policy proposals aimed at technological innovation, and what potential unintended consequences might they have?

Conflict between countries has also spilled over significantly into the private sector in recent years, most notably in the case of tensions between the United States and China over which technologies developed in each country will be permitted by the other and which will be purchased by other customers, outside those two countries. Countries competing to develop the best technology is not a new phenomenon, but the current conflicts have major international ramifications and will influence the infrastructure that is installed and used around the world for years to come. Untangling the different factors that feed into these tussles as well as whom they benefit and whom they leave at a disadvantage is crucial for understanding how governments can most effectively foster technological innovation and invention domestically as well as the global consequences of those efforts. As much of the world is forced to choose between buying technology from the United States or from China, how should we understand the long-term impacts of those choices and the options available to people in countries without robust domestic tech industries? Does the global spread of technologies help fuel further innovation in countries with smaller tech markets, or does it reinforce the dominance of the states that are already most prominent in this sector? How can research universities maintain global collaborations and research communities in light of these national competitions, and what role does government research and development spending play in fostering innovation within its own borders and worldwide? How should intellectual property protections evolve to meet the demands of the technology industry, and how can those protections be enforced globally?

These conflicts between countries sometimes appear to challenge the feasibility of truly global technologies and networks that operate across all countries through standardized protocols and design features. Organizations like the International Organization for Standardization, the World Intellectual Property Organization, the United Nations Industrial Development Organization, and many others have tried to harmonize these policies and protocols across different countries for years, but have met with limited success when it comes to resolving the issues of greatest tension and disagreement among nations. For technology to operate in a global environment, there is a need for a much greater degree of coordination among countries and the development of common standards and norms, but governments continue to struggle to agree not just on those norms themselves but even the appropriate venue and processes for developing them. Without greater global cooperation, is it possible to maintain a global network like the internet or to promote the spread of new technologies around the world to address challenges of sustainability? What might help incentivize that cooperation moving forward, and what could new structures and process for governance of global technologies look like? Why has the tech industry’s self-regulation culture persisted? Do the same traditional drivers for public policy, such as politics of harmonization and path dependency in policy-making, still sufficiently explain policy outcomes in this space? As new technologies and their applications spread across the globe in uneven ways, how and when do they create forces of change from unexpected places?

These are some of the questions that we hope to address in the Technology and Global Change section through articles that tackle new dimensions of the global landscape of designing, developing, deploying, and assessing new technologies to address major challenges the world faces. Understanding these processes requires synthesizing knowledge from a range of different fields, including sociology, political science, economics, and history, as well as technical fields such as engineering, climate science, and computer science. A crucial part of understanding how technology has created global change and, in turn, how global changes have influenced the development of new technologies is understanding the technologies themselves in all their richness and complexity—how they work, the limits of what they can do, what they were designed to do, how they are actually used. Just as technologies themselves are becoming more complicated, so are their embeddings and relationships to the larger social, political, and legal contexts in which they exist. Scholars across all disciplines are encouraged to join us in untangling those complexities.

Josephine Wolff is an associate professor of cybersecurity policy at the Fletcher School of Law and Diplomacy at Tufts University. Her book You’ll See This Message When It Is Too Late: The Legal and Economic Aftermath of Cybersecurity Breaches was published by MIT Press in 2018.

Recipient(s) will receive an email with a link to 'How Is Technology Changing the World, and How Should the World Change Technology?' and will not need an account to access the content.

Subject: How Is Technology Changing the World, and How Should the World Change Technology?

(Optional message may have a maximum of 1000 characters.)

Citing articles via

Email alerts, affiliations.

  • Special Collections
  • Review Symposia
  • Info for Authors
  • Info for Librarians
  • Editorial Team
  • Emerging Scholars Forum
  • Open Access
  • Online ISSN 2575-7350
  • Copyright © 2024 The Regents of the University of California. All Rights Reserved.

Stay Informed

Disciplines.

  • Ancient World
  • Anthropology
  • Communication
  • Criminology & Criminal Justice
  • Film & Media Studies
  • Food & Wine
  • Browse All Disciplines
  • Browse All Courses
  • Book Authors
  • Booksellers
  • Instructions
  • Journal Authors
  • Journal Editors
  • Media & Journalists
  • Planned Giving

About UC Press

  • Press Releases
  • Seasonal Catalog
  • Acquisitions Editors
  • Customer Service
  • Exam/Desk Requests
  • Media Inquiries
  • Print-Disability
  • Rights & Permissions
  • UC Press Foundation
  • © Copyright 2024 by the Regents of the University of California. All rights reserved. Privacy policy    Accessibility

This Feature Is Available To Subscribers Only

Sign In or Create an Account

17 ways technology could change the world by 2027

Technology is the way of the future

Each year, the Forum recognizes a new cohort of Technology Pioneers and incorporates them into its initiatives, activities, and events. Image:  Pexels/Pixabay

.chakra .wef-1c7l3mo{-webkit-transition:all 0.15s ease-out;transition:all 0.15s ease-out;cursor:pointer;-webkit-text-decoration:none;text-decoration:none;outline:none;color:inherit;}.chakra .wef-1c7l3mo:hover,.chakra .wef-1c7l3mo[data-hover]{-webkit-text-decoration:underline;text-decoration:underline;}.chakra .wef-1c7l3mo:focus,.chakra .wef-1c7l3mo[data-focus]{box-shadow:0 0 0 3px rgba(168,203,251,0.5);} Saemoon Yoon

Listen to the article

  • Innovation is critical to the future well-being of society and to driving economic growth.
  • The World Economic Forum’s Technology Pioneer community is composed of early to growth-stage companies from around the world involved in the design, development and deployment of new technologies and innovations.
  • Each year, the Forum recognizes a new cohort of Technology Pioneers and incorporates them into its initiatives, activities, and events.

Innovation is critical to the future well-being of society and to driving economic growth, both of which are key priority areas for the World Economic Forum. To support these two pillars, the Forum launched its Technology Pioneer community in the year 2000.

The community is composed of early- to growth-stage companies from around the world that are involved in the design, development and deployment of new technologies and innovations, and poised to have a significant impact on business and society.

The programme aims to give next-generation innovators a voice in solving global issues and the opportunity to contribute to the exploration of future trends. Each year, the Forum recognizes a new cohort of Technology Pioneers and incorporates them into its initiatives, activities, and events.

We asked our 2022 cohort for their views on how technology will change the world in the next five years. From maturing of advanced technologies such as Web3 and quantum, to managing flexible grids and on-demand manufacturing, here are their predictions for our near-term future.

Have you read?

How technology pioneers are shaping the future of production, 8 technology trends for innovative leaders in a post-pandemic world, meet the world economic forum's technology pioneers of 2022, ‘credit will become accessible to those ignored by traditional financial institutions’.

Madhav Krishna, Founder and Chief Executive Officer, Vahan

With an explosion in internet penetration across the world accompanied by the proliferation of digital labour marketplaces or platforms, 'gig-work' is going to become the predominant mode of work. This shift has larger ramifications for low-skilled/blue-collar workers who usually comprise more than 80% of the workforce in developing countries. Internet platforms in e-commerce, food delivery, ride-sharing, logistics and so on have low barriers to entry and are creating a wealth of earning opportunities in countries where there aren't enough jobs for low-skilled populations. Workers can engage with many platforms in parallel and maximize their earnings. Soon, digital labour marketplaces will embed financial services into their products which will make credit accessible for many people who are ignored by traditional financial institutions. Over time, technology will enable financial stability and discipline without the need for people to gain relevant knowledge. AI and machine learning advisors will become ubiquitous, constantly recommending the next gig, next investment or next online class to us, truly democratizing growth and financial wellbeing.

technology in the future essay

‘Web3 technologies will revolutionize the world of commerce’

Justin Banon, Co-Founder, Boson Protocol

By 2025, Web3 technologies will have revolutionized the world of commerce, in much the same way that Web2 transformed access to information. Physical and digital (phygital?) ‘things’ will be listed and traded on an open, liquid, digital market. In the early days of the internet, information was mostly siloed within proprietary online networks. However, the zero marginal cost of distribution, combined with consumer demand, led to the single, searchable, open internet of information we enjoy today. Understandably, commerce has taken longer to make the leap. With the exchange of physical assets, the need to manage counterparties’ risk, mediate disputes and ensure settlement, requires trust. This trust is vested in either trusted intermediaries or trusted sellers. Consequently, e-commerce transactions are mostly siloed within one of many, closed, proprietary systems. The advent of Web3 technology enables the automation of settlement by smart contracts and the tokenisation of physical asset commerce transactions into a universal standard such as NFTs. Just as decentralized finance’s ‘money lego’ applications have begun to unbundle traditional finance, an ecosystem of decentralized ‘commerce lego’ protocols and applications will evolve to create an open marketplace for things, where everyone can share in the value they create.

technology in the future essay

‘The data industry will become more inclusive and affordable’

Christine Qi, Chief Executive Officer, Databento

The amount of information - or data - about our universe and about ourselves, has grown exponentially over the past decade. But with enormous growth comes an array of issues: data privacy, management, access, and affordability are some of the biggest areas of debate amongst citizens and leaders alike. Who owns my data? Is my phone spying on me? How much money are companies making from it? These questions are becoming increasingly pertinent as companies continue to collect our data, whether we pay them or not, and with or without our permission. Issues also persist in industries like finance. Why am I paying a fortune for market data? In the next few years, so long as governments allow it, we'll see technology in the data industry become more inclusive and affordable as startups enter the space.

technology in the future essay

‘In the future, our focus will be on the human experience’

Isaac Castro, Co-Founder and Co-CEO, Emerge

By 2027, we'll look back at our current digital interactions the same way we see our carbon emissions today. Social media has exposed the perils of technology designed without humans at the centre, and its harmful effects on our mental health and emotional wellness. We're missing what we removed from our interactions a decade ago: humanity, intimacy, depth, and empathy. Real conversations instead of mass influence. Interactions that make us feel closer to each other. In the future, our focus will be on the human experience . The transition to the metaverse will be not a technological but a sociological paradigm shift. The metaverse will be shaped by the communication of our emotions, enabled by technologies such as virtual and augmented reality, and brain-computer interfaces. New hardware, platforms, disciplines, and senses will come into play. We'll redefine social contracts in the virtual world, where emotion, trust, and safety become our most important currencies. We'll decentralize the platform experience in favour of the human being. We'll give our daughter a soothing caress from across the ocean. We'll hold the hand of our grandmother who has passed away. We'll treasure those meaningful moments. Our interactions with others will be centred on our human experience.

technology in the future essay

' Battery powered construction will underpin sustainability efforts ’

Brandon Ng, Co-Founder and Chief Executive Officer, Ampd Energy

The construction industry accounts for almost 40% of global CO2 emissions and much of this is driven by the urbanisation of humanity. Fossil fuels continue to power construction projects, resulting in around half a billion tonnes of CO2 emitted each year. Noise and exhaust fumes from fossil fuel use also negatively affect worker health and local air quality. This is rapidly changing. The industry is adopting battery energy storage systems (ESSs) tailored for construction sites that reduce carbon emissions by 80%–the remaining 20% is the carbon of electricity used to recharge the ESSs. The electrification of mobile construction machinery is also making giant strides towards commercialisation. All of this is driven by advances in lithium-ion battery technology. Looking into the future, long-duration ESSs–which only need recharging weekly, monthly or longer–make off-site recharging from solar or wind farms a real possibility. The world is still figuring out the right technology base for long-duration ESSs, but there are multiple options: flow batteries, non-lithium-ion non-flow batteries, gravity-based ESSs, heat-based ESSs and hydrogen–and a winner, or winners are sure to emerge. In short, the future for how we build cities is charged with potential.

technology in the future essay

‘Building will dynamically respond and adjust to support human wellness and comfort’

Francois Amman, Co-President and Co-Founder, Akila

90% of life is spent indoors and 50% of carbon emissions are created by buildings. Their impact is simply massive; so is the volume of building data that could be harnessed for better outcomes on people and planet. Today, we see buildings becoming smart and automated through increasingly cost-effective sensors and control points. Properly connected smart buildings can react to dynamics like equipment status, space occupancy, weather and more, using AI to optimize for best impact. Most building systems are still manually controlled, but in coming years, we'll see this status quo totally upended. Building will dynamically respond and adjust to support human wellness and comfort; minimize carbon emissions; and include building-to-building interoperability enabling true metaverse applications for the built environment. Driving this change will be a fundamental transformation in the construction industry; the emergence of digital twin and 5G/6G technology as key tools enabling new ways of assessing and optimizing value over the building lifecycle from design to construction into operations; and growing understanding of energy as a not just a direct cost to portfolio holders, but also a liability for those who cannot keep up with new regulatory and ESG frameworks.

technology in the future essay

‘Grid flexibility will phase out fossil fuels and jumpstart the clean energy transition’

Thomas Folker, Co-Founder and Chief Executive Officer, Leap

One pressing challenge that lies on the road to a clean-energy future is grid flexibility, and the need for more dynamic interaction between energy supply and demand. As we incorporate more intermittent renewable energy sources such as wind and solar into the power mix, flexible load will be crucial to ensure that the grid can always meet demand. Unlocking a significantly more digitized, decarbonized and resource efficient future by 2025 will be made possible by market-driven software solutions that allow smart energy technologies, such as EV chargers and heat pumps, to respond to real-time grid requirements in targeted areas, optimizing the asset owner's earnings as well as supporting the electric grid when it needs it most. When aggregated together, these distributed energy resources can collectively offer the flexibility needed to phase out polluting fossil fuel-powered peaker plants and jumpstart the transition to the clean energy future.

technology in the future essay

‘People will eat more nourishing food’

Edwin O. Rogers, Chief Executive Officer and Co-Founder, Bonumose

Though nourishing, tasty food should be available to wealthy and poor alike, too often there is a great gulf between the “is” and the “should.” But there is nothing inherent in capitalism or the profit motive that demands the divergence. Good news is in the wind: thanks in part to new processing methods for healthy sugar or salt alternatives, good food will become an accessible, ubiquitous option for all consumers. People will eat more nourishing food even if in some cases they do not realize it – because cost and taste will be at par with less healthy, legacy foods. In the best of cases, production assets for questionable food ingredients (e.g., high-fructose corn syrup) will be redeployed for healthy counterparts. Finally, in a virtuous circle, global reductions in diet-related healthcare costs will have a deflationary effect on food prices, and global alleviation of health-related suffering will free individuals for inspired innovations that benefit humankind and the earth.

technology in the future essay

‘Central bank digital currency will revolutionize the financial system’

Inga Mullins, Founder and Chief Executive Officer, Fluency

A new digital form of a country’s fiat currency issued directly by a nation’s monetary authority or central bank is predicted to have one of the biggest disruptive impacts over the next 3-5 years. This form is referred to as a central bank digital currency (CBDC). When underpinned with blockchain technology, a CBDC has the potential to revolutionize the financial system and pave the way to increasing financial inclusion and improving the lives of billions of people globally by providing access to cheap and affordable financial services. Due primarily to its architecture, a well-constructed CBDC can support offline payments, shielded transfers, automation throughout the programmability layer, and possess cash-like properties. All these features when taken together will foster financial inclusion of the user by providing them with a digital alternative to physical cash, enhancing access to their money even in remote areas, and providing options for those that are currently unbanked. Innovative payment platforms will provide an on-ramp for building CBDC and bridging them together to existing payment networks, including both traditional banking and alternative finance. For banks and issuers, they’ll be able to integrate their existing infrastructure and be able to provide a broad spectrum of CBDC-linked payment-related services and exercise cross-chain interoperability protocols for universal payment access to digital national currencies, stablecoins, NFTs, the Metaverse and much more.

technology in the future essay

‘Supply chain intelligence will solve the food crisis’

Julie Gerdeman, Chief Executive Officer, Everstream

Several decades of accelerating climate change, a global pandemic, conflict, and fragmented supply chains impacted food production and distribution, driving the global food crisis to catastrophic levels. By 2027, major food, beverage, and consumer packaged goods manufacturers will use AI-driven supply chain technology to see future disruption and act before weather, labour issues, and other incidents can harm the global food supply. Contingency plans will be needed far less often because companies will have advanced insights exposing how future weather events will impact their suppliers, giving them ample time to find alternatives. They will predict spikes in commodity availability, change their purchasing habits and reformulate their products so shelves remain stocked. Food spoilage and waste during transit will no longer be a problem because manufacturers and shippers can spot unusual weather, labour issues, and other stoppages well in advance. Food distribution to remote locations that need it the most will no longer be delayed due to port and road closures. Predictive supply chain technology will enable companies to shift from reactive response to proactive action, keeping store shelves stocked and food flowing worldwide.

technology in the future essay

‘AI will reinvent how we think about education’

Asude Altintas, Co-Founder and Chief Executive Officer, Twin Science

The traditional education system was invented nearly 200 years ago to meet the needs of the industrial revolution – it is not functional today. Today, the needs of our world have been gathered under the United Nation’s Sustainable Development Goals. On the other hand, 21st-century skills that will serve these needs are listed by the World Economic Forum. The younger generation already has the desire to co-create solutions to the world's biggest problems and create a more compassionate world. Technological progress is a great chance to help every child develop skills and competencies to solve these problems and build a better future. AI will be used to understand children’s own interests to suggest the next step in their learning journey. AI will also generate insights for their parents and teachers and will turn them into mentors. The internet is already connecting children with the best experts, improving the quality of education and reducing inequalities. Every child will be able to ideate, prototype, test and iterate in a cost-effective way. In this way, they will innovate and improve the well-being of the world.

technology in the future essay

‘Technology will bring the best opportunities to the best talent ’

Projjal Ghatak, Chief Executive Officer and Founder, Onloop

The one sector that has gone through breakneck change in the last two years is the workplace. Office work has been the default for knowledge workers for decades and did not warrant a full re-think until the pandemic. The pandemic tested it to its fullest but although we saw flat to increased productivity, the loss in cultural connectivity and an increase in anxiety, fatigue, apathy and burnout are all also some of the effects being felt. In a pace of rapid change, it is hard to parse out each piece independently. The pandemic also lasted long enough to truly change the talent landscape for many companies to a permanent global and hybrid one. This means that companies can seize the day in thinking about a global talent market to tap into in a realistic fashion. So, if I had to be provocative, I would say that technology is going to be a true leveller. It will bring the best opportunities to the best talent irrespective of where they live thereby truly unlocking the full potential of a billion knowledge workers.

technology in the future essay

‘Advanced manufacturing and fashion technology could digitally transform the apparel industry’

Matthew Wallace, Chief Executive Officer, DXM

Transforming the apparel industry with localized, on-demand manufacturing. The apparel industry is riddled with excessive waste and supply chain challenges. Today, most brands and retailers are forced to mass-produce goods with limited consumer input, resulting in high merchandise return rates, waste from overproduction, and lower profit margins due to deep discounts of unwanted merchandise. And while on-demand apparel and footwear are believed to be a solution, traditional manufacturing models still require months of lead time and hundreds of miles of travel between order and delivery - a problem which has only been exacerbated by global supply chain instability. Advanced manufacturing and fashion technology can digitally transform the apparel industry by bridging the gap between creators, consumers, and local manufacturers. It can play an important role in producing custom goods locally, resulting in dramatically reduced turnaround times – days, not months. This innovative model has the potential to not only reduce the environmental footprint of the fashion industry but also improve supply chain security on a global scale. It’s a promising solution that can be achieved with an open platform that unites best-in-class partners for the greater good of the apparel industry, and the world.

technology in the future essay

‘The quantum internet is coming’

Jim Ricotta, Chief Executive Officer and Chairman, Aliro Quantum

The quantum internet is coming, and it will revolutionize the world just as the classical internet has. And just as classical networks enabled today's internet, quantum networks are required to build the quantum internet of tomorrow. The quantum internet is expected to have a profound impact on how we live our lives by enabling breakthroughs in energy, medicine, material sciences and more. In the next five years, we will see quantum networks emerge from local area networks and clusters into continent-scale area networks using quantum repeaters, which are the foundations of the quantum internet. As a result, we'll see more and more use cases emerge for quantum networks. For example, quantum secure communications leverage the power of physics to enable unhackable security. Distributed quantum sensing will enable ultra-high-resolution telescopes, as well as ultra-precise clocks and GPS. And to make the power of quantum computing useful, clustered quantum computing and ultimately distributed quantum computing will enable the quantum internet.

technology in the future essay

‘AI will power clinical decision making in fertility clinics around the globe’

Paxton Maeder-York, Chief Executive Officer and Founder, Alife Health

Between now and 2030, over one billion people will suffer from infertility. As global population growth slows and drops below the replacement rate, utilizing AI-enhanced fertility treatments will help support the creation of new families and future generations. The most common infertility treatment today, in-vitro fertilization (IVF), is expensive, often requires multiple attempts, and is both physically and emotionally onerous. Successful pregnancies from IVF rely on a complex set of clinical decisions made by physicians to deliver the optimal care for each patient. The use of technology and advanced analytics to support this decision making will lead to improvements in care efficiency, clinical success rates, and personalization of treatment methods. By 2027, AI will power clinical decision making in fertility clinics around the globe, enabling physicians to deliver a new level of precision medicine to improve outcomes and expand access for patients.

technology in the future essay

'Human potential will be re-directed towards more meaningful objectives'

Gabriel Safar, Co-Founder and Chief Executive Officer, LeasePilot

Documents as technology have served businesses well for centuries. In modern times, email may have replaced the need for a courier and documents may be stored electronically, but the underlying technology itself hasn’t changed. That’s a problem since documents are fundamentally an analogue technology and today’s world is digital. Computers aren’t very good at manipulating natural language (analogue), but they are great at manipulating information in a database (digital). So, taking a data-first approach to constructing agreements opens the door to hyper-efficient transactions facilitated by computers. By converting agreements into structured digital information, software can assemble, manipulate, store, share, and understand these agreements in ways that weren’t previously impossible. When done successfully, the end-user sees a document written in natural language and is able to edit the text of the agreement in the same way that they would in a traditional word processor. But behind the scenes, the agreement is still a collection of database values which are updated to reflect the user’s interactions with that document. Ultimately, the impact will be a future with radically more efficient markets that free up massive amounts of wasted human potential to be re-directed toward more meaningful objectives.

technology in the future essay

‘Remote sensing data streams will accurately monitor natural ecosystems’

Kevin Lang, Chief Executive Officer and President, Agerpoint

To achieve the United Nations goal to reach carbon neutrality by 2050 and keep global warming below +1.5 °C, nature-based solutions to restore, conserve or enhance forests or agricultural lands are a valuable contributor to removing carbon dioxide from the atmosphere and capturing it into the soil. However, to determine the impact of these solutions, measurements such as tree height, trunk diameter and biomass are required to accurately quantify the carbon stock potential in plants. These measurements are traditionally assessed through labour intensive and subjective manual methods. With the increased demand for credible carbon credits along with a heightened need for transparency, remote sensing data streams from high-resolution cameras and lasers (i.e., LiDAR) are enabling new scalable and efficient digital measurement techniques. Satellite imagery is increasing in resolution and frequency as more constellations enter into orbit. Rapid advances in smartphone optical sensors and positional systems provide extensive access for growers and conservationists to affordably capture rich datasets. These data sources, combined with cloud data processing, artificial intelligence and data fusion will empower accurate measurement and monitoring of plant health and carbon sequestration potential for natural ecosystems.

Related topics:

Logo

Essay on Future Technology

Students are often asked to write an essay on Future Technology in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on Future Technology

What is future technology.

Future technology means the new inventions and ideas that will change how we live. Think of robots, smart cars, and computers that can learn. These things are not common now, but in the future, they might be everywhere, helping us in ways we can’t imagine yet.

Robots in Daily Life

Imagine having a robot friend who can do chores, help with homework, or even play games with you. In the future, robots could be a big part of our daily lives, making things easier and more fun for us.

Cars that drive themselves are being tested today. In the future, these smart cars could take us places safely while we read, talk, or relax. No need to worry about traffic or parking – the car does it all.

Health and Medicine

Doctors might use tiny machines to fix our bodies without big surgeries. We could wear gadgets that tell us if we are sick before we even feel bad. This means we can stay healthy without much trouble.

Learning with Technology

Schools of the future could use virtual reality to show us space or history up close. Homework could be more like a game, making learning fun and easy to remember. Technology will make education exciting.

Protecting the Environment

Future technology will also help our planet. We’ll have better ways to make clean energy and recycle. This means we can use less from nature and keep our world beautiful and safe for animals and people.

250 Words Essay on Future Technology

Future technology is all about the new tools and machines that people are creating to make life easier and more fun. Think of robots that can clean your room, glasses that let you play games in the air, or cars that drive themselves!

Robots and AI

Robots are getting smarter and can do more things by themselves. They can learn from what they do and get better over time. This is because of something called AI, which stands for artificial intelligence. It’s like teaching a computer to think and learn like a human.

Traveling in the Future

In the future, we might travel in new ways. There could be cars that fly or super-fast trains that go under the ocean. Going to far places could take much less time than it does now.

Doctors will use future technology to keep us healthier. Tiny machines might go inside our bodies to fix problems without needing big operations. Also, we might have special watches that tell us if we are getting sick and need to see a doctor.

Learning and Fun

Schools will be very different with future technology. You might wear special glasses to see things that aren’t really there, like dinosaurs or planets, to help you learn. Games will be more real and exciting, too, because you might be able to step inside them!

Future technology is exciting and will change how we live, travel, stay healthy, and have fun. It’s like a big adventure that we are all going to be a part of!

500 Words Essay on Future Technology

Future technology means the new inventions and discoveries that will change how we live and work. Imagine things that seem like magic today becoming real tomorrow. These technologies are being made by smart people who are thinking about ways to make life better and easier.

Smart Gadgets Everywhere

In the future, our homes, schools, and parks will be filled with smart gadgets. These are like the phones and computers we have now, but they can do much more. They can talk to each other and make decisions to help us. For example, a smart fridge could tell us when we need to buy milk, or a smart car could drive us to school safely without needing a driver.

Robots as Helpers

Robots are going to be a big part of our future. They won’t just be in movies; they’ll be helping us with our daily tasks. There might be robots that clean our houses, help us learn in school, or even play games with us. They will be designed to be friendly and helpful, making sure we have more time to enjoy fun activities.

Going Green with Technology

The future of technology isn’t just about cool gadgets; it’s also about taking care of our planet. New technologies will help us use less energy and make less pollution. We’ll have cars that run on electricity or even sunlight, and factories that make things without harming the air or water. This means we can look forward to a cleaner, greener world.

Medicine Gets Smarter

Doctors and scientists are working on new ways to keep us healthy. In the future, tiny machines called nanobots could go inside our bodies to fix problems and fight diseases. We might even have special glasses that can show us information about our health. This will help us stay healthy and get better faster if we do get sick.

Schools in the future will use technology to teach in exciting ways. Instead of just reading books, students might use virtual reality to explore ancient cities or outer space. Learning could become a fun adventure, with games and simulations helping students understand difficult concepts.

Challenges and Solutions

With all these new technologies, there will be challenges too. We’ll need to make sure that everyone can use these technologies, not just the rich. We also have to keep our information safe from hackers. But the smart people creating these technologies are also thinking about these problems and working on ways to fix them.

Future technology is like a window into a world where life is more fun, work is easier, and the earth is healthier. It’s an exciting time to be alive because we will see many of these amazing changes. It’s important for us to learn about these technologies and think about how we can use them to make a better future for everyone.

That’s it! I hope the essay helped you.

If you’re looking for more, here are essays on other interesting topics:

  • Essay on Future Of Space Exploration
  • Essay on Future Of Our Planet
  • Essay on Expression On The Internet

Apart from these, you can look at all the essays by clicking here .

Happy studying!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Stanford University

Search form

  • Find Stories
  • For Journalists

We all have the power to shape the future of technology, say Stanford scholars

Three Stanford professors want people to press control-alt-delete on how we think about our relationship to Big Tech. In a new book, they seek to empower all of us to create a technological future that supports human flourishing and democratic values.

Technology is such a ubiquitous part of modern life that it can often feel like a force of nature, a powerful tidal wave that users and consumers can ride but have little power to guide its direction. It doesn’t have to be that way.

Go to the web site to view the video.

Stanford scholars say that technological innovation is not an inevitable force that exercises power over us. Instead, in a new book, they seek to empower all of us to create a technological future that supports human flourishing and democratic values.

Rather than just accept the idea that the effects of technology are beyond our control, we must recognize the powerful role it plays in our everyday lives and decide what we want to do about it, said Rob Reich , Mehran Sahami and Jeremy Weinstein in their new book System Error: Where Big Tech Went Wrong and How We Can Reboot (Harper Collins, 2021). The book integrates each of the scholars’ unique perspectives – Reich as a philosopher, Sahami as a technologist and Weinstein as a policy expert and social scientist – to show how we can collectively shape a technological future that supports human flourishing and democratic values.

Reich, Sahami and Weinstein first came together in 2018 to teach the popular computer science class, CS 181: Computers, Ethics and Public Policy . Their class morphed into the course CS182: Ethics, Public Policy and Technological Change , which puts students into the role of the engineer, policymaker and philosopher to better understand the inescapable ethical dimensions of new technologies and their impact on society.

Now, building on the class materials and their experiences teaching the content both to Stanford students and professional engineers, the authors show readers how we can work together to address the negative impacts and unintended consequences of technology on our lives and in society.

“We need to change the very operating system of how technology products get developed, distributed and used by millions and even billions of people,” said Reich, a professor of political science in the School of Humanities and Sciences and faculty director of the McCoy Family Center for Ethics in Society . “The way we do that is to activate the agency not merely of builders of technology but of users and citizens as well.”

How technology amplifies values

Without a doubt, there are many advantages of having technology in our lives. But instead of blindly celebrating or critiquing it, the scholars urge a debate about the unintended consequences and harmful impacts that can unfold from these powerful new tools and platforms.

One way to examine technology’s effects is to explore how values become embedded in our devices. Every day, engineers and the tech companies they work for make decisions, often motivated by a desire for optimization and efficiency, about the products they develop. Their decisions often come with trade-offs – prioritizing one objective at the cost of another – that might not reflect other worthy objectives.

For instance, users are often drawn to sensational headlines, even if that content, known as “ clickbait ,” is not useful information or even truthful. Some platforms have used click-through rates as a metric to prioritize what content their users see. But in doing so, they are making a trade-off that values the click rather than the content of that click. As a result, this may lead to a less-informed society, the scholars warn.

technology in the future essay

“In recognizing that those are choices, it then opens up for us a sense that those are choices that could be made differently,” said Weinstein, a professor of political science in the School of Humanities & Sciences, who previously served as deputy to the U.S. ambassador to the United Nations and on the National Security Council Staff at the White House during the Obama administration.

Another example of embedded values in technology highlighted in the book is user privacy.

Legislation adopted in the 1990s, as the U.S. government sought to speed progress toward the information superhighway, enabled what the scholars call “a Wild West in Silicon Valley” that opened the door for companies to monetize the personal data they collect from users. With little regulation, digital platforms have been able to gather information about their users in a variety of ways, from what people read to whom they interact with to where they go. These are all details about people’s lives that they may consider incredibly personal, even confidential.

When data is gathered at scale, the potential loss of privacy gets dramatically amplified; it is no longer just an individual issue, but becomes a larger, social one as well, said Sahami, the James and Ellenor Chesebrough Professor in the School of Engineering and a former research scientist at Google.

“I might want to share some personal information with my friends, but if that information now becomes accessible by a large fraction of the planet who likewise have their information shared, it means that a large fraction of the planet doesn’t have privacy anymore,” said Sahami. “Thinking through these impacts early on, not when we get to a billion people, is one of the things that engineers need to understand when they build these technologies.”

Even though people can change some of their privacy settings to be more restrictive, these features can sometimes be difficult to find on the platforms. In other instances, users may not even be aware of the privacy they are giving away when they agree to a company’s terms of service or privacy policy, which often take the form of lengthy agreements filled with legalese.

“When you are going to have privacy settings in an application, it shouldn’t be buried five screens down where they are hard to find and hard to understand,” Sahami said. “It should be as a high-level, readily available process that says, ‘What is the privacy you care about? Let me explain it to you in a way that makes sense.’ ”

Others may decide to use more private and secure methods for communication, like encrypted messaging platforms such as WhatsApp or Signal. On these channels, only the sender and receiver can see what they share with one another – but issues can surface here as well.

By guaranteeing absolute privacy, the possibility for people working in intelligence to scan those messages for planned terrorist attacks, child sex trafficking or other incitements of violence is foreclosed. In this case, Reich said, engineers are prioritizing individual privacy over personal safety and national security, since the use of encryption can not only ensure private communication but can also allow for the undetected organization of criminal or terrorist activity.

“The balance that is struck in the technology company between trying to guarantee privacy while also trying to guarantee personal safety or national security is something that technologists are making on their own but the rest of us also have a stake in,” Reich said.

Others may decide to take further control over their privacy and refuse to use some digital platforms altogether. For example, there are increasing calls from tech critics that users should “delete Facebook.” But in today’s world where technology is so much a part of daily life, avoiding social apps and other digital platforms is not a realistic solution. It would be like addressing the hazards of automotive safety by asking people to just stop driving, the scholars said.

“As the pandemic most powerfully reminded us, you can’t go off the grid,” Weinstein said. “Our society is now hardwired to rely on new technologies, whether it’s the phone that you carry around, the computer that you use to produce your work, or the Zoom chats that are your way of interacting with your colleagues. Withdrawal from technology really isn’t an option for most people in the 21st century.”

Moreover, stepping back is not enough to remove oneself from Big Tech. For example, while a person may not have a presence on social media, they can still be affected by it, Sahami pointed out. “Just because you don’t use social media doesn’t mean that you are not still getting the downstream impacts of the misinformation that everyone else is getting,” he said.

Rebooting through regulatory changes

The scholars also urge a new approach to regulation. Just as there are rules of the road to make driving safer, new policies are needed to mitigate the harmful effects of technology.

While the European Union has passed the comprehensive General Data Protection Regulation (known as the GDPR) that requires organizations to safeguard their users’ data, there is no U.S. equivalent. States are trying to cobble their own legislation – like California’s recent Consumer Privacy Act – but it is not enough, the authors contend.

It’s up to all of us to make these changes, said Weinstein. Just as companies are complicit in some of the negative outcomes that have arisen, so is our government for permitting companies to behave as they do without a regulatory response.

“In saying that our democracy is complicit, it’s not only a critique of the politicians. It’s also a critique of all of us as citizens in not recognizing the power that we have as individuals, as voters, as active participants in society,” Weinstein said. “All of us have a stake in those outcomes and we have to harness democracy to make those decisions together.”

System Error: Where Big Tech Went Wrong and How We Can Reboot is available Sept. 7, 2021.

technology in the future essay

Space exploration

Mind-bending speed is the only way to reach the stars – here are three ways to do it

technology in the future essay

Film and visual culture

An augmented-reality filter reveals the hidden movements all around us

The International Space Station is seen at an angle through a window against the darkness of space

The skyhook solution

Space junk surrounds Earth, posing a dangerous threat. But there is a way to turn the debris into opportunity

Angelos Alfatzis

technology in the future essay

Computing and artificial intelligence

A scientist’s poor eyesight helped fuel a revolution in computer ‘vision’

technology in the future essay

Future of technology

Is this the future of space travel? Take a luxury ‘cruise’ across the solar system

Human figures beneath a glass dome watch the launch of a rocket from the surface of Mars

The final ethical frontier

Earthbound exploration was plagued with colonialism, exploitation and extraction. Can we hope to make space any different?

Philip Ball

technology in the future essay

Artificial ‘creativity’ is unstoppable. Grappling with its ethics is up to us

technology in the future essay

Give the drummer some

As AI drum machines embrace humanising imperfections, what does this mean for ‘real’ drummers and the soul of music?

Jack Stilgoe

technology in the future essay

With human help, AIs are generating a new aesthetics. The results are trippy

technology in the future essay

What does an AI make of what it sees in a contemporary art museum?

technology in the future essay

Ecology and environmental sciences

Producing food while restoring the planet – a glimpse of farming in the future

technology in the future essay

The environment

The power of shit

Our excrement is a natural, renewable and sustainable resource – if only we can overcome our visceral disgust of it

Lina Zeldovich

technology in the future essay

Technology and the self

When an AI rejects him for life insurance, Mitch wonders if he can escape his fate

technology in the future essay

Learn from machine learning

The world is a black box full of extreme specificity: it might be predictable but that doesn’t mean it is understandable

David Weinberger

technology in the future essay

Stories and literature

The cliché writes back

Machine-written literature might offend your tastes but until the dawn of Romanticism most writers were just as formulaic

Yohei Igarashi

technology in the future essay

Algorithms are sensitive. People are specific. We should exploit their respective strengths

technology in the future essay

Tech companies shroud their algorithms in secrecy. It’s time to pry open the black box

technology in the future essay

How vulnerable is the world?

Sooner or later a technology capable of wiping out human civilisation might be invented. How far would we go to stop it?

Nick Bostrom & Matthew van der Merwe

technology in the future essay

Zoom and gloom

Sitting in a videoconference is a uniformly crap experience. Instead of corroding our humanity, let’s design tools to enhance it

Robert O’Toole

technology in the future essay

A handful of executives control the ‘attention economy’. Time for attentive resistance

technology in the future essay

Where did the grandeur go?

Superlative things were done in the past century by marshalling thousands of people in the service of a vision of the future

Martin Parker

technology in the future essay

Ceramic coral reefs and sawdust houses – the architects 3D-printing the future from scratch

technology in the future essay

Algorithms associating appearance and criminality have a dark past

Catherine Stinson

technology in the future essay

Engines of life

At the level of the tiny, biology is all about engineering. That’s why nanotechnology can rebuild medicine from within

Sonia Contera

  • International edition
  • Australia edition
  • Europe edition

Technology could be what saves us.

Technology in 2050: will it save humanity – or destroy us?

Amid the calamitous effects of climate change, artificial intelligence could make the difference between a livable future or a dystopian one

F uturism is a mug’s game: if you’re right, it seems banal; if you’re wrong, you look like the founder of IBM, Thomas Watson, when he declared in 1943 that there is room in the world “for maybe five computers”.

David Adams knew these risks when he wrote about the future of technology in the Guardian in 2004 – even citing the very same prediction as an example of how they can go awry. And from our vantage point in 2020, Adams certainly did a better job than Watson. When he looked ahead to today, he avoided many of the pitfalls of technology prediction: no promises about flying cars nor sci-fi tech such as teleportation or faster-than-light travel.

But in some ways, the predictions were overly pessimistic. Technology really has made great leaps and bounds in the past 16 years, nowhere more clearly than AI. “Artificial intelligence brains simply cannot cope with change and unpredictable events,” wrote Adams, explaining why robots would be unlikely to interact with humans any time soon.

“Fundamentally, it’s just very difficult to get a robot to tell the difference between a picture of a tree and a real tree,” Paul Newman , then and now a robotics expert at Oxford University, told Adams. Happily, Newman proved his own pessimism to be unwarranted: in 2014, he co-founded Oxbotica, which has hopefully solved the problem he mentioned, because it makes and sells driverless car technology to vehicle manufacturers around the world.

If we move on from worrying over details, there are two key points at which the 2020 predictions fall apart: one about tech, the other about society.

“Gadget lovers could use a single keypad to operate their phone, PDA [tablet] and MP3 music player,” Adams wrote, “or combine the output of their watch, pager and radio into a single speaker.” The idea of greater convergence and connectivity between personal electronics was correct. But there was a very specific hole in this prediction: the smartphone. After half a century of single-purpose consumer electronics, it was difficult to perceive how all-encompassing a single device could become, but just three years after Adams pubished his piece, the iPhone launched and changed everything . Forget carrying around a separate MP3 player; in the real 2020, people aren’t even carrying separate cameras, wallets or car keys.

Failing to foresee the smartphone is an oversight about the progress of technology. But the other missing point is about how society would respond to the changing forces. The 2004 predictions are, fundamentally, optimistic. Adams writes about biometric healthcare data being beamed to your doctor’s computer; about washing machines that automatically arrange their own servicing based on availability in your “electronic organiser”; and about radio-frequency identification (RFID) chips on your clothes that trigger customised adverts or programme your phone based on where you are. And through it all is a sense of trust: these changes will be good, and the companies making them well-intentioned.

Robots are here to stay … an automated production line in China.

“There is a loss of privacy that is going to be very difficult for people and we haven’t figured out how to deal with that,” one of Adams’s interviewees admitted, when describing technology in 2020. “But if you explain what it does, how much information it provides and where it goes – and that the trade-off is that you don’t have to wait as long in line at the supermarket – then people will take the trade-off.” In fact, over the past decade and a half, the vast majority of people were simply never given the choice to accept the trade-off, and it is increasingly clear that many of them never would have if they had understood what was at risk.

If the Guardian missed the advent of the smartphone, despite writing just three years before the launch of the iPhone, how can we possibly do better today, looking 10 times further ahead? The world of 2050 will be unimaginably different in many ways, even if we can safely assume people will still generally have two arms, two legs and an unpleasant smell if they don’t wash for long periods of time.

But there are forces working in our favour. The internet is far more entrenched now than it was in 2004, and while its chaotic effect on our lives shows no sign of abating, it is at least predictably unpredictable. Similarly, smartphone penetration in the west is now as high as it looks likely to go. However the world changes over the next 30 years, it won’t be as a result of more Britons or Americans getting phones.

Other predictions can be as simple as following trendlines to their logical conclusion. By 2050, the switchover to electric cars will have mostly finished, at least in developed nations – as well as in those developing nations, such as China, that are starting to prioritise air quality over cheap mechanisation.

The “next billion” will be online, mostly through low-cost smartphones receiving increasingly ubiquitous cellular connections. But what they do on the internet is harder to guess. In 2020, there are two countervailing trends at work: on the one hand, providers, principally Facebook, have been trying to use subsidised deals to push newly connected nations on to stripped-down versions of the internet. If they succeed at scale, then many of the benefits of the web will be stolen from whole nations, reduced instead to being passive participants in Facebook and a few local media and payment companies.

Who will be the ‘next billion’ users?

But pushback, from national regulators in places such as India and from competing carriers, could bring the new nations to the real internet instead. Unless, that is, national regulators push in a different direction, copying China, Iran and Russia to keep Facebook out by building a purely nationalistic internet. How better to ensure that the benefits of the web accrue domestically, they reason, than by requiring your citizens to use home-grown services? And if it makes it easier to impose censorship, well, that’s just another benefit.

James Bridle, the author of the unsettling book New Dark Age, points out that the discussion can’t lose sight of who the next billion actually are. “I keep thinking about the way the tech industry talks about ‘the next billion users’ without acknowledging that those people are going to be hot, wet and pissed off,” he says, “and we’re only talking about hardening borders, rather than preparing – politically, socially, technologically – for this reality.”

Because, if we are guessing the future from simple trend lines, there is another one that we need to acknowledge: the climate. The specifics of what will change are not for this piece, but the human response very much is.

One possibility is plan A: humanity, in time, reaches net zero when it comes to emissions. In that scenario, we will live in a world where plant proteins replace meat in everyday consumption, where electrically powered networked mass transit reaches into the suburbs and beyond, a world of video-conferencing and remote attendance steadily chipping away at business flights, and of insulation inside the walls of British homes. (Look, it can’t all be high-tech.)

If plan A fails, then there is a chance we turn to plan B. That is a world in which megascale injections of sulphur dioxide into the stratosphere turn the heavens a milky-white, and a whole generation never sees a clear blue sky, in order to reflect more of the sun’s rays and pause the greenhouse effect. It is one in which we turn on gigantic processing plants that do nothing but extract carbon dioxide from the air and pump it underground into disused oil wells. It is one in which whole cities are abandoned and populations relocated to avoid the worst effects we can’t prevent.

Plan B – geoengineering – is neither optimistic nor pessimistic about the future of humanity, says Holly Jean Buck, the author of After Geoengineering. “The worst thing would be we fail plan A and plan B. Over the next decade, I think [some form of geoengineering will be tried]’. Right now, it’s toned down, I think because of people not wanting to talk about it. We don’t have the body of knowledge, and would need 20 or 30 years to develop it. Right about midcentury means it will be a crunch point: climate change will be really apparent.”

But for Buck, as for Bridle, the distinctions that really matter aren’t necessarily the technology. “The choices around whether we have a livable future or a dystopian one are about social attitudes and social changes.

“Right now, we’re in this era of stopgaps. Society used to be able to make a long-term plan: people built long-term infrastructure and thought a bit further out. That’s not something that happens now: we go to quick fixes. We need a cultural change in values, to enable more deliberate decision-making.”

In 2004, we failed to foresee the smartphone.

There is another possibility: that technology really does save the day, and then some. John Maeda, the chief experience officer at the digital consultancy Publicis Sapient, says that by 2050, “computational machines will have surpassed the processing power of all the living human brains on Earth. The cloud will also have absorbed the thinking of the many dead brains on Earth, too – and we all need to work together to survive. So I predict that we will see a lasting cooperation between the human race and the computational machines of the future.”

This sort of thinking has come to be known as the singularity: the idea that there will be a point, perhaps even a singular moment in time, when the ability of thinking machines outstrips those who created them, and progress accelerates with dizzying results.

“If you interview AI researchers about when general AI – a machine that can do everything a human can do – will arrive, they think it’s about 50/50 whether it will be before 2050,” says Tom Chivers, the author of The AI Does Not Hate You.

“They also think that AGI” – artificial general intelligence – “can be hugely transformative – lots of them signed an open letter in 2015 saying ‘eradication of disease and poverty’ could be possible. But also,” he adds, citing a 2013 survey in the field, “on average they think there is about a 15% to 20% chance of a ‘very bad outcome [existential catastrophe]’, which means everyone dead.”

There is, perhaps, little point in dwelling on the 50% chance that AGI does develop. If it does, every other prediction we could make is moot, and this story, and perhaps humanity as we know it, will be forgotten. And if we assume that transcendentally brilliant artificial minds won’t be along to save or destroy us, and live according to that outlook, then what is the worst that could happen – we build a better world for nothing?

  • The world in 2050
  • Smartphones
  • Mobile phones
  • Artificial intelligence (AI)

Most viewed

Home — Essay Samples — Information Science and Technology — Impact of Technology — How Technology Has Changed Our Lives

test_template

How Technology Has Changed Our Lives

  • Categories: Impact of Technology

About this sample

close

Words: 1130 |

Updated: 9 November, 2023

Words: 1130 | Pages: 2 | 6 min read

Table of contents

Hook examples for technology essay, technology essay example.

  • A Digital Revolution: Enter the era of smartphones, AI, and the Internet of Things, where technology is the driving force. Join me as we explore how technology has transformed our lives and the profound impact it has on society.
  • An Intriguing Quote: Arthur C. Clarke once said, "Any sufficiently advanced technology is indistinguishable from magic." Let's delve into the magical world of modern technology and how it shapes our daily existence.
  • The Paradox of Connectivity: Technology promises to connect us, yet it can also lead to isolation. Explore with me the paradox of our hyperconnected world and how it affects our relationships, both online and offline.
  • The Impact on Work and Leisure: Discover how technology has revolutionized our work environments, blurring the lines between office and home. Together, we'll examine the changing landscape of leisure and entertainment in the digital age.
  • Looking Ahead: As technology continues to advance, what lies on the horizon? Join me in discussing the future implications of emerging technologies and how they will further reshape our world in the years to come.

The Dark Side of Technological Advancement

  • Increased Bullying
  • Lack of Privacy
  • Constant Distraction

Balancing Technology in Our Lives

Works cited.

  • Anderson, M. (2018). The Effects of Technology on Teenagers. Verywell Family.
  • Brown, B. W., & Bobkowski, P. S. (2011). Older and newer media: Patterns of use and effects on adolescents’ health and well-being. Journal of Research on Adolescence, 21(1), 95-113.
  • Calvillo, D. P., & Downey, R. G. (2010). Mobile phones and interruption in college classrooms: Instructors’ attitudes, beliefs, and practices. Computers in Human Behavior, 26(2), 223-231.
  • Clarke-Pearson, K., & O'Keeffe, G. (2011). The impact of social media on children, adolescents, and families. Pediatrics, 127(4), 800-804.
  • Livingstone, S., & Smith, P. K. (2014). Annual research review: Harms experienced by child users of online and mobile technologies: The nature, prevalence and management of sexual and aggressive risks in the digital age. Journal of Child Psychology and Psychiatry, 55(6), 635-654.
  • Oulasvirta, A., Rattenbury, T., Ma, L., & Raita, E. (2012). Habits make smartphone use more pervasive. Personal and Ubiquitous Computing, 16(1), 105-114.
  • Przybylski, A. K., & Weinstein, N. (2017). A large-scale test of the goldilocks hypothesis: Quantifying the relations between digital-screen use and the mental well-being of adolescents. Psychological Science, 28(2), 204-215.
  • Rosen, L. D., Lim, A. F., Carrier, L. M., & Cheever, N. A. (2011). An empirical examination of the educational impact of text message-induced task switching in the classroom: Educational implications and strategies to enhance learning. Psicologia Educativa, 17(2), 163-177.
  • Schulte, B. (2018). The human costs of bringing smartphones to every student. The Atlantic.
  • Twenge, J. M., Joiner, T. E., Rogers, M. L., & Martin, G. N. (2018). Increases in depressive symptoms, suicide-related outcomes, and suicide rates among US adolescents after 2010 and links to increased new media screen time. Clinical Psychological Science, 6(1), 3-17.

Video Version

Video Thumbnail

Cite this Essay

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Dr. Heisenberg

Verified writer

  • Expert in: Information Science and Technology

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

1 pages / 974 words

3 pages / 1416 words

2 pages / 1050 words

1 pages / 468 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

How Technology Has Changed Our Lives Essay

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on Impact of Technology

In recent decades, technological advancements have transformed the daily lives of Americans, exerting profound influence on political, economic, and social aspects of modern society. These changes have been primarily driven by [...]

Technology is a blend of two Greek words, techne and logos. In Greek, the word techne alludes to the utilization of an instrument, or the usage of an art or logic, and logos alludes to a word or discussion about a specific [...]

There were many difficulties and challenges dealt with in the seventeenth century, some which have many similarities to difficulties and challenges in todays society. During the 17th Century; also known as the Baroque Period, [...]

Technological advancement is important and relates to the growth of our economy. Throughout history, there have been sociologists, anthropologists, and researchers who have tried to develop ways to measure technological [...]

What do demonstrations on city streets in the Philippines in 2001, the election of Barack Obama as President of the United States in 2008, revocation of the results of the fraudulent elections in Moldavia in 2009, the M-15 [...]

Technological advancements have become the day to day progress, with every individual embracing the modern technology. Among such technological advancements are the fiber optic systems. These are integrated systems that enable [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

technology in the future essay

More From Forbes

The Biggest Technology Trends In The Next 10 Years

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

In 10 years, we’ll be half way through the next decade. And if the previous 10 years have been anything to go by, we can expect some radical changes.

I’m used to writing about where technology trends are heading in the future, but I usually focus on the next one to five years. This is because my work involves helping businesses use technology and data today, and that usually means leveraging what’s available right now or just around the corner.

But it’s also interesting to sometimes think about where it’s all heading. So here I want to try and peek a bit further into the future and come up with some ideas or predictions about how technology might change our lives on a longer timescale.

Of course, anything can happen in 10 years. It’s very possible that unforeseeable disruptive or world-changing events might make everything I’m predicting here totally wrong. But these ideas are based on extrapolating what’s happening today in society and politics as well as technology, so they can still give us some valuable insight into what the future may hold.

AI And Automation Are Omnipresent

Just like other era-defining inventions – fire, the internal combustion engine, electricity, the internet – the hype eventually dies down, and it becomes something we take for granted.

So, even though I have no doubt it will be integrated into everything we do by 2034, we probably won’t talk about AI as much as we do today.

Today, we rarely think about how AI is there in the background when we make Google searches, pick movies to watch on Netflix or make online banking transactions. Tomorrow, we won’t think about it as it drives our cars, keeps us healthy and helps us work more productively.

Best High-Yield Savings Accounts Of 2024

Best 5% interest savings accounts of 2024.

In 10 years’ time, with the advances we’re seeing in natural language processing and speech generation, voice control could become our default method of interacting with machines. We’re already used to speaking to machines like Alexa or Siri, even though the experience can be shaky and limited. But with natural language processing taking over, by 2034, it will seem completely humdrum to have natural, flowing conversations with technology. And mature behavioral analytics will mean that our devices will be far better at understanding what we want and predicting what will make us happy.

Physical, automated robots are also coming into their own thanks to the application of AI to problems such as mobility and stability. Will we have fully-fledged “androids” like those we grew up with in sci-fi? We might be getting close to creating robots that resemble us very closely . But I think it will be more common to see machines tailored to specific purposes, such as warehouse work, manufacturing, building and maintenance.

As well as the technology itself, the impact of that technology on society will be all around us. Does that mean a utopia where no one works and an AI workforce generates everything we need? Or a dystopia where humans are largely redundant, and wealth is increasingly concentrated in the hands of the technologically-enabled elite? Or something in between? The only concrete prediction I can give here is that the actions and decisions taken today, as we get started with AI, will play a big part in answering that question.

Digital Lives?

More and more of our lives are spent online, using digital services and exploring virtual worlds. As technology becomes cheaper, more ubiquitous and more immersive over the next 10 years, there’s no reason to think this trend will change.

In fact, particularly in the eyes of the younger generations, the differentiation between the online, digital world and the offline, physical world may start to fade. The concept of the “metaverse” may have fallen somewhat out of fashion in recent years thanks to the excitement over generative AI. But make no mistake, the concept – that our digital experiences will be just as important and consequential as our offline lives – is still just as true.

Some predict that the coming years could see a revolt against this. They say that a future generation – perhaps the upcoming “generation alpha” who are all children today – might reject this wholesale, valuing time away from technology and firmly anchored in physical reality.

But as virtual reality reaches the point ( predicted to be in around 2040) that it can create experiences that are indistinguishable from actual reality, and augmented reality seamlessly blends the best of both worlds, the lure of putting on a headset or picking up a screen is still likely to be strong for people of all ages in 10 years’ time.

Healthcare Is Transformed By Biotechnology

Ongoing discoveries and investment into fields like genetic engineering, personalized medicine, and stem cell research are likely to have a huge impact on the way we cure and care for people in 2034.

Advances in gene editing technologies like CRISPR-Cas9 may have made it possible to correct many genetic disorders before birth. This could reduce the prevalence of many hereditary diseases like muscular dystrophy or cystic fibrosis. It could even reduce the overall genetic predisposition to negative effects of high cholesterol or blood pressure. The societal impacts of this could be huge, including extended human lifespans.

Similarly, regenerative medicine, fueled by research into stem cells, could mean many parts of the body will be “regrown”, making the shortage of organs available for transplant patients and concerns over transplant rejection things of the past.

In 10 years’ time, personalized medicine could be the norm – with patients expecting that healthcare providers will have access to near-complete information about their genetic identity in order to create cures and treatments specifically tailored to them.

Unavoidably, though, all of these technologies will force us to address many ethical questions. Giving parents the right to select or modify genetic traits that might be present in their children means carefully considering matters of consent and equality of access to this technology.

Then, there are potential unforeseen consequences, such as the possibility that these treatments might cause new health complications that we haven’t predicted further down the road. And, of course, anyone willing to hand over their genetic blueprint, even to their doctor, would probably want to be pretty confident that appropriate data protection safeguards are in place. Or that their own information isn’t going to be used against them, such as denying them access to treatment or health insurance based on genetic factors.

Considering how the world might be changed by this technology in 10 years, it's clear that these are questions that we have to address now if we’re hoping to achieve the optimistic outlook!

Sustainability Out Of Necessity

By 2034, it seems inevitable that our lives will be impacted in some serious ways due to our failure to tackle climate change and pollution. Climate-induced migration will increase as desertification and rising sea levels disproportionately affect less developed areas. This could lead to increased pressure on resources and infrastructure in more developed, “safe” areas. Water scarcity is likely to be a growing problem due to more frequent and severe droughts and extreme weather events. This will have a knock-on impact on food production, just as rising temperatures will lead to declines in crop yields for staples like corn.

What this means is that by 2034, climate change will have real tangible effects on everyone’s quality of life, as well as the economy. Because of this, it’s likely that - out of necessity – sustainability will be mandated to a far greater degree than it is now. Governments and international organizations could be compelled by unfolding crises to implement stricter regulations, forcing technology providers to cut carbon emissions, manage waste and transition to clean energy sources.

This means that in 10 years’ time sustainability will be “baked in” to the technology we use to a far greater extent than today. From powering data centers with renewable energy to circular manufacturing processes that re-use the majority of components to the many waste-reducing efficiencies that can be created with AI.

This is one prediction that I really do hope I’ve got right – because if I haven’t, it will mean we’re still sticking our heads in the sand a decade from now and setting ourselves up for even more serious problems.

Bernard Marr

  • Editorial Standards
  • Reprints & Permissions

REALIZING THE PROMISE:

Leading up to the 75th anniversary of the UN General Assembly, this “Realizing the promise: How can education technology improve learning for all?” publication kicks off the Center for Universal Education’s first playbook in a series to help improve education around the world.

It is intended as an evidence-based tool for ministries of education, particularly in low- and middle-income countries, to adopt and more successfully invest in education technology.

While there is no single education initiative that will achieve the same results everywhere—as school systems differ in learners and educators, as well as in the availability and quality of materials and technologies—an important first step is understanding how technology is used given specific local contexts and needs.

The surveys in this playbook are designed to be adapted to collect this information from educators, learners, and school leaders and guide decisionmakers in expanding the use of technology.  

Introduction

While technology has disrupted most sectors of the economy and changed how we communicate, access information, work, and even play, its impact on schools, teaching, and learning has been much more limited. We believe that this limited impact is primarily due to technology being been used to replace analog tools, without much consideration given to playing to technology’s comparative advantages. These comparative advantages, relative to traditional “chalk-and-talk” classroom instruction, include helping to scale up standardized instruction, facilitate differentiated instruction, expand opportunities for practice, and increase student engagement. When schools use technology to enhance the work of educators and to improve the quality and quantity of educational content, learners will thrive.

Further, COVID-19 has laid bare that, in today’s environment where pandemics and the effects of climate change are likely to occur, schools cannot always provide in-person education—making the case for investing in education technology.

Here we argue for a simple yet surprisingly rare approach to education technology that seeks to:

  • Understand the needs, infrastructure, and capacity of a school system—the diagnosis;
  • Survey the best available evidence on interventions that match those conditions—the evidence; and
  • Closely monitor the results of innovations before they are scaled up—the prognosis.

RELATED CONTENT

technology in the future essay

Podcast: How education technology can improve learning for all students

technology in the future essay

To make ed tech work, set clear goals, review the evidence, and pilot before you scale

The framework.

Our approach builds on a simple yet intuitive theoretical framework created two decades ago by two of the most prominent education researchers in the United States, David K. Cohen and Deborah Loewenberg Ball. They argue that what matters most to improve learning is the interactions among educators and learners around educational materials. We believe that the failed school-improvement efforts in the U.S. that motivated Cohen and Ball’s framework resemble the ed-tech reforms in much of the developing world to date in the lack of clarity improving the interactions between educators, learners, and the educational material. We build on their framework by adding parents as key agents that mediate the relationships between learners and educators and the material (Figure 1).

Figure 1: The instructional core

Adapted from Cohen and Ball (1999)

As the figure above suggests, ed-tech interventions can affect the instructional core in a myriad of ways. Yet, just because technology can do something, it does not mean it should. School systems in developing countries differ along many dimensions and each system is likely to have different needs for ed-tech interventions, as well as different infrastructure and capacity to enact such interventions.

The diagnosis:

How can school systems assess their needs and preparedness.

A useful first step for any school system to determine whether it should invest in education technology is to diagnose its:

  • Specific needs to improve student learning (e.g., raising the average level of achievement, remediating gaps among low performers, and challenging high performers to develop higher-order skills);
  • Infrastructure to adopt technology-enabled solutions (e.g., electricity connection, availability of space and outlets, stock of computers, and Internet connectivity at school and at learners’ homes); and
  • Capacity to integrate technology in the instructional process (e.g., learners’ and educators’ level of familiarity and comfort with hardware and software, their beliefs about the level of usefulness of technology for learning purposes, and their current uses of such technology).

Before engaging in any new data collection exercise, school systems should take full advantage of existing administrative data that could shed light on these three main questions. This could be in the form of internal evaluations but also international learner assessments, such as the Program for International Student Assessment (PISA), the Trends in International Mathematics and Science Study (TIMSS), and/or the Progress in International Literacy Study (PIRLS), and the Teaching and Learning International Study (TALIS). But if school systems lack information on their preparedness for ed-tech reforms or if they seek to complement existing data with a richer set of indicators, we developed a set of surveys for learners, educators, and school leaders. Download the full report to see how we map out the main aspects covered by these surveys, in hopes of highlighting how they could be used to inform decisions around the adoption of ed-tech interventions.

The evidence:

How can school systems identify promising ed-tech interventions.

There is no single “ed-tech” initiative that will achieve the same results everywhere, simply because school systems differ in learners and educators, as well as in the availability and quality of materials and technologies. Instead, to realize the potential of education technology to accelerate student learning, decisionmakers should focus on four potential uses of technology that play to its comparative advantages and complement the work of educators to accelerate student learning (Figure 2). These comparative advantages include:

  • Scaling up quality instruction, such as through prerecorded quality lessons.
  • Facilitating differentiated instruction, through, for example, computer-adaptive learning and live one-on-one tutoring.
  • Expanding opportunities to practice.
  • Increasing learner engagement through videos and games.

Figure 2: Comparative advantages of technology

Here we review the evidence on ed-tech interventions from 37 studies in 20 countries*, organizing them by comparative advantage. It’s important to note that ours is not the only way to classify these interventions (e.g., video tutorials could be considered as a strategy to scale up instruction or increase learner engagement), but we believe it may be useful to highlight the needs that they could address and why technology is well positioned to do so.

When discussing specific studies, we report the magnitude of the effects of interventions using standard deviations (SDs). SDs are a widely used metric in research to express the effect of a program or policy with respect to a business-as-usual condition (e.g., test scores). There are several ways to make sense of them. One is to categorize the magnitude of the effects based on the results of impact evaluations. In developing countries, effects below 0.1 SDs are considered to be small, effects between 0.1 and 0.2 SDs are medium, and those above 0.2 SDs are large (for reviews that estimate the average effect of groups of interventions, called “meta analyses,” see e.g., Conn, 2017; Kremer, Brannen, & Glennerster, 2013; McEwan, 2014; Snilstveit et al., 2015; Evans & Yuan, 2020.)

*In surveying the evidence, we began by compiling studies from prior general and ed-tech specific evidence reviews that some of us have written and from ed-tech reviews conducted by others. Then, we tracked the studies cited by the ones we had previously read and reviewed those, as well. In identifying studies for inclusion, we focused on experimental and quasi-experimental evaluations of education technology interventions from pre-school to secondary school in low- and middle-income countries that were released between 2000 and 2020. We only included interventions that sought to improve student learning directly (i.e., students’ interaction with the material), as opposed to interventions that have impacted achievement indirectly, by reducing teacher absence or increasing parental engagement. This process yielded 37 studies in 20 countries (see the full list of studies in Appendix B).

Scaling up standardized instruction

One of the ways in which technology may improve the quality of education is through its capacity to deliver standardized quality content at scale. This feature of technology may be particularly useful in three types of settings: (a) those in “hard-to-staff” schools (i.e., schools that struggle to recruit educators with the requisite training and experience—typically, in rural and/or remote areas) (see, e.g., Urquiola & Vegas, 2005); (b) those in which many educators are frequently absent from school (e.g., Chaudhury, Hammer, Kremer, Muralidharan, & Rogers, 2006; Muralidharan, Das, Holla, & Mohpal, 2017); and/or (c) those in which educators have low levels of pedagogical and subject matter expertise (e.g., Bietenbeck, Piopiunik, & Wiederhold, 2018; Bold et al., 2017; Metzler & Woessmann, 2012; Santibañez, 2006) and do not have opportunities to observe and receive feedback (e.g., Bruns, Costa, & Cunha, 2018; Cilliers, Fleisch, Prinsloo, & Taylor, 2018). Technology could address this problem by: (a) disseminating lessons delivered by qualified educators to a large number of learners (e.g., through prerecorded or live lessons); (b) enabling distance education (e.g., for learners in remote areas and/or during periods of school closures); and (c) distributing hardware preloaded with educational materials.

Prerecorded lessons

Technology seems to be well placed to amplify the impact of effective educators by disseminating their lessons. Evidence on the impact of prerecorded lessons is encouraging, but not conclusive. Some initiatives that have used short instructional videos to complement regular instruction, in conjunction with other learning materials, have raised student learning on independent assessments. For example, Beg et al. (2020) evaluated an initiative in Punjab, Pakistan in which grade 8 classrooms received an intervention that included short videos to substitute live instruction, quizzes for learners to practice the material from every lesson, tablets for educators to learn the material and follow the lesson, and LED screens to project the videos onto a classroom screen. After six months, the intervention improved the performance of learners on independent tests of math and science by 0.19 and 0.24 SDs, respectively but had no discernible effect on the math and science section of Punjab’s high-stakes exams.

One study suggests that approaches that are far less technologically sophisticated can also improve learning outcomes—especially, if the business-as-usual instruction is of low quality. For example, Naslund-Hadley, Parker, and Hernandez-Agramonte (2014) evaluated a preschool math program in Cordillera, Paraguay that used audio segments and written materials four days per week for an hour per day during the school day. After five months, the intervention improved math scores by 0.16 SDs, narrowing gaps between low- and high-achieving learners, and between those with and without educators with formal training in early childhood education.

Yet, the integration of prerecorded material into regular instruction has not always been successful. For example, de Barros (2020) evaluated an intervention that combined instructional videos for math and science with infrastructure upgrades (e.g., two “smart” classrooms, two TVs, and two tablets), printed workbooks for students, and in-service training for educators of learners in grades 9 and 10 in Haryana, India (all materials were mapped onto the official curriculum). After 11 months, the intervention negatively impacted math achievement (by 0.08 SDs) and had no effect on science (with respect to business as usual classes). It reduced the share of lesson time that educators devoted to instruction and negatively impacted an index of instructional quality. Likewise, Seo (2017) evaluated several combinations of infrastructure (solar lights and TVs) and prerecorded videos (in English and/or bilingual) for grade 11 students in northern Tanzania and found that none of the variants improved student learning, even when the videos were used. The study reports effects from the infrastructure component across variants, but as others have noted (Muralidharan, Romero, & Wüthrich, 2019), this approach to estimating impact is problematic.

A very similar intervention delivered after school hours, however, had sizeable effects on learners’ basic skills. Chiplunkar, Dhar, and Nagesh (2020) evaluated an initiative in Chennai (the capital city of the state of Tamil Nadu, India) delivered by the same organization as above that combined short videos that explained key concepts in math and science with worksheets, facilitator-led instruction, small groups for peer-to-peer learning, and occasional career counseling and guidance for grade 9 students. These lessons took place after school for one hour, five times a week. After 10 months, it had large effects on learners’ achievement as measured by tests of basic skills in math and reading, but no effect on a standardized high-stakes test in grade 10 or socio-emotional skills (e.g., teamwork, decisionmaking, and communication).

Drawing general lessons from this body of research is challenging for at least two reasons. First, all of the studies above have evaluated the impact of prerecorded lessons combined with several other components (e.g., hardware, print materials, or other activities). Therefore, it is possible that the effects found are due to these additional components, rather than to the recordings themselves, or to the interaction between the two (see Muralidharan, 2017 for a discussion of the challenges of interpreting “bundled” interventions). Second, while these studies evaluate some type of prerecorded lessons, none examines the content of such lessons. Thus, it seems entirely plausible that the direction and magnitude of the effects depends largely on the quality of the recordings (e.g., the expertise of the educator recording it, the amount of preparation that went into planning the recording, and its alignment with best teaching practices).

These studies also raise three important questions worth exploring in future research. One of them is why none of the interventions discussed above had effects on high-stakes exams, even if their materials are typically mapped onto the official curriculum. It is possible that the official curricula are simply too challenging for learners in these settings, who are several grade levels behind expectations and who often need to reinforce basic skills (see Pritchett & Beatty, 2015). Another question is whether these interventions have long-term effects on teaching practices. It seems plausible that, if these interventions are deployed in contexts with low teaching quality, educators may learn something from watching the videos or listening to the recordings with learners. Yet another question is whether these interventions make it easier for schools to deliver instruction to learners whose native language is other than the official medium of instruction.

Distance education

Technology can also allow learners living in remote areas to access education. The evidence on these initiatives is encouraging. For example, Johnston and Ksoll (2017) evaluated a program that broadcasted live instruction via satellite to rural primary school students in the Volta and Greater Accra regions of Ghana. For this purpose, the program also equipped classrooms with the technology needed to connect to a studio in Accra, including solar panels, a satellite modem, a projector, a webcam, microphones, and a computer with interactive software. After two years, the intervention improved the numeracy scores of students in grades 2 through 4, and some foundational literacy tasks, but it had no effect on attendance or classroom time devoted to instruction, as captured by school visits. The authors interpreted these results as suggesting that the gains in achievement may be due to improving the quality of instruction that children received (as opposed to increased instructional time). Naik, Chitre, Bhalla, and Rajan (2019) evaluated a similar program in the Indian state of Karnataka and also found positive effects on learning outcomes, but it is not clear whether those effects are due to the program or due to differences in the groups of students they compared to estimate the impact of the initiative.

In one context (Mexico), this type of distance education had positive long-term effects. Navarro-Sola (2019) took advantage of the staggered rollout of the telesecundarias (i.e., middle schools with lessons broadcasted through satellite TV) in 1968 to estimate its impact. The policy had short-term effects on students’ enrollment in school: For every telesecundaria per 50 children, 10 students enrolled in middle school and two pursued further education. It also had a long-term influence on the educational and employment trajectory of its graduates. Each additional year of education induced by the policy increased average income by nearly 18 percent. This effect was attributable to more graduates entering the labor force and shifting from agriculture and the informal sector. Similarly, Fabregas (2019) leveraged a later expansion of this policy in 1993 and found that each additional telesecundaria per 1,000 adolescents led to an average increase of 0.2 years of education, and a decline in fertility for women, but no conclusive evidence of long-term effects on labor market outcomes.

It is crucial to interpret these results keeping in mind the settings where the interventions were implemented. As we mention above, part of the reason why they have proven effective is that the “counterfactual” conditions for learning (i.e., what would have happened to learners in the absence of such programs) was either to not have access to schooling or to be exposed to low-quality instruction. School systems interested in taking up similar interventions should assess the extent to which their learners (or parts of their learner population) find themselves in similar conditions to the subjects of the studies above. This illustrates the importance of assessing the needs of a system before reviewing the evidence.

Preloaded hardware

Technology also seems well positioned to disseminate educational materials. Specifically, hardware (e.g., desktop computers, laptops, or tablets) could also help deliver educational software (e.g., word processing, reference texts, and/or games). In theory, these materials could not only undergo a quality assurance review (e.g., by curriculum specialists and educators), but also draw on the interactions with learners for adjustments (e.g., identifying areas needing reinforcement) and enable interactions between learners and educators.

In practice, however, most initiatives that have provided learners with free computers, laptops, and netbooks do not leverage any of the opportunities mentioned above. Instead, they install a standard set of educational materials and hope that learners find them helpful enough to take them up on their own. Students rarely do so, and instead use the laptops for recreational purposes—often, to the detriment of their learning (see, e.g., Malamud & Pop-Eleches, 2011). In fact, free netbook initiatives have not only consistently failed to improve academic achievement in math or language (e.g., Cristia et al., 2017), but they have had no impact on learners’ general computer skills (e.g., Beuermann et al., 2015). Some of these initiatives have had small impacts on cognitive skills, but the mechanisms through which those effects occurred remains unclear.

To our knowledge, the only successful deployment of a free laptop initiative was one in which a team of researchers equipped the computers with remedial software. Mo et al. (2013) evaluated a version of the One Laptop per Child (OLPC) program for grade 3 students in migrant schools in Beijing, China in which the laptops were loaded with a remedial software mapped onto the national curriculum for math (similar to the software products that we discuss under “practice exercises” below). After nine months, the program improved math achievement by 0.17 SDs and computer skills by 0.33 SDs. If a school system decides to invest in free laptops, this study suggests that the quality of the software on the laptops is crucial.

To date, however, the evidence suggests that children do not learn more from interacting with laptops than they do from textbooks. For example, Bando, Gallego, Gertler, and Romero (2016) compared the effect of free laptop and textbook provision in 271 elementary schools in disadvantaged areas of Honduras. After seven months, students in grades 3 and 6 who had received the laptops performed on par with those who had received the textbooks in math and language. Further, even if textbooks essentially become obsolete at the end of each school year, whereas laptops can be reloaded with new materials for each year, the costs of laptop provision (not just the hardware, but also the technical assistance, Internet, and training associated with it) are not yet low enough to make them a more cost-effective way of delivering content to learners.

Evidence on the provision of tablets equipped with software is encouraging but limited. For example, de Hoop et al. (2020) evaluated a composite intervention for first grade students in Zambia’s Eastern Province that combined infrastructure (electricity via solar power), hardware (projectors and tablets), and educational materials (lesson plans for educators and interactive lessons for learners, both loaded onto the tablets and mapped onto the official Zambian curriculum). After 14 months, the intervention had improved student early-grade reading by 0.4 SDs, oral vocabulary scores by 0.25 SDs, and early-grade math by 0.22 SDs. It also improved students’ achievement by 0.16 on a locally developed assessment. The multifaceted nature of the program, however, makes it challenging to identify the components that are driving the positive effects. Pitchford (2015) evaluated an intervention that provided tablets equipped with educational “apps,” to be used for 30 minutes per day for two months to develop early math skills among students in grades 1 through 3 in Lilongwe, Malawi. The evaluation found positive impacts in math achievement, but the main study limitation is that it was conducted in a single school.

Facilitating differentiated instruction

Another way in which technology may improve educational outcomes is by facilitating the delivery of differentiated or individualized instruction. Most developing countries massively expanded access to schooling in recent decades by building new schools and making education more affordable, both by defraying direct costs, as well as compensating for opportunity costs (Duflo, 2001; World Bank, 2018). These initiatives have not only rapidly increased the number of learners enrolled in school, but have also increased the variability in learner’ preparation for schooling. Consequently, a large number of learners perform well below grade-based curricular expectations (see, e.g., Duflo, Dupas, & Kremer, 2011; Pritchett & Beatty, 2015). These learners are unlikely to get much from “one-size-fits-all” instruction, in which a single educator delivers instruction deemed appropriate for the middle (or top) of the achievement distribution (Banerjee & Duflo, 2011). Technology could potentially help these learners by providing them with: (a) instruction and opportunities for practice that adjust to the level and pace of preparation of each individual (known as “computer-adaptive learning” (CAL)); or (b) live, one-on-one tutoring.

Computer-adaptive learning

One of the main comparative advantages of technology is its ability to diagnose students’ initial learning levels and assign students to instruction and exercises of appropriate difficulty. No individual educator—no matter how talented—can be expected to provide individualized instruction to all learners in his/her class simultaneously . In this respect, technology is uniquely positioned to complement traditional teaching. This use of technology could help learners master basic skills and help them get more out of schooling.

Although many software products evaluated in recent years have been categorized as CAL, many rely on a relatively coarse level of differentiation at an initial stage (e.g., a diagnostic test) without further differentiation. We discuss these initiatives under the category of “increasing opportunities for practice” below. CAL initiatives complement an initial diagnostic with dynamic adaptation (i.e., at each response or set of responses from learners) to adjust both the initial level of difficulty and rate at which it increases or decreases, depending on whether learners’ responses are correct or incorrect.

Existing evidence on this specific type of programs is highly promising. Most famously, Banerjee et al. (2007) evaluated CAL software in Vadodara, in the Indian state of Gujarat, in which grade 4 students were offered two hours of shared computer time per week before and after school, during which they played games that involved solving math problems. The level of difficulty of such problems adjusted based on students’ answers. This program improved math achievement by 0.35 and 0.47 SDs after one and two years of implementation, respectively. Consistent with the promise of personalized learning, the software improved achievement for all students. In fact, one year after the end of the program, students assigned to the program still performed 0.1 SDs better than those assigned to a business as usual condition. More recently, Muralidharan, et al. (2019) evaluated a “blended learning” initiative in which students in grades 4 through 9 in Delhi, India received 45 minutes of interaction with CAL software for math and language, and 45 minutes of small group instruction before or after going to school. After only 4.5 months, the program improved achievement by 0.37 SDs in math and 0.23 SDs in Hindi. While all learners benefited from the program in absolute terms, the lowest performing learners benefited the most in relative terms, since they were learning very little in school.

We see two important limitations from this body of research. First, to our knowledge, none of these initiatives has been evaluated when implemented during the school day. Therefore, it is not possible to distinguish the effect of the adaptive software from that of additional instructional time. Second, given that most of these programs were facilitated by local instructors, attempts to distinguish the effect of the software from that of the instructors has been mostly based on noncausal evidence. A frontier challenge in this body of research is to understand whether CAL software can increase the effectiveness of school-based instruction by substituting part of the regularly scheduled time for math and language instruction.

Live one-on-one tutoring

Recent improvements in the speed and quality of videoconferencing, as well as in the connectivity of remote areas, have enabled yet another way in which technology can help personalization: live (i.e., real-time) one-on-one tutoring. While the evidence on in-person tutoring is scarce in developing countries, existing studies suggest that this approach works best when it is used to personalize instruction (see, e.g., Banerjee et al., 2007; Banerji, Berry, & Shotland, 2015; Cabezas, Cuesta, & Gallego, 2011).

There are almost no studies on the impact of online tutoring—possibly, due to the lack of hardware and Internet connectivity in low- and middle-income countries. One exception is Chemin and Oledan (2020)’s recent evaluation of an online tutoring program for grade 6 students in Kianyaga, Kenya to learn English from volunteers from a Canadian university via Skype ( videoconferencing software) for one hour per week after school. After 10 months, program beneficiaries performed 0.22 SDs better in a test of oral comprehension, improved their comfort using technology for learning, and became more willing to engage in cross-cultural communication. Importantly, while the tutoring sessions used the official English textbooks and sought in part to help learners with their homework, tutors were trained on several strategies to teach to each learner’s individual level of preparation, focusing on basic skills if necessary. To our knowledge, similar initiatives within a country have not yet been rigorously evaluated.

Expanding opportunities for practice

A third way in which technology may improve the quality of education is by providing learners with additional opportunities for practice. In many developing countries, lesson time is primarily devoted to lectures, in which the educator explains the topic and the learners passively copy explanations from the blackboard. This setup leaves little time for in-class practice. Consequently, learners who did not understand the explanation of the material during lecture struggle when they have to solve homework assignments on their own. Technology could potentially address this problem by allowing learners to review topics at their own pace.

Practice exercises

Technology can help learners get more out of traditional instruction by providing them with opportunities to implement what they learn in class. This approach could, in theory, allow some learners to anchor their understanding of the material through trial and error (i.e., by realizing what they may not have understood correctly during lecture and by getting better acquainted with special cases not covered in-depth in class).

Existing evidence on practice exercises reflects both the promise and the limitations of this use of technology in developing countries. For example, Lai et al. (2013) evaluated a program in Shaanxi, China where students in grades 3 and 5 were required to attend two 40-minute remedial sessions per week in which they first watched videos that reviewed the material that had been introduced in their math lessons that week and then played games to practice the skills introduced in the video. After four months, the intervention improved math achievement by 0.12 SDs. Many other evaluations of comparable interventions have found similar small-to-moderate results (see, e.g., Lai, Luo, Zhang, Huang, & Rozelle, 2015; Lai et al., 2012; Mo et al., 2015; Pitchford, 2015). These effects, however, have been consistently smaller than those of initiatives that adjust the difficulty of the material based on students’ performance (e.g., Banerjee et al., 2007; Muralidharan, et al., 2019). We hypothesize that these programs do little for learners who perform several grade levels behind curricular expectations, and who would benefit more from a review of foundational concepts from earlier grades.

We see two important limitations from this research. First, most initiatives that have been evaluated thus far combine instructional videos with practice exercises, so it is hard to know whether their effects are driven by the former or the latter. In fact, the program in China described above allowed learners to ask their peers whenever they did not understand a difficult concept, so it potentially also captured the effect of peer-to-peer collaboration. To our knowledge, no studies have addressed this gap in the evidence.

Second, most of these programs are implemented before or after school, so we cannot distinguish the effect of additional instructional time from that of the actual opportunity for practice. The importance of this question was first highlighted by Linden (2008), who compared two delivery mechanisms for game-based remedial math software for students in grades 2 and 3 in a network of schools run by a nonprofit organization in Gujarat, India: one in which students interacted with the software during the school day and another one in which students interacted with the software before or after school (in both cases, for three hours per day). After a year, the first version of the program had negatively impacted students’ math achievement by 0.57 SDs and the second one had a null effect. This study suggested that computer-assisted learning is a poor substitute for regular instruction when it is of high quality, as was the case in this well-functioning private network of schools.

In recent years, several studies have sought to remedy this shortcoming. Mo et al. (2014) were among the first to evaluate practice exercises delivered during the school day. They evaluated an initiative in Shaanxi, China in which students in grades 3 and 5 were required to interact with the software similar to the one in Lai et al. (2013) for two 40-minute sessions per week. The main limitation of this study, however, is that the program was delivered during regularly scheduled computer lessons, so it could not determine the impact of substituting regular math instruction. Similarly, Mo et al. (2020) evaluated a self-paced and a teacher-directed version of a similar program for English for grade 5 students in Qinghai, China. Yet, the key shortcoming of this study is that the teacher-directed version added several components that may also influence achievement, such as increased opportunities for teachers to provide students with personalized assistance when they struggled with the material. Ma, Fairlie, Loyalka, and Rozelle (2020) compared the effectiveness of additional time-delivered remedial instruction for students in grades 4 to 6 in Shaanxi, China through either computer-assisted software or using workbooks. This study indicates whether additional instructional time is more effective when using technology, but it does not address the question of whether school systems may improve the productivity of instructional time during the school day by substituting educator-led with computer-assisted instruction.

Increasing learner engagement

Another way in which technology may improve education is by increasing learners’ engagement with the material. In many school systems, regular “chalk and talk” instruction prioritizes time for educators’ exposition over opportunities for learners to ask clarifying questions and/or contribute to class discussions. This, combined with the fact that many developing-country classrooms include a very large number of learners (see, e.g., Angrist & Lavy, 1999; Duflo, Dupas, & Kremer, 2015), may partially explain why the majority of those students are several grade levels behind curricular expectations (e.g., Muralidharan, et al., 2019; Muralidharan & Zieleniak, 2014; Pritchett & Beatty, 2015). Technology could potentially address these challenges by: (a) using video tutorials for self-paced learning and (b) presenting exercises as games and/or gamifying practice.

Video tutorials

Technology can potentially increase learner effort and understanding of the material by finding new and more engaging ways to deliver it. Video tutorials designed for self-paced learning—as opposed to videos for whole class instruction, which we discuss under the category of “prerecorded lessons” above—can increase learner effort in multiple ways, including: allowing learners to focus on topics with which they need more help, letting them correct errors and misconceptions on their own, and making the material appealing through visual aids. They can increase understanding by breaking the material into smaller units and tackling common misconceptions.

In spite of the popularity of instructional videos, there is relatively little evidence on their effectiveness. Yet, two recent evaluations of different versions of the Khan Academy portal, which mainly relies on instructional videos, offer some insight into their impact. First, Ferman, Finamor, and Lima (2019) evaluated an initiative in 157 public primary and middle schools in five cities in Brazil in which the teachers of students in grades 5 and 9 were taken to the computer lab to learn math from the platform for 50 minutes per week. The authors found that, while the intervention slightly improved learners’ attitudes toward math, these changes did not translate into better performance in this subject. The authors hypothesized that this could be due to the reduction of teacher-led math instruction.

More recently, Büchel, Jakob, Kühnhanss, Steffen, and Brunetti (2020) evaluated an after-school, offline delivery of the Khan Academy portal in grades 3 through 6 in 302 primary schools in Morazán, El Salvador. Students in this study received 90 minutes per week of additional math instruction (effectively nearly doubling total math instruction per week) through teacher-led regular lessons, teacher-assisted Khan Academy lessons, or similar lessons assisted by technical supervisors with no content expertise. (Importantly, the first group provided differentiated instruction, which is not the norm in Salvadorian schools). All three groups outperformed both schools without any additional lessons and classrooms without additional lessons in the same schools as the program. The teacher-assisted Khan Academy lessons performed 0.24 SDs better, the supervisor-led lessons 0.22 SDs better, and the teacher-led regular lessons 0.15 SDs better, but the authors could not determine whether the effects across versions were different.

Together, these studies suggest that instructional videos work best when provided as a complement to, rather than as a substitute for, regular instruction. Yet, the main limitation of these studies is the multifaceted nature of the Khan Academy portal, which also includes other components found to positively improve learner achievement, such as differentiated instruction by students’ learning levels. While the software does not provide the type of personalization discussed above, learners are asked to take a placement test and, based on their score, educators assign them different work. Therefore, it is not clear from these studies whether the effects from Khan Academy are driven by its instructional videos or to the software’s ability to provide differentiated activities when combined with placement tests.

Games and gamification

Technology can also increase learner engagement by presenting exercises as games and/or by encouraging learner to play and compete with others (e.g., using leaderboards and rewards)—an approach known as “gamification.” Both approaches can increase learner motivation and effort by presenting learners with entertaining opportunities for practice and by leveraging peers as commitment devices.

There are very few studies on the effects of games and gamification in low- and middle-income countries. Recently, Araya, Arias Ortiz, Bottan, and Cristia (2019) evaluated an initiative in which grade 4 students in Santiago, Chile were required to participate in two 90-minute sessions per week during the school day with instructional math software featuring individual and group competitions (e.g., tracking each learner’s standing in his/her class and tournaments between sections). After nine months, the program led to improvements of 0.27 SDs in the national student assessment in math (it had no spillover effects on reading). However, it had mixed effects on non-academic outcomes. Specifically, the program increased learners’ willingness to use computers to learn math, but, at the same time, increased their anxiety toward math and negatively impacted learners’ willingness to collaborate with peers. Finally, given that one of the weekly sessions replaced regular math instruction and the other one represented additional math instructional time, it is not clear whether the academic effects of the program are driven by the software or the additional time devoted to learning math.

The prognosis:

How can school systems adopt interventions that match their needs.

Here are five specific and sequential guidelines for decisionmakers to realize the potential of education technology to accelerate student learning.

1. Take stock of how your current schools, educators, and learners are engaging with technology .

Carry out a short in-school survey to understand the current practices and potential barriers to adoption of technology (we have included suggested survey instruments in the Appendices); use this information in your decisionmaking process. For example, we learned from conversations with current and former ministers of education from various developing regions that a common limitation to technology use is regulations that hold school leaders accountable for damages to or losses of devices. Another common barrier is lack of access to electricity and Internet, or even the availability of sufficient outlets for charging devices in classrooms. Understanding basic infrastructure and regulatory limitations to the use of education technology is a first necessary step. But addressing these limitations will not guarantee that introducing or expanding technology use will accelerate learning. The next steps are thus necessary.

“In Africa, the biggest limit is connectivity. Fiber is expensive, and we don’t have it everywhere. The continent is creating a digital divide between cities, where there is fiber, and the rural areas.  The [Ghanaian] administration put in schools offline/online technologies with books, assessment tools, and open source materials. In deploying this, we are finding that again, teachers are unfamiliar with it. And existing policies prohibit students to bring their own tablets or cell phones. The easiest way to do it would have been to let everyone bring their own device. But policies are against it.” H.E. Matthew Prempeh, Minister of Education of Ghana, on the need to understand the local context.

2. Consider how the introduction of technology may affect the interactions among learners, educators, and content .

Our review of the evidence indicates that technology may accelerate student learning when it is used to scale up access to quality content, facilitate differentiated instruction, increase opportunities for practice, or when it increases learner engagement. For example, will adding electronic whiteboards to classrooms facilitate access to more quality content or differentiated instruction? Or will these expensive boards be used in the same way as the old chalkboards? Will providing one device (laptop or tablet) to each learner facilitate access to more and better content, or offer students more opportunities to practice and learn? Solely introducing technology in classrooms without additional changes is unlikely to lead to improved learning and may be quite costly. If you cannot clearly identify how the interactions among the three key components of the instructional core (educators, learners, and content) may change after the introduction of technology, then it is probably not a good idea to make the investment. See Appendix A for guidance on the types of questions to ask.

3. Once decisionmakers have a clear idea of how education technology can help accelerate student learning in a specific context, it is important to define clear objectives and goals and establish ways to regularly assess progress and make course corrections in a timely manner .

For instance, is the education technology expected to ensure that learners in early grades excel in foundational skills—basic literacy and numeracy—by age 10? If so, will the technology provide quality reading and math materials, ample opportunities to practice, and engaging materials such as videos or games? Will educators be empowered to use these materials in new ways? And how will progress be measured and adjusted?

4. How this kind of reform is approached can matter immensely for its success.

It is easy to nod to issues of “implementation,” but that needs to be more than rhetorical. Keep in mind that good use of education technology requires thinking about how it will affect learners, educators, and parents. After all, giving learners digital devices will make no difference if they get broken, are stolen, or go unused. Classroom technologies only matter if educators feel comfortable putting them to work. Since good technology is generally about complementing or amplifying what educators and learners already do, it is almost always a mistake to mandate programs from on high. It is vital that technology be adopted with the input of educators and families and with attention to how it will be used. If technology goes unused or if educators use it ineffectually, the results will disappoint—no matter the virtuosity of the technology. Indeed, unused education technology can be an unnecessary expenditure for cash-strapped education systems. This is why surveying context, listening to voices in the field, examining how technology is used, and planning for course correction is essential.

5. It is essential to communicate with a range of stakeholders, including educators, school leaders, parents, and learners .

Technology can feel alien in schools, confuse parents and (especially) older educators, or become an alluring distraction. Good communication can help address all of these risks. Taking care to listen to educators and families can help ensure that programs are informed by their needs and concerns. At the same time, deliberately and consistently explaining what technology is and is not supposed to do, how it can be most effectively used, and the ways in which it can make it more likely that programs work as intended. For instance, if teachers fear that technology is intended to reduce the need for educators, they will tend to be hostile; if they believe that it is intended to assist them in their work, they will be more receptive. Absent effective communication, it is easy for programs to “fail” not because of the technology but because of how it was used. In short, past experience in rolling out education programs indicates that it is as important to have a strong intervention design as it is to have a solid plan to socialize it among stakeholders.

technology in the future essay

Beyond reopening: A leapfrog moment to transform education?

On September 14, the Center for Universal Education (CUE) will host a webinar to discuss strategies, including around the effective use of education technology, for ensuring resilient schools in the long term and to launch a new education technology playbook “Realizing the promise: How can education technology improve learning for all?”

file-pdf Full Playbook – Realizing the promise: How can education technology improve learning for all? file-pdf References file-pdf Appendix A – Instruments to assess availability and use of technology file-pdf Appendix B – List of reviewed studies file-pdf Appendix C – How may technology affect interactions among students, teachers, and content?

About the Authors

Alejandro j. ganimian, emiliana vegas, frederick m. hess.

  • Media Relations
  • Terms and Conditions
  • Privacy Policy

Feb 13, 2023

200-500 Word Example Essays about Technology

Got an essay assignment about technology check out these examples to inspire you.

Technology is a rapidly evolving field that has completely changed the way we live, work, and interact with one another. Technology has profoundly impacted our daily lives, from how we communicate with friends and family to how we access information and complete tasks. As a result, it's no surprise that technology is a popular topic for students writing essays.

But writing a technology essay can be challenging, especially for those needing more time or help with writer's block. This is where Jenni.ai comes in. Jenni.ai is an innovative AI tool explicitly designed for students who need help writing essays. With Jenni.ai, students can quickly and easily generate essays on various topics, including technology.

This blog post aims to provide readers with various example essays on technology, all generated by Jenni.ai. These essays will be a valuable resource for students looking for inspiration or guidance as they work on their essays. By reading through these example essays, students can better understand how technology can be approached and discussed in an essay.

Moreover, by signing up for a free trial with Jenni.ai, students can take advantage of this innovative tool and receive even more support as they work on their essays. Jenni.ai is designed to help students write essays faster and more efficiently, so they can focus on what truly matters – learning and growing as a student. Whether you're a student who is struggling with writer's block or simply looking for a convenient way to generate essays on a wide range of topics, Jenni.ai is the perfect solution.

The Impact of Technology on Society and Culture

Introduction:.

Technology has become an integral part of our daily lives and has dramatically impacted how we interact, communicate, and carry out various activities. Technological advancements have brought positive and negative changes to society and culture. In this article, we will explore the impact of technology on society and culture and how it has influenced different aspects of our lives.

Positive impact on communication:

Technology has dramatically improved communication and made it easier for people to connect from anywhere in the world. Social media platforms, instant messaging, and video conferencing have brought people closer, bridging geographical distances and cultural differences. This has made it easier for people to share information, exchange ideas, and collaborate on projects.

Positive impact on education:

Students and instructors now have access to a multitude of knowledge and resources because of the effect of technology on education . Students may now study at their speed and from any location thanks to online learning platforms, educational applications, and digital textbooks.

Negative impact on critical thinking and creativity:

Technological advancements have resulted in a reduction in critical thinking and creativity. With so much information at our fingertips, individuals have become more passive in their learning, relying on the internet for solutions rather than logic and inventiveness. As a result, independent thinking and problem-solving abilities have declined.

Positive impact on entertainment:

Technology has transformed how we access and consume entertainment. People may now access a wide range of entertainment alternatives from the comfort of their own homes thanks to streaming services, gaming platforms, and online content makers. The entertainment business has entered a new age of creativity and invention as a result of this.

Negative impact on attention span:

However, the continual bombardment of information and technological stimulation has also reduced attention span and the capacity to focus. People are easily distracted and need help focusing on a single activity for a long time. This has hampered productivity and the ability to accomplish duties.

The Ethics of Artificial Intelligence And Machine Learning

The development of artificial intelligence (AI) and machine learning (ML) technologies has been one of the most significant technological developments of the past several decades. These cutting-edge technologies have the potential to alter several sectors of society, including commerce, industry, healthcare, and entertainment. 

As with any new and quickly advancing technology, AI and ML ethics must be carefully studied. The usage of these technologies presents significant concerns around privacy, accountability, and command. As the use of AI and ML grows more ubiquitous, we must assess their possible influence on society and investigate the ethical issues that must be taken into account as these technologies continue to develop.

What are Artificial Intelligence and Machine Learning?

Artificial Intelligence is the simulation of human intelligence in machines designed to think and act like humans. Machine learning is a subfield of AI that enables computers to learn from data and improve their performance over time without being explicitly programmed.

The impact of AI and ML on Society

The use of AI and ML in various industries, such as healthcare, finance, and retail, has brought many benefits. For example, AI-powered medical diagnosis systems can identify diseases faster and more accurately than human doctors. However, there are also concerns about job displacement and the potential for AI to perpetuate societal biases.

The Ethical Considerations of AI and ML

A. Bias in AI algorithms

One of the critical ethical concerns about AI and ML is the potential for algorithms to perpetuate existing biases. This can occur if the data used to train these algorithms reflects the preferences of the people who created it. As a result, AI systems can perpetuate these biases and discriminate against certain groups of people.

B. Responsibility for AI-generated decisions

Another ethical concern is the responsibility for decisions made by AI systems. For example, who is responsible for the damage if a self-driving car causes an accident? The manufacturer of the vehicle, the software developer, or the AI algorithm itself?

C. The potential for misuse of AI and ML

AI and ML can also be used for malicious purposes, such as cyberattacks and misinformation. The need for more regulation and oversight in developing and using these technologies makes it difficult to prevent misuse.

The developments in AI and ML have given numerous benefits to humanity, but they also present significant ethical concerns that must be addressed. We must assess the repercussions of new technologies on society, implement methods to limit the associated dangers, and guarantee that they are utilized for the greater good. As AI and ML continue to play an ever-increasing role in our daily lives, we must engage in an open and frank discussion regarding their ethics.

The Future of Work And Automation

Rapid technological breakthroughs in recent years have brought about considerable changes in our way of life and work. Concerns regarding the influence of artificial intelligence and machine learning on the future of work and employment have increased alongside the development of these technologies. This article will examine the possible advantages and disadvantages of automation and its influence on the labor market, employees, and the economy.

The Advantages of Automation

Automation in the workplace offers various benefits, including higher efficiency and production, fewer mistakes, and enhanced precision. Automated processes may accomplish repetitive jobs quickly and precisely, allowing employees to concentrate on more complex and creative activities. Additionally, automation may save organizations money since it removes the need to pay for labor and minimizes the danger of workplace accidents.

The Potential Disadvantages of Automation

However, automation has significant disadvantages, including job loss and income stagnation. As robots and computers replace human labor in particular industries, there is a danger that many workers may lose their jobs, resulting in higher unemployment and more significant economic disparity. Moreover, if automation is not adequately regulated and managed, it might lead to stagnant wages and a deterioration in employees' standard of life.

The Future of Work and Automation

Despite these difficulties, automation will likely influence how labor is done. As a result, firms, employees, and governments must take early measures to solve possible issues and reap the rewards of automation. This might entail funding worker retraining programs, enhancing education and skill development, and implementing regulations that support equality and justice at work.

IV. The Need for Ethical Considerations

We must consider the ethical ramifications of automation and its effects on society as technology develops. The impact on employees and their rights, possible hazards to privacy and security, and the duty of corporations and governments to ensure that automation is utilized responsibly and ethically are all factors to be taken into account.

Conclusion:

To summarise, the future of employment and automation will most certainly be defined by a complex interaction of technological advances, economic trends, and cultural ideals. All stakeholders must work together to handle the problems and possibilities presented by automation and ensure that technology is employed to benefit society as a whole.

The Role of Technology in Education

Introduction.

Nearly every part of our lives has been transformed by technology, and education is no different. Today's students have greater access to knowledge, opportunities, and resources than ever before, and technology is becoming a more significant part of their educational experience. Technology is transforming how we think about education and creating new opportunities for learners of all ages, from online courses and virtual classrooms to instructional applications and augmented reality.

Technology's Benefits for Education

The capacity to tailor learning is one of technology's most significant benefits in education. Students may customize their education to meet their unique needs and interests since they can access online information and tools. 

For instance, people can enroll in online classes on topics they are interested in, get tailored feedback on their work, and engage in virtual discussions with peers and subject matter experts worldwide. As a result, pupils are better able to acquire and develop the abilities and information necessary for success.

Challenges and Concerns

Despite the numerous advantages of technology in education, there are also obstacles and considerations to consider. One issue is the growing reliance on technology and the possibility that pupils would become overly dependent on it. This might result in a lack of critical thinking and problem-solving abilities, as students may become passive learners who only follow instructions and rely on technology to complete their assignments.

Another obstacle is the digital divide between those who have access to technology and those who do not. This division can exacerbate the achievement gap between pupils and produce uneven educational and professional growth chances. To reduce these consequences, all students must have access to the technology and resources necessary for success.

In conclusion, technology is rapidly becoming an integral part of the classroom experience and has the potential to alter the way we learn radically. 

Technology can help students flourish and realize their full potential by giving them access to individualized instruction, tools, and opportunities. While the benefits of technology in the classroom are undeniable, it's crucial to be mindful of the risks and take precautions to guarantee that all kids have access to the tools they need to thrive.

The Influence of Technology On Personal Relationships And Communication 

Technological advancements have profoundly altered how individuals connect and exchange information. It has changed the world in many ways in only a few decades. Because of the rise of the internet and various social media sites, maintaining relationships with people from all walks of life is now simpler than ever. 

However, concerns about how these developments may affect interpersonal connections and dialogue are inevitable in an era of rapid technological growth. In this piece, we'll discuss how the prevalence of digital media has altered our interpersonal connections and the language we use to express ourselves.

Direct Effect on Direct Interaction:

The disruption of face-to-face communication is a particularly stark example of how technology has impacted human connections. The quality of interpersonal connections has suffered due to people's growing preference for digital over human communication. Technology has been demonstrated to reduce the usage of nonverbal signs such as facial expressions, tone of voice, and other indicators of emotional investment in the connection.

Positive Impact on Long-Distance Relationships:

Yet there are positives to be found as well. Long-distance relationships have also benefited from technological advancements. The development of technologies such as video conferencing, instant messaging, and social media has made it possible for individuals to keep in touch with distant loved ones. It has become simpler for individuals to stay in touch and feel connected despite geographical distance.

The Effects of Social Media on Personal Connections:

The widespread use of social media has had far-reaching consequences, especially on the quality of interpersonal interactions. Social media has positive and harmful effects on relationships since it allows people to keep in touch and share life's milestones.

Unfortunately, social media has made it all too easy to compare oneself to others, which may lead to emotions of jealousy and a general decline in confidence. Furthermore, social media might cause people to have inflated expectations of themselves and their relationships.

A Personal Perspective on the Intersection of Technology and Romance

Technological advancements have also altered physical touch and closeness. Virtual reality and other technologies have allowed people to feel physical contact and familiarity in a digital setting. This might be a promising breakthrough, but it has some potential downsides. 

Experts are concerned that people's growing dependence on technology for intimacy may lead to less time spent communicating face-to-face and less emphasis on physical contact, both of which are important for maintaining good relationships.

In conclusion, technological advancements have significantly affected the quality of interpersonal connections and the exchange of information. Even though technology has made it simpler to maintain personal relationships, it has chilled interpersonal interactions between people. 

Keeping tabs on how technology is changing our lives and making adjustments as necessary is essential as we move forward. Boundaries and prioritizing in-person conversation and physical touch in close relationships may help reduce the harm it causes.

The Security and Privacy Implications of Increased Technology Use and Data Collection

The fast development of technology over the past few decades has made its way into every aspect of our life. Technology has improved many facets of our life, from communication to commerce. However, significant privacy and security problems have emerged due to the broad adoption of technology. In this essay, we'll look at how the widespread use of technological solutions and the subsequent explosion in collected data affects our right to privacy and security.

Data Mining and Privacy Concerns

Risk of Cyber Attacks and Data Loss

The Widespread Use of Encryption and Other Safety Mechanisms

The Privacy and Security of the Future in a Globalized Information Age

Obtaining and Using Individual Information

The acquisition and use of private information is a significant cause for privacy alarm in the digital age. Data about their customers' online habits, interests, and personal information is a valuable commodity for many internet firms. Besides tailored advertising, this information may be used for other, less desirable things like identity theft or cyber assaults.

Moreover, many individuals need to be made aware of what data is being gathered from them or how it is being utilized because of the lack of transparency around gathering personal information. Privacy and data security have become increasingly contentious as a result.

Data breaches and other forms of cyber-attack pose a severe risk.

The risk of cyber assaults and data breaches is another big issue of worry. More people are using more devices, which means more opportunities for cybercriminals to steal private information like credit card numbers and other identifying data. This may cause monetary damages and harm one's reputation or identity.

Many high-profile data breaches have occurred in recent years, exposing the personal information of millions of individuals and raising serious concerns about the safety of this information. Companies and governments have responded to this problem by adopting new security methods like encryption and multi-factor authentication.

Many businesses now use encryption and other security measures to protect themselves from cybercriminals and data thieves. Encryption keeps sensitive information hidden by encoding it so that only those possessing the corresponding key can decipher it. This prevents private information like bank account numbers or social security numbers from falling into the wrong hands.

Firewalls, virus scanners, and two-factor authentication are all additional security precautions that may be used with encryption. While these safeguards do much to stave against cyber assaults, they are not entirely impregnable, and data breaches are still possible.

The Future of Privacy and Security in a Technologically Advanced World

There's little doubt that concerns about privacy and security will persist even as technology improves. There must be strict safeguards to secure people's private information as more and more of it is transferred and kept digitally. To achieve this goal, it may be necessary to implement novel technologies and heightened levels of protection and to revise the rules and regulations regulating the collection and storage of private information.

Individuals and businesses are understandably concerned about the security and privacy consequences of widespread technological use and data collecting. There are numerous obstacles to overcome in a society where technology plays an increasingly important role, from acquiring and using personal data to the risk of cyber-attacks and data breaches. Companies and governments must keep spending money on security measures and working to educate people about the significance of privacy and security if personal data is to remain safe.

In conclusion, technology has profoundly impacted virtually every aspect of our lives, including society and culture, ethics, work, education, personal relationships, and security and privacy. The rise of artificial intelligence and machine learning has presented new ethical considerations, while automation is transforming the future of work. 

In education, technology has revolutionized the way we learn and access information. At the same time, our dependence on technology has brought new challenges in terms of personal relationships, communication, security, and privacy.

Jenni.ai is an AI tool that can help students write essays easily and quickly. Whether you're looking, for example, for essays on any of these topics or are seeking assistance in writing your essay, Jenni.ai offers a convenient solution. Sign up for a free trial today and experience the benefits of AI-powered writing assistance for yourself.

Try Jenni for free today

Create your first piece of content with Jenni today and never look back

  • Subscribe to BBC Science Focus Magazine
  • Previous Issues
  • Future tech
  • Everyday science
  • Planet Earth
  • Newsletters

Future technology: 22 ideas about to change our world

The future is coming, and sooner than you think. These emerging technologies will change the way we live, how we look after our bodies and help us avert a climate disaster.

Technology moves at a relentlessly fast pace in the modern world. It can sometimes feel like every single day there are new technologies and innovations that will change our futures forever. But in a steady stream of announcements about new massive futuristic technological upgrades and cool gadgets , it is easy to lose track of the amazing ways the world is progressing.

For instance, there are artificial intelligence programs writing poems from scratch and making images from nothing more than a worded prompt. There are 3D-printed eyes, new holograms, lab-grown food and brain-reading robots.

All of this just scratches the surface of what is out there, so we've curated a guide to the most exciting future technologies, listing them all below.

Necrobotics

© Preston Innovation Laboratory/Rice University

Sometimes new future technologies can offer amazing development, with the possibility of changing the future... while also being incredibly creepy.

This is one way to describe the idea of necrobotics which, as the name suggests, involves turning dead things into robots . While this sounds like a plot to a creepy horror film, this is a technology being explored at Rice University.

A team of researchers turned a dead spider into a robot-like gripper, given the ability to pick up other objects. To achieve this, they take a spider and inject it with air. This works because spiders use hydraulics to force their version of blood (haemolymph) into their limbs, making them extend.

Right now this concept is in its infant stages, but it could mean a future where dead animals are used to further science... it all feels very Frankeinstein-like!

Sand batteries

© Edwin Remsberg

Not every technology bettering our future has to be complicated, some are simple, yet extremely effective.

One of these kind of technologies has come from some Finnish engineers who have found a way to turn sand into a giant battery.

These engineers piled 100 tons of sand into a 4 x 7 metre steel container. All of this sand was then heated up using wind and solar energy.

This heat can then be distributed by a local energy company to provide warmth to buildings in nearby areas. Energy can be stored this way for long periods of time.

All of this occurs through a concept known as resistive heating. This is where a material is heated by the friction of electrical currents.

Sand and any other non-super conductor are warmed by the electricity passing through them generated heat than can be used for energy.

E-skin could help us hug long-distance friends

While modern technology allows us to communicate verbally and visually almost anywhere in the world, there is currently no reliable method of sharing the sense of touch across long distances. Now, a wireless soft e-skin developed by engineers at the City University of Hong Kong could one day make giving and receiving hugs over the internet a reality.

The e-skin is studded with flexible actuators that sense the wearer’s movements and convert them into electrical signals. These signals can then be sent to another e-skin system via Bluetooth, where the actuators convert them into mechanical vibrations that mimic the initial movements. The system could be used to allow friends and family to ‘feel’ each other over long distances, the researchers say.

Researchers at the City University of Hong Kong (CityU) recently invented what they're calling a 'novel, wireless, skin-interfaced olfactory feedback system '. In other words, VR attachments that let you smell stuff.

The smells are generated by the devices heating and melting odorous wax that releases adjustable concentrations of stink. There are two versions of this tech. One is 'mounted' on your upper lip for easy access to your nostrils, and the other is a facemask-like design with hundreds of different odour combinations.

The university said their new tech has a broad range of applications that includes online teaching and 4D movie watching. That's right, in the future, you'll not only be able to watch your favourite movies in VR, you'll also be able to smell them. Now that's immersion!

Catapulting satellites into space

© Spinlaunch

Who would have thought the best way to get satellites into space was with a makeshift catapult! Okay, it is a lot smarter than a catapult but the technology exists in a similar way.

SpinLaunch is a prototype system for getting satellites or other payloads up into space. It does this by using kinetic energy instead of the usual technique of using chemical fuel found in traditional rockets. This technology could be capable of spinning payloads at 8,000km/h and 10,000G, then launching them skyward through a large launch tube.

Of course, small rocket engines will still be required for payloads to reach orbit, but SpinLaunch has claimed this system cuts down on the fuel and infrastructure by an impressive 70 per cent.

The company has signed an agreement with NASA and is now testing the system.

Xenotransplantation

© University of Maryland School of Medicine

Inserting the heart of a pig into a human feels like a bad idea, and yet, this is one of the latest medical procedures that is seeing rapid progress.

Xenotransplantation - the procedure of transplanting, implementing or infusing a human with cells, tissues or organs from an animal source - has the potential to revolutionise surgery.

One of the most common procedures performed so far is the insertion of a pig's heart into a human. This has now successfully happened twice. However, one of the patients was only alive for a few months, and the second is still being observed.

In these surgeries, the heart cannot be instantly put into a human, gene-editing needs to take place first. Certain genes need to be knocked out of the heart and human genes need to be added, mainly around immune acceptance and genes to prevent excessive growth of heart tissue.

Right now, these surgeries are risky and there is no certainty around success. However, in the near future, we could see xenotransplants happening on a regular basis, providing hearts or tissues from animals to humans in need of it.

AI image-generation

© OpenAI

As artificial intelligence continues to perform jobs just as well as humans, there is a new industry to add to the list – the world of art. Researchers at the company OpenAI have created a software that is able to create images from just worded prompts.

Type in ‘a dog wearing a cowboy hat singing in the rain’ and you’ll get a host of completely original images that fit that description. You can even choose what style of art your request will come back in. However, the technology isn't perfected and still has issues, like when we gave it poor prompts on designing cartoon characters .

This technology known as Dall-E is now its second iteration and the team behind it plans to continue developing it further. In the future, we could see this technology used to create art exhibitions, for companies to get quick, original illustrations or of course, to revolutionise the way we create memes on the internet.

There is also technology known as Midjourney , a AI image generator that creates gothic masterpieces with a simple text prompt. We are truly living in the future.

Brain reading robots

Robot arm being used with brain signals

No longer a science fiction trope, the use of brain reading technology has improved hugely in recent years. One of the most interesting and practical uses we’ve seen tested so far comes from researchers at the Swiss Federal Institute of Technology Lausanne (EPFL).

Thanks to a machine-learning algorithm, a robot arm and a brain-computer interface, these researchers have managed to create a means for tetraplegic patients (those who can’t move their upper or lower body) to interact with the world .

In tests, the robot arm would perform simple tasks like moving around an obstacle. The algorithm would then interprets signals from the brain using an EEG cap and automatically determine when the arm had made a move that the brain considered incorrect, for example moving too close to the obstacle or going too fast.

Over time the algorithm can then adjust to the individuals preferences and brain signals. In the future this could lead to wheelchairs controlled by the brain or assistance machines for tetraplegic patients.

3D printed bones

© Ossiform

3D printing is an industry promising everything from cheap house building through to affordable rugged armour, but one of the most interesting uses of the technology is the building of 3D printed bones.

The company Ossiform specialises in medical 3D printing, creating patient-specific replacements of different bones from tricalcium phosphate – a material with similar properties to human bones.

Using these 3D printed bones is surprisingly easy. A hospital can perform an MRI which is then sent to Ossiform who create a 3D model of the patient-specific implant that is needed. The surgeon accepts the design and then once it is printed, it can be used in surgery.

What is special about these 3D printed bones is that because of the use of tricalcium phosphate, the body will remodel the implants into vascularised bone. That means they will enable the full restoration of function that the bone it is replacing had. To achieve the best integration possible, the implants are of a porous structure and feature large pores and canals for cells to attach to and reform bone.

3D-printed food that takes the cake

3D printed cake

What’s for dinner tonight? Soon it could be a piece of 3D-printed, laser-cooked cake. Researchers at Columbia University School of Engineering have created a device that can construct a seven-ingredient cheesecake using food inks and then cook it to perfection using a laser.

Their creation contained banana, jam, peanut butter and Nutella. Tasty. The technology could one day be used to create personalised meals for everyone from professional athletes to patients with dietary conditions, or could be useful for those who are simply short on time.

Natural language Processing

Natural language processing is the big new trend taking over the internet. While you've most likely seen it in use in Google's autocomplete software, or when your smartphone offers a prediction of what you are trying to type, it is capable of much smarter things.

OpenAI is a company that is at the forefront of artificial intelligence, originally taking the internet by storm with its image generator Dall-E 2 . Now it is back, making a chatbot known as ChatGPT , creating poems from scratch, explaining complex theories with ease and having full-length conversations like it is a human.

ChatGPT is powered by a software known as GPT-3, trained on billions of examples of texts, then taught how to form coherent and logical sentences.

ChatGPT is an example of AI and its future. It has proven its ability to make completely new websites from scratch, write entire length books and even make jokes... although, it clearly still hasn't mastered humour yet.

Boom-free supersonic flight

Nasa's X-59 aircraft

NASA’s X-59 ‘quiet’ supersonic aircraft is set to take to the skies for its first test flight at the Armstrong Flight Research Center later this year. The plane is currently being assembled in a hangar at Lockheed Martin’s Skunk Works facility in Palmdale, California.

Its fuselage, wings and tail have been specially designed to control the airflow around the plane as it flies, with the ultimate aim of preventing a loud sonic boom from disturbing people on the ground below when it breaks the sound barrier. If the initial test goes to plan, the space agency aims to carry out further test flights over inhabited areas to gauge the public’s response to aircraft in 2024.

Digital "twins" that track your health

Q Bio dashboard

In Star Trek , where many of our ideas of future technology germinated, human beings can walk into the medbay and have their entire body digitally scanned for signs of illness and injury. Doing that in real life would, say the makers of Q Bio, improve health outcomes and alleviate the load on doctors at the same time.

The US company has built a scanner that will measure hundreds of biomarkers in around an hour, from hormone levels to the fat building up in your liver to the markers of inflammation or any number of cancers. It intends to use this data to produce a 3D digital avatar of a patient's body – known as a digital twin – that can be tracked over time and updated with each new scan.

Q Bio CEO Jeff Kaditz hopes it will lead to a new era of preventative, personalised medicine in which the vast amounts of data collected not only help doctors prioritise which patients need to be seen most urgently, but also to develop more sophisticated ways of diagnosing illness. Read an interview with him here.

Direct air capture

Through the process of photosynthesis, trees have remained one of the best ways to reduce the levels of CO2 in the atmosphere. However, new technology could perform the same role as trees, absorbing carbon dioxide at greater levels while also taking up less land.

This technology is known as Direct Air Capture (DAC). It involves taking carbon dioxide from the air and either storing the CO 2 in deep geological caves under ground, or using it in combination with hydrogen to produce synthetic fuels.

While this technology has great potential, it has a lot of complications right now. There are now direct air capture facilities up and running, but the current models require a huge amount of energy to run. If the energy levels can be reduced in the future, DAC could prove to be one of the best technological advances for the future of the environment.

Green funerals

Sustainable living is becoming a priority for individuals squaring up to the realities of the climate crisis, but what about eco-friendly dying? Death tends to be a carbon-heavy process, one last stamp of our ecological footprint. The average cremation reportedly releases 400kg of carbon dioxide into the atmosphere, for example. So what's a greener way to go?

In Washington State in the US, you could be composted instead. Bodies are laid in chambers with bark, soil, straw and other compounds that promote natural decomposition. Within 30 days, your body is reduced to soil that can be returned to a garden or woodland. Recompose, the company behind the process, claims it uses an eighth of the carbon dioxide of a cremation.

An alternative technology uses fungi. In 2019, the late actor Luke Perry was buried in a bespoke "mushroom suit" designed by a start-up called Coeio. The company claims its suit, made with mushrooms and other microorganisms that aid decomposition and neutralise toxins that are realised when a body usually decays.

Most alternative ways of disposing of our bodies after death are not based on new technology; they're just waiting for societal acceptance to catch up. Another example is alkaline hydrolysis, which involves breaking the body down into its chemical components over a six-hour process in a pressurised chamber. It's legal in a number of US states and uses fewer emissions compared with more traditional methods.

Energy storing bricks

Scientists have found a way to store energy in the red bricks that are used to build houses.

Researchers led by Washington University in St Louis, in Missouri, US, have developed a method that can turn the cheap and widely available building material into “smart bricks” that can store energy like a battery.

Although the research is still in the proof-of-concept stage, the scientists claim that walls made of these bricks “could store a substantial amount of energy” and can “be recharged hundreds of thousands of times within an hour”.

Red brick device developed by chemists at Washington University in St. Louis lights up a green light-emitting diode (D'Arcy laboratory: Washington University in St. Louis)

The researchers developed a method to convert red bricks into a type of energy storage device called a supercapacitor.

This involved putting a conducting coating, known as Pedot, onto brick samples, which then seeped through the fired bricks’ porous structure, converting them into “energy storing electrodes”.

Iron oxide, which is the red pigment in the bricks, helped with the process, the researchers said.

Self-healing 'living concrete'

Bacteria growing and mineralising in the sand-hydrogel structure © Colorado University Boulder/PA

Scientists have developed what they call living concrete by using sand, gel and bacteria.

Researchers said this building material has structural load-bearing function, is capable of self-healing and is more environmentally friendly than concrete – which is the second most-consumed material on Earth after water.

The team from the University of Colorado Boulder believe their work paves the way for future building structures that could “heal their own cracks, suck up dangerous toxins from the air or even glow on command”.

Fuel from thin air

Chemical engineers from Switzerland’s École Polytechnique Fédérale de Lausanne have created a prototype device that can produce hydrogen fuel from the water found in air.

Inspired by leaves, the device is made from semiconducting materials that harvest energy from sunlight and use it to produce hydrogen gas from water molecules found in the atmosphere. The gas could then, potentially, be converted for use as liquid fuels.

Internet for everyone

A miniture satellite

We can’t seem to live without the internet (how else would you read sciencefocus.com?), but still only around half the world’s population is connected. There are many reasons for this, including economic and social reasons, but for some the internet just isn’t accessible because they have no connection.

Google is slowly trying to solve the problem using helium balloons to beam the internet to inaccessible areas, while Facebook has abandoned plans to do the same using drones, which means companies like Hiber are stealing a march. They have taken a different approach by launching their own network of shoebox-sized microsatellites into low Earth orbit, which wake up a modem plugged into your computer or device when it flies over and delivers your data.

Their satellites orbit the Earth 16 times a day and are already being used by organisations like The British Antarctic Survey to provide internet access to very extreme of our planet.

Read more about future technology:

  • Dude, where’s my flying car? 11 future technologies we’re still waiting for
  • Exciting new green technology of the future
  • Future tech: The most exciting innovations from CES 2022

3D-printed eye tissue

Researchers at the National Eye Institute in the US have produced retinal tissue using stem cells and 3D bioprinting. The new technique may help scientists model the human eye to better understand – and develop treatments for – diseases and conditions that affect people’s vision, such as age-related macular degeneration (AMD).

The researchers created tissue found in the outer blood-retina barrier, which is the area AMD is known to start in, by printing stem cells taken from patients into a gel and allowing them to grow over several weeks. They are currently using the tissue to study the progression of AMD and are experimenting with adding additional cell types to model more of the human eye.

Car batteries that charge in 10 minutes

This picture shows a fast charging battery invented by Chao-Yang Wang Group ©Chao-Yang Wang Group

Fast-charging of electric vehicles is seen as key to their take-up, so motorists can stop at a service station and fully charge their car in the time it takes to get a coffee and use the toilet – taking no longer than a conventional break.

But rapid charging of lithium-ion batteries can degrade the batteries, researchers at Penn State University in the US say.This is because the flow of lithium particles known as ions from oneelectrode to another to charge the unit and hold the energy ready for use does not happen smoothly with rapid charging at lower temperatures.

However, they have now found that if the batteries could heat to 60°C for just 10 minutes and then rapidly cool again to ambient temperatures, lithium spikes would not form and heat damage would be avoided.

The battery design they have come up with is self-heating, using a thin nickel foil which creates an electrical circuit that heats in less than 30 seconds to warm the inside of the battery.The rapid cooling that would be needed after the battery is charged would be done using the cooling system designed into the car.

Their study, published in the journal Joule , showed they could fully charge an electrical vehicle in 10 minutes.

Artificial neurons on silicon chips

artificial neurons in its protective casing on a fingertip

Scientists have found a way to attach artificial neurons onto silicon chips, mimicking the neurons in our nervous system and copying their electrical properties.

“Until now neurons have been like black boxes, but we have managed to open the black box and peer inside,” said Professor Alain Nogaret , from the University of Bath, who led the project.

“Our work is paradigm-changing because it provides a robust method to reproduce the electrical properties of real neurons in minute detail.

“But it’s wider than that, because our neurons only need 140 nanowatts of power. That’s a billionth the power requirement of a microprocessor, which other attempts to make synthetic neurons have used.

Researchers hope their work could be used in medical implants to treat conditions such as heart failure and Alzheimer’s as it requires so little power.

  • 11 future technologies we’re still waiting for
  • CES 2023: The 10 gadgets that will change the future
  • Disco fridges and tech that wants you to pee on it: The 7 weirdest gadgets announced at CES 2023

Share this article

technology in the future essay

  • Terms & Conditions
  • Privacy policy
  • Cookies policy
  • Code of conduct
  • Magazine subscriptions
  • Manage preferences

How Technology Affects Our Lives – Essay

Do you wish to explore the use of information technology in daily life? Essays like the one below discuss this topic in depth. Read on to find out more.

Introduction

Technology in communication, technology in healthcare, technology in government, technology in education, technology in business, negative impact of technology.

Technology is a vital component of life in the modern world. People are so dependent on technology that they cannot live without it. Technology is important and useful in all areas of human life today. It has made life easy and comfortable by making communication and transport faster and easier (Harrington, 2011, p.35).

It has made education accessible to all and has improved healthcare services. Technology has made the world smaller and a better place to live. Without technology, fulfilling human needs would be a difficult task. Before the advent of technology, human beings were still fulfilling their needs. However, with technology, fulfillment of needs has become easier and faster.

It is unimaginable how life would be without technology. Technology is useful in the following areas: transport, communication, interaction, education, healthcare, and business (Harrington, 2011, p.35). Despite its benefits, technology has negative impacts on society. Examples of negative impacts of technology include the development of controversial medical practices such as stem cell research and the embracement of solitude due to changes in interaction methods. For example, social media has changed the way people interact.

Technology has led to the introduction of cloning, which is highly controversial because of its ethical and moral implications. The growth of technology has changed the world significantly and has influenced life in a great way. Technology is changing every day and continuing to influence areas of communication, healthcare, governance, education, and business.

Technology has contributed fundamentally in improving people’s lifestyles. It has improved communication by incorporating the Internet and devices such as mobile phones into people’s lives. The first technological invention to have an impact on communication was the discovery of the telephone by Graham Bell in 1875.

Since then, other inventions such as the Internet and the mobile phone have made communication faster and easier. For example, the Internet has improved ways through which people exchange views, opinions, and ideas through online discussions (Harrington, 2011, p.38). Unlike in the past when people who were in different geographical regions could not easily communicate, technology has eradicated that communication barrier. People in different geographical regions can send and receive messages within seconds.

Online discussions have made it easy for people to keep in touch. In addition, they have made socializing easy. Through online discussions, people find better solutions to problems by exchanging opinions and ideas (Harrington, 2011, p.39). Examples of technological inventions that facilitate online discussions include emails, online forums, dating websites, and social media sites.

Another technological invention that changed communication was the mobile phone. In the past, people relied on letters to send messages to people who were far away. Mobile phones have made communication efficient and reliable. They facilitate both local and international communication.

In addition, they enable people to respond to emergencies and other situations that require quick responses. Other uses of cell phones include the transfer of data through applications such as infrared and Bluetooth, entertainment, and their use as miniature personal computers (Harrington, 2011, p.40).

The latest versions of mobile phones are fitted with applications that enable them to access the Internet. This provides loads of information in diverse fields for mobile phone users. For business owners, mobile phones enhance the efficiency of their business operations because they are able to keep in touch with their employees and suppliers (Harrington, 2011, p.41). In addition, they are able to receive any information about the progress of their business in a short period of time.

Technology has contributed significantly to the healthcare sector. For example, it has made vital contributions in the fields of disease prevention and health promotion. Technology has aided in the understanding of the pathophysiology of diseases, which has led to the prevention of many diseases. For example, understanding the pathophysiology of the gastrointestinal tract and blood diseases has aided in their effective management (Harrington, 2011, p.49).

Technology has enabled practitioners in the medical field to make discoveries that have changed the healthcare sector. These include the discovery that peptic ulceration is caused by a bacterial infection and the development of drugs to treat schizophrenia and depressive disorders that afflict a greater portion of the population (Harrington, 2011, p.53). The development of vaccines against polio and measles led to their total eradication.

Children who are vaccinated against these diseases are not at risk of contracting the diseases. The development of vaccines was facilitated by technology, without which certain diseases would still be causing deaths in great numbers. Vaccines play a significant role in disease prevention.

Technology is used in health promotion in different ways. First, health practitioners use various technological methods to improve health care. eHealth refers to the use of information technology to improve healthcare by providing information on the Internet to people. In this field, technology is used in three main ways.

These include its use as an intervention tool, its use in conducting research studies, and its use for professional development (Lintonen et al, 2008, p. 560). According to Lintonenet al (2008), “e-health is the use of emerging information and communications technology, especially the internet, to improve or enable health and healthcare.” (p.560). It is largely used to support health care interventions that are mainly directed towards individual persons. Secondly, it is used to improve the well-being of patients during recovery.

Bedside technology has contributed significantly in helping patients recover. For example, medical professionals have started using the Xbox computer technology to develop a revolutionary process that measures limb movements in stroke patients (Tanja-Dijkstra, 2011, p.48). This helps them recover their manual competencies. The main aim of this technology is to help stroke patients do more exercises to increase their recovery rate and reduce the frequency of visits to the hospital (Lintonen et al, 2008, p. 560).

The government has utilized technology in two main areas. These include the facilitation of the delivery of citizen services and the improvement of defense and national security (Scholl, 2010, p.62). The government is spending large sums of money on wireless technologies, mobile gadgets, and technological applications. This is in an effort to improve their operations and ensure that the needs of citizens are fulfilled.

For example, in order to enhance safety and improve service delivery, Cisco developed a networking approach known as Connected Communities. This networking system connects citizens with the government and the community. The system was developed to improve the safety and security of citizens, improve service delivery by the government, empower citizens, and encourage economic development.

The government uses technology to provide information and services to citizens. This encourages economic development and fosters social inclusion (Scholl, 2010, p.62). Technology is also useful in improving national security and the safety of citizens. It integrates several wireless technologies and applications that make it easy for security agencies to access and share important information effectively. Technology is widely used by security agencies to reduce vulnerability to terrorism.

Technologically advanced gadgets are used in airports, hospitals, shopping malls, and public buildings to screen people for explosives and potentially dangerous materials or gadgets that may compromise the safety of citizens (Bonvillian and Sharp, 2001, par2). In addition, security agencies use surveillance systems to restrict access to certain areas. They also use technologically advanced screening and tracking methods to improve security in places that are prone to terrorist attacks (Bonvillian and Sharp, 2001, par3).

Technology has made significant contributions in the education sector. It is used to enhance teaching and learning through the use of different technological methods and resources. These include classrooms with digital tools such as computers that facilitate learning, online learning schools, blended learning, and a wide variety of online learning resources (Barnett, 1997, p.74). Digital learning tools that are used in classrooms facilitate learning in different ways. They expand the scope of learning materials and experiences for students, improve student participation in learning, make learning easier and quick, and reduce the cost of education (Barnett, 1997, p.75). For example, online schools and free learning materials reduce the costs that are incurred in purchasing learning materials. They are readily available online. In addition, they reduce the expenses that are incurred in program delivery.

Technology has improved the process of teaching by introducing new methods that facilitate connected teaching. These methods virtually connect teachers to their students. Teachers are able to provide learning materials and the course content to students effectively. In addition, teachers are able to give students an opportunity to personalize learning and access all learning materials that they provide. Technology enables teachers to serve the academic needs of different students.

In addition, it enhances learning because the problem of distance is eradicated, and students can contact their teachers easily (Barnett, 1997, p.76). Technology plays a significant role in changing how teachers teach. It enables educators to evaluate the learning abilities of different students in order to devise teaching methods that are most efficient in the achievement of learning objectives.

Through technology, teachers are able to relate well with their students, and they are able to help and guide them. Educators assume the role of coaches, advisors, and experts in their areas of teaching. Technology helps make teaching and learning enjoyable and gives it meaning that goes beyond the traditional classroom set-up system (Barnett, 1997, p.81).

Technology is used in the business world to improve efficiency and increase productivity. Most important, technology is used as a tool to foster innovation and creativity (Ray, 2004, p.62). Other benefits of technology to businesses include the reduction of injury risk to employees and improved competitiveness in the markets. For example, many manufacturing businesses use automated systems instead of manual systems. These systems eliminate the costs of hiring employees to oversee manufacturing processes.

They also increase productivity and improve the accuracy of the processes because of the reduction of errors (Ray, 2004, p.63). Technology improves productivity due to Computer-aided Manufacturing (CAM), Computer-integrated Manufacturing (CIM), and Computer-aided Design (CAD). CAM reduces labor costs, increases the speed of production, and ensures a higher level of accuracy (Hunt, 2008, p.44). CIM reduces labor costs, while CAD improves the quality and standards of products and reduces the cost of production.

Another example of the use of technology in improving productivity and output is the use of database systems to store data and information. Many businesses store their data and other information in database systems that make accessibility of information fast, easy, and reliable (Pages, 2010, p.44).

Technology has changed how international business is conducted. With the advent of e-commerce, businesses became able to trade through the Internet on the international market (Ray, 2004, p.69). This means that there is a large market for products and services. In addition, it implies that most markets are open 24 hours a day.

For example, customers can shop for books or music on Amazon.com at any time of the day. E-commerce has given businesses the opportunity to expand and operate internationally. Countries such as China and Brazil are taking advantage of opportunities presented by technology to grow their economy.

E-commerce reduces the complexities involved in conducting international trade (Ray, 2004, p.71). Its many components make international trade easy and fast. For example, a BOES system allows merchants to execute trade transactions in any language or currency, monitor all steps involved in transactions, and calculate all costs involved, such as taxes and freight costs (Yates, 2006, p.426).

Financial researchers claim that a BOES system is capable of reducing the cost of an international transaction by approximately 30% (Ray, 2004, p.74). BOES enables businesses to import and export different products through the Internet. This system of trade is efficient and creates a fair environment in which small and medium-sized companies can compete with large companies that dominate the market.

Despite its many benefits, technology has negative impacts. It has negative impacts on society because it affects communication and has changed the way people view social life. First, people have become more anti-social because of changes in methods of socializing (Harrington, 2008, p.103). Today, one does not need to interact physically with another person in order to establish a relationship.

The Internet is awash with dating sites that are full of people looking for partners and friends. The ease of forming friendships and relationships through the Internet has discouraged many people from engaging in traditional socializing activities. Secondly, technology has affected the economic statuses of many families because of high rates of unemployment. People lose jobs when organizations and businesses embrace technology (Harrington, 2008, p.105).

For example, many employees lose their jobs when manufacturing companies replace them with automated machines that are more efficient and cost-effective. Many families are struggling because of the lack of a constant stream of income. On the other hand, technology has led to the closure of certain companies because the world does not need their services. This is prompted by technological advancements.

For example, the invention of digital cameras forced Kodak to close down because people no longer needed analog cameras. Digital cameras replaced analog cameras because they are easy to use and efficient. Many people lost their jobs due to changes in technology. Thirdly, technology has made people lazy and unwilling to engage in strenuous activities (Harrington, 2008, p.113).

For example, video games have replaced physical activities that are vital in improving the health of young people. Children spend a lot of time watching television and playing video games such that they have little or no time for physical activities. This has encouraged the proliferation of unhealthy eating habits that lead to conditions such as diabetes.

Technology has elicited heated debates in the healthcare sector. Technology has led to medical practices such as stem cell research, implant embryos, and assisted reproduction. Even though these practices have been proven viable, they are highly criticized on the grounds of their moral implications on society.

There are many controversial medical technologies, such as gene therapy, pharmacogenomics, and stem cell research (Hunt, 2008, p.113). The use of genetic research in finding new cures for diseases is imperative and laudable. However, the medical implications of these disease treatment methods and the ethical and moral issues associated with the treatment methods are critical. Gene therapy is mostly rejected by religious people.

They claim that it is against natural law to alter the gene composition of a person in any way (Hunt, 2008, p.114). The use of embryonic stem cells in research is highly controversial, unlike the use of adult stem cells. The controversy exists because of the source of the stem cells. The cells are obtained from embryos. There is a belief among many people that life starts after conception.

Therefore, using embryos in research means killing them to obtain their cells for research. The use of embryo cells in research is considered in the same light as abortion: eliminating a life (Hunt, 2008, p.119). These issues have led to disagreements between the science and the religious worlds.

Technology is a vital component of life in the modern world. People are so dependent on technology that they cannot live without it. Technology is important and useful in all areas of human life today.

It has made life easy and comfortable by making communication faster and travel faster, making movements between places easier, making actions quick, and easing interactions. Technology is useful in the following areas of life: transport, communication, interaction, education, healthcare, and business. Despite its benefits, technology has negative impacts on society.

Technology has eased communication and transport. The discovery of the telephone and the later invention of the mobile phone changed the face of communication entirely. People in different geographical regions can communicate easily and in record time. In the field of health care, technology has made significant contributions in disease prevention and health promotion. The development of vaccines has eradicated certain diseases, and the use of the Internet is vital in promoting health and health care.

The government uses technology to enhance the delivery of services to citizens and the improvement of defense and security. In the education sector, teaching and learning processes have undergone significant changes owing to the impact of technology. Teachers are able to relate to different types of learners, and the learners have access to various resources and learning materials. Businesses benefit from technology through the reduction of costs and increased efficiency of business operations.

Despite the benefits, technology has certain disadvantages. It has negatively affected human interactions and socialization and has led to widespread unemployment. In addition, its application in the healthcare sector has elicited controversies due to certain medical practices such as stem cell research and gene therapy. Technology is very important and has made life easier and more comfortable than it was in the past.

Barnett, L. (1997). Using Technology in Teaching and Learning . New York: Routledge.

Bonvillian, W., and Sharp, K. (2011). Homeland Security Technology . Retrieved from https://issues.org/bonvillian/ .

Harrington, J. (2011). Technology and Society . New York: Jones & Bartlett Publishers.

Hunt, S. (2008). Controversies in Treatment Approaches: Gene Therapy, IVF, Stem Cells and Pharmagenomics. Nature Education , 19(1), 112-134.

Lintonen, P., Konu, A., and Seedhouse, D. (2008). Information Technology in Health Promotion. Health Education Research , 23(3), 560-566.

Pages, J., Bikifalvi, A., and De Castro Vila, R. (2010). The Use and Impact of Technology in Factory Environments: Evidence from a Survey of Manufacturing Industry in Spain. International Journal of Advanced Manufacturing Technology , 47(1), 182-190.

Ray, R. (2004). Technology Solutions for Growing Businesses . New York: AMACOM Div American Management Association.

Scholl, H. (2010). E-government: Information, Technology and Transformation . New York: M.E. Sharpe.

Tanja-Dijkstra, K. (2011). The Impact of Bedside Technology on Patients’ Well-Being. Health Environments Research & Design Journal (HERD) , 5(1), 43-51.

Yates, J. (2006). How Business Enterprises use Technology: Extending the Demand-Side Turn. Enterprise and Society , 7(3), 422-425.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2023, August 28). How Technology Affects Our Lives – Essay. https://ivypanda.com/essays/technology-affecting-our-daily-life/

"How Technology Affects Our Lives – Essay." IvyPanda , 28 Aug. 2023, ivypanda.com/essays/technology-affecting-our-daily-life/.

IvyPanda . (2023) 'How Technology Affects Our Lives – Essay'. 28 August.

IvyPanda . 2023. "How Technology Affects Our Lives – Essay." August 28, 2023. https://ivypanda.com/essays/technology-affecting-our-daily-life/.

1. IvyPanda . "How Technology Affects Our Lives – Essay." August 28, 2023. https://ivypanda.com/essays/technology-affecting-our-daily-life/.

Bibliography

IvyPanda . "How Technology Affects Our Lives – Essay." August 28, 2023. https://ivypanda.com/essays/technology-affecting-our-daily-life/.

  • Pros and Cons of Mobile Phones
  • Are Cell Phone Dangerous?
  • Relationship with Cell Phones
  • Mobile Phone Base Stations: Overview of Technology
  • Development of Mobile Phones and the Future
  • Is Using Cell Phone Dangerous?
  • Mobile Phone Use Effects on People’s Lifestyles
  • Mobile Phones and True Communication
  • You Cannot Live Without Mobile Phones
  • Future in Marketing using the Mobile Phone
  • Inventions That the World Would Do Without
  • Technology and Its Impact in the World
  • The Evolution of the Automobile & Its Effects on Society
  • How Computers Affect Our Lives
  • Evolution of Power Production

Study Like a Boss

Future Technology Essay

People often think that future is all about flying cars, robots and space travelling. Maybe it will be like that, who knows, but at least until this day the changes havent been remarkable. Companies are all the time investing more money on research and development. This indicates that companies and government are interested to achieve and find new technological inventions that would change the markets. All ready one of the computer related inventions, Internet, has changed the spreading of information globally.

E-companies are stocks are rising in the stock markets like rockets. This is a great example how future technology will change the economics around the world as it affects greatly our everyday life . Internet is worldwide network of connected computers . This network enables you to communicate with the rest of the world in different ways. (1) Has been approximated that the total amount of information globally doubles every 18 months, which indicates that internet, as an important part of media nowadays, affects everyone of us though we might not have a possibility to be on-line.

The approximated number of people who are on-line daily is more than 18%. As you can imagine and as you probably may have seen, there are a lot companies. You can find the big ones like Coca-Cola, Disney, Xerox, IBM. Apart from supplying (product) information and amusement, they mostly use the web for name and product branding (recognition). There’s a completely new industry with lots and lots of Net based companies like the search engines , banner exchanges, hosting services, (Net) marketers and software enterprises.

And there are others, which have expanded their originally offline business field to the Net ( Credit Card companies, Researchers, Marketers, Yellow Pages). Small and medium usiness companies selling to consumers. A great part of them use the Net to expand their offline business, others try to make a living on it. And some of them see the necessity to transfer from one to the other in the future. Business-to-business companies are also found on the Net. In short, all kind of enterprises have taken the step to the online world.

Internet is not only a way to spend time surfing, but it is also an very good way to make money by transforming products, services and markets. It is an easy way to reach people when thinking advertising and it is an easy way to people to reach the nformation wanted, but the competition between companies in the virtual reality of Internet, is as hard as in the real world. Governments space program also influences and will influence economics of the future. U. S. overnments NASA ( North American Space Association) has done great job exploring space and research new opportunities in outer space and other planets.

The question is how the new future technology will change the direction of economics and by that our living on Earth or maybe on some other planet The world population is growing fast. The room to live on earth might be a problem in future, and Earth might ot be able to feed the upcoming population. This is one of the reasons why we have to explore the space for new opportunities. The problem is the money. Are taxpayers willing to pay?

After the resent failure of sending a $266 million Pathfinder to Mars, taxpayers started doubt is the space program worth it, but mistakes that are caused by understaffed and overworked space teams are not unique to interplanetary missions , like NASAs Pathfinder mission. A single broken cord can turn to a $400 million cost, but who said it is not risky. Is this $450 billion plan going to give taxpayers their moneys back? No, because the new technology will help their children and grandchildren to live their everyday lives in polluted and overpopulated environment caused by the past generations.

In recent years , cost-reduction efforts throughout Americas space industry have had profound effects on the workforce. Older and more experienced workers were the predominant target of cost-conscious layoffs or of contract swapping prior to retirement-benefits vesting. But even the younger workers, supposedly their eventual replacement, were victimized by the cuts. (3)This is what the taxpayers should understand; their selfish use of oney on researching new technology might be a threat for the future generations.

If we were to bring back a rock in 2005 that clearly shows evidence of ancient life on the planet or fi we were to find evidence of life on Mars, that would be great impetus for a human program. A manned mission must have a compelling scientific or economic rationale, said Alan Ladwig, NASAs associate administrator. (4) The greatest effect of future technology has is on the productivity. Technological change, or innovation, is a contributor to the growth of productivity. From the development of plows to the nvention of computers, history shows many example of technologies that have increased productivity .

New products, new methods of production, new ways of organizing production(Fords assembly line) or marketing products and new methods of communication can each demonstrate how productivity increases. And when productivity increases faster than the population, standard of living increases. This makes peoples everyday life easier and the quality of living is higher. One example how technological change has changed our living past 10 years have been reusable products and materials. Recycling and reusable aterials have made our quality of living better by minimizing the production of trash.

Also the technological changes in agriculture have increased productivity of our basic need products. One of the most dramatic high-tech developments arriving at the millenium is the obsolescence of money. The advent of the Internet and other new media marketplaces, like interactive TV, demands a new kind of currency that is secure, virtual, global, and digital. The death of hard cash, and its rebirth as digital currency, will transform all transactions in society and touch industry worldwide.

The emerging digital market and the new interactive consumer challenge our assumptions about how to conduct business. 30 million people today with a spending power of over$100 billion, represents a serious market no business can afford to ignore. This new consumer is virtual, global, interactive and multimedia-driven. (5) The digital money has taken over. The simple cash has changed into numbers on the computers. People pay their bills from home by using computers and Internet, people pay their grocery with a plastic credit card and people go shopping from home and they dont ven have to move, just use the keyboard. A huge problem in the future will be the energy.

Already we are noticing that our sources of energy will be empty someday. A team of scientists and engineers have predicted that the technological trends that will shape the world in next 50 years will be high powered energy packages. On the energy front are highpower energy packages such as microgenerators of electricity that will make electronic products and appliances highly mobile; environmentally clean, decentralized power sources; batteries linked to solar power; and small generators fueled by natural as.

As the population of the Earth keeps increasing we have to figure out how to feed all the people who are going to live here. Globally thinking we are already suffering of the lack of the food. All over the world hunger is a big problem . Clean water will be a problem too if technological changes wont help us. Designer foods, genetically engineered foods that are environmentally friendly and highly nutritious, will fill the stores. Even cotton and wool will be genetically engineered . Water worldwide will be safe and inexpensive because echnology will provide advanced filtering, processing, and delivery.

Desalination and water extraction from air are also possible. In the years ahead new technologies will become much more personalized, and they will closely affect almost every aspect of our lives. (7) This was an very optimistic prediction of the future, but until then we have to keep people worldwide alive without the new innovations. The money countries are using to military should go to the people who suffer hunger and to the research of cures of globally spread diseases like HIV and cancer.

No one knows whats going to happen in the future, but the new future technology can at least give us a direction. Our actions have a great effect how we and the upcoming generations are going to live on Earth. Putting money now on research and development gives a better economic base that we can rely on. The biggestchange to our economic will have the increased productivity. By increased productivity our standard of living will be higher and our everyday life will be easier. May everyone of us be there to witness the flying cars and talking robots, so that we can be proud of our achievements.

To export a reference to this article please select a referencing style below:

Related posts:

  • Technology Changing the Workforce
  • Technology: The Way Of The Future?
  • Technology and the Future of Work
  • A Ticking Timebomba Question Of Technology
  • The technology of today
  • The technology of Superstitions
  • Technology Development In The Last Two Decades
  • Fragmentation, Dependence On Technology
  • Books and Technology: Is the Future of Printed Books in Jeopardy
  • The Role of Technology in Management Leadership
  • Brave New World – Technology
  • Organizational Technology Essay
  • Frankenstein: Technology Essay

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Talk to our experts

1800-120-456-456

  • Technology Essay

ffImage

Essay on Technology

The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes. Technology provides innovative ways of doing work through various smart and innovative means. 

Electronic appliances, gadgets, faster modes of communication, and transport have added to the comfort factor in our lives. It has helped in improving the productivity of individuals and different business enterprises. Technology has brought a revolution in many operational fields. It has undoubtedly made a very important contribution to the progress that mankind has made over the years.

The Advancement of Technology:

Technology has reduced the effort and time and increased the efficiency of the production requirements in every field. It has made our lives easy, comfortable, healthy, and enjoyable. It has brought a revolution in transport and communication. The advancement of technology, along with science, has helped us to become self-reliant in all spheres of life. With the innovation of a particular technology, it becomes part of society and integral to human lives after a point in time.

Technology is Our Part of Life:

Technology has changed our day-to-day lives. Technology has brought the world closer and better connected. Those days have passed when only the rich could afford such luxuries. Because of the rise of globalisation and liberalisation, all luxuries are now within the reach of the average person. Today, an average middle-class family can afford a mobile phone, a television, a washing machine, a refrigerator, a computer, the Internet, etc. At the touch of a switch, a man can witness any event that is happening in far-off places.  

Benefits of Technology in All Fields: 

We cannot escape technology; it has improved the quality of life and brought about revolutions in various fields of modern-day society, be it communication, transportation, education, healthcare, and many more. Let us learn about it.

Technology in Communication:

With the advent of technology in communication, which includes telephones, fax machines, cellular phones, the Internet, multimedia, and email, communication has become much faster and easier. It has transformed and influenced relationships in many ways. We no longer need to rely on sending physical letters and waiting for several days for a response. Technology has made communication so simple that you can connect with anyone from anywhere by calling them via mobile phone or messaging them using different messaging apps that are easy to download.

Innovation in communication technology has had an immense influence on social life. Human socialising has become easier by using social networking sites, dating, and even matrimonial services available on mobile applications and websites.

Today, the Internet is used for shopping, paying utility bills, credit card bills, admission fees, e-commerce, and online banking. In the world of marketing, many companies are marketing and selling their products and creating brands over the internet. 

In the field of travel, cities, towns, states, and countries are using the web to post detailed tourist and event information. Travellers across the globe can easily find information on tourism, sightseeing, places to stay, weather, maps, timings for events, transportation schedules, and buy tickets to various tourist spots and destinations.

Technology in the Office or Workplace:

Technology has increased efficiency and flexibility in the workspace. Technology has made it easy to work remotely, which has increased the productivity of the employees. External and internal communication has become faster through emails and apps. Automation has saved time, and there is also a reduction in redundancy in tasks. Robots are now being used to manufacture products that consistently deliver the same product without defect until the robot itself fails. Artificial Intelligence and Machine Learning technology are innovations that are being deployed across industries to reap benefits.

Technology has wiped out the manual way of storing files. Now files are stored in the cloud, which can be accessed at any time and from anywhere. With technology, companies can make quick decisions, act faster towards solutions, and remain adaptable. Technology has optimised the usage of resources and connected businesses worldwide. For example, if the customer is based in America, he can have the services delivered from India. They can communicate with each other in an instant. Every company uses business technology like virtual meeting tools, corporate social networks, tablets, and smart customer relationship management applications that accelerate the fast movement of data and information.

Technology in Education:

Technology is making the education industry improve over time. With technology, students and parents have a variety of learning tools at their fingertips. Teachers can coordinate with classrooms across the world and share their ideas and resources online. Students can get immediate access to an abundance of good information on the Internet. Teachers and students can access plenty of resources available on the web and utilise them for their project work, research, etc. Online learning has changed our perception of education. 

The COVID-19 pandemic brought a paradigm shift using technology where school-going kids continued their studies from home and schools facilitated imparting education by their teachers online from home. Students have learned and used 21st-century skills and tools, like virtual classrooms, AR (Augmented Reality), robots, etc. All these have increased communication and collaboration significantly. 

Technology in Banking:

Technology and banking are now inseparable. Technology has boosted digital transformation in how the banking industry works and has vastly improved banking services for their customers across the globe.

Technology has made banking operations very sophisticated and has reduced errors to almost nil, which were somewhat prevalent with manual human activities. Banks are adopting Artificial Intelligence (AI) to increase their efficiency and profits. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. 

You can now access your money, handle transactions like paying bills, money transfers, and online purchases from merchants, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe. You do not need to carry cash in your pocket or wallet; the payments can be made digitally using e-wallets. Mobile banking, banking apps, and cybersecurity are changing the face of the banking industry.

Manufacturing and Production Industry Automation:

At present, manufacturing industries are using all the latest technologies, ranging from big data analytics to artificial intelligence. Big data, ARVR (Augmented Reality and Virtual Reality), and IoT (Internet of Things) are the biggest manufacturing industry players. Automation has increased the level of productivity in various fields. It has reduced labour costs, increased efficiency, and reduced the cost of production.

For example, 3D printing is used to design and develop prototypes in the automobile industry. Repetitive work is being done easily with the help of robots without any waste of time. This has also reduced the cost of the products. 

Technology in the Healthcare Industry:

Technological advancements in the healthcare industry have not only improved our personal quality of life and longevity; they have also improved the lives of many medical professionals and students who are training to become medical experts. It has allowed much faster access to the medical records of each patient. 

The Internet has drastically transformed patients' and doctors’ relationships. Everyone can stay up to date on the latest medical discoveries, share treatment information, and offer one another support when dealing with medical issues. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many sites and apps through which we can contact doctors and get medical help. 

Breakthrough innovations in surgery, artificial organs, brain implants, and networked sensors are examples of transformative developments in the healthcare industry. Hospitals use different tools and applications to perform their administrative tasks, using digital marketing to promote their services.

Technology in Agriculture:

Today, farmers work very differently than they would have decades ago. Data analytics and robotics have built a productive food system. Digital innovations are being used for plant breeding and harvesting equipment. Software and mobile devices are helping farmers harvest better. With various data and information available to farmers, they can make better-informed decisions, for example, tracking the amount of carbon stored in soil and helping with climate change.

Disadvantages of Technology:

People have become dependent on various gadgets and machines, resulting in a lack of physical activity and tempting people to lead an increasingly sedentary lifestyle. Even though technology has increased the productivity of individuals, organisations, and the nation, it has not increased the efficiency of machines. Machines cannot plan and think beyond the instructions that are fed into their system. Technology alone is not enough for progress and prosperity. Management is required, and management is a human act. Technology is largely dependent on human intervention. 

Computers and smartphones have led to an increase in social isolation. Young children are spending more time surfing the internet, playing games, and ignoring their real lives. Usage of technology is also resulting in job losses and distracting students from learning. Technology has been a reason for the production of weapons of destruction.

Dependency on technology is also increasing privacy concerns and cyber crimes, giving way to hackers.

arrow-right

FAQs on Technology Essay

1. What is technology?

Technology refers to innovative ways of doing work through various smart means. The advancement of technology has played an important role in the development of human civilization. It has helped in improving the productivity of individuals and businesses.

2. How has technology changed the face of banking?

Technology has made banking operations very sophisticated. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. You can now access your money, handle transactions, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe.

3. How has technology brought a revolution in the medical field?

Patients and doctors keep each other up to date on the most recent medical discoveries, share treatment information, and offer each other support when dealing with medical issues. It has allowed much faster access to the medical records of each patient. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many websites and mobile apps through which we can contact doctors and get medical help.

4. Are we dependent on technology?

Yes, today, we are becoming increasingly dependent on technology. Computers, smartphones, and modern technology have helped humanity achieve success and progress. However, in hindsight, people need to continuously build a healthy lifestyle, sorting out personal problems that arise due to technological advancements in different aspects of human life.

  • Essay On Technology

Essay on Technology

500+ words essay on technology.

The word technology comes from the two Greek words, ‘techne’ and ‘logos’. Techne means art, skills, or craft, and Logos means a word, saying, or expression that expresses inward thought. Thus, technology means the skill to convey an idea to reach a goal. But nowadays, the term technology mainly signifies the knowledge of tools, machines, techniques, crafts, systems, and organisation methods to solve a problem. Today, technological advancement has provided the human race with the ability to control and adapt to their natural environment. In this Essay on Technology, students will know the importance of technology, its advantages and disadvantages and the future of technology.

How Has Technology Changed Our Lives?

Various innovations and development took place in the field of technology which has made a significant impact on our lives in different ways. With the invention of technology, we become more powerful. We have the ability to transform the environment, extend our lifetime, create big and interconnected societies and even explore various new things about the universe. Today, we use technology from morning to evening, from the simplest nail cutter to television and personal laptop. Technology has touched all aspects of our lives, whether it is mobile phones, kettles, kitchen microwaves, electric cookers, television, water heaters, remote control, fridge, and other larger communication systems such as internet facilities, railways, air routes, and so on. Thus, technology plays an extremely crucial role in the lives of human beings.

Advantages of Technology

The advancement in technology has made our lives easier, more comfortable and enjoyable. It has reduced the effort and time required to complete a task, thus enhancing the quality and efficiency of work. Technology has become a part of our life and benefited us in many ways. Today, we can communicate with people living in any city or country. Communication has become much faster and easier as we are just a click away from people. In education, technology has played a vital role, especially during the COVID-19 breakdown period. It has brought virtual and online classes for students and teachers across the globe to share knowledge, ideas and resources online. Moreover, technology has made it easier for students to understand complex concepts with the help of virtualisation, graphics, 3D animation and diagrams.

Technology is considered to be the driving force behind improvements in the medical and healthcare field. Modern machines have helped doctors to perform operations successfully. Due to technology, the lifespan of the common person has increased. There are many more sectors, such as banking, automation, automobile, and various industries, where technology is making significant changes and helping us.

Disadvantages of Technology

Although we have so many advantages of technology, there are also disadvantages. Robots and machines have taken over the job of many people. Instead of bringing people together, technology has made them socially isolated. People now spend most of their time on smartphones or computers rather than interacting with other people. Technology in education has reduced the intellectual and analytical ability of students. It is like spoon-feeding to students as they don’t have the reasoning and aptitude skills to think differently. Technology has raised the issue of internet privacy. So, one has to be very careful while using banking passwords to make online transactions.

Future of Technology

The future of technology seems to be exciting but also scary. Futuristic predictions in technology can dish out some exciting or scary visions for the future of machines and science. Technology will either enhance or replace the products and activities that are near and dear to us. The answer to our technological dilemma about what will be the upcoming technological innovation in the future is not surprising. In the past, technology was mainly focused on retaining more information and efficient processing, but in the future, it will be based on industrial robots, artificial intelligence, machine learning, etc.

Technology alone cannot help in building a better world. The collateral collaboration of machines and human effort is required for the progress and prosperity of the nation. We need to develop a more robust management system for the efficient functioning of technology.

Practise CBSE Essays on more topics to improve the writing section. Students can get the latest updates on CBSE/ICSE/State Board/Competitive Exams at BYJU’S website. They can also download the BYJU’S App for interactive study videos.

Frequently Asked Questions on Technology Essay

What is the simple definition of technology.

The real-time application of science and knowledge is how technology can be defined in simple terms.

Which country is ranked first in technological advancement?

Finland ranks top in technological advancement ahead of the USA according to the UNDP.

Why is the development of technology important?

Technology has now become an important part of our lives and thus technical and technological advancements are essential to take us forward in all aspects.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

technology in the future essay

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Counselling

IMAGES

  1. Technology and the Future of Work Essay Example

    technology in the future essay

  2. Technology Essay

    technology in the future essay

  3. Futurism: Technology In The Future: [Essay Example], 1366 words GradesFixer

    technology in the future essay

  4. Importance of Technology Essay

    technology in the future essay

  5. Essay on Technology

    technology in the future essay

  6. ⇉Technology and the future Essay Example

    technology in the future essay

VIDEO

  1. Future Jobs and AI Impact

  2. Science for Sustainable Future Essay, Speech, Paragraph or Short Note in English

  3. Information Technology Essay writing in English..Short Essay on Technology Information in 150 words

  4. COOLEST tech gadget ever🤯#techgadget

  5. Real or fake or future of every country #youtubeshorts #youtubeindia #futurecar #լուրեր #armenia

  6. strategies of making our earth suitable place for cleaner, greener and bluer future

COMMENTS

  1. 8 ways technology will impact our lives in the future

    Industrial applications will particularly benefit due to their larger capacity. "In the meanwhile, people will get used to better connections, higher speeds, and lower latency for their regular devices as well," he adds, before warning: "It's going to cost a lot of money.". 5. ChatGPT-like tech will become the norm.

  2. Futurism: Technology In The Future: [Essay Example], 1366 words

    Science has profoundly modified education. For one, technology has notably multiplied get right of entry to education. In medieval times, books had been uncommon and only an elite few had to get admission to academic opportunities. Individuals had to tour to centers of learning to get an education.

  3. The present and future of AI

    The 2021 report is the second in a series that will be released every five years until 2116. Titled "Gathering Strength, Gathering Storms," the report explores the various ways AI is increasingly touching people's lives in settings that range from movie recommendations and voice assistants to autonomous driving and automated medical ...

  4. How Is Technology Changing the World, and How Should the World Change

    This growing complexity makes it more difficult than ever—and more imperative than ever—for scholars to probe how technological advancements are altering life around the world in both positive and negative ways and what social, political, and legal tools are needed to help shape the development and design of technology in beneficial directions.

  5. 17 ways technology could change the world by 2027

    Innovation is critical to the future well-being of society and to driving economic growth. The World Economic Forum's Technology Pioneer community is composed of early to growth-stage companies from around the world involved in the design, development and deployment of new technologies and innovations.

  6. Essay on Future Technology

    100 Words Essay on Future Technology What is Future Technology? Future technology means the new inventions and ideas that will change how we live. Think of robots, smart cars, and computers that can learn. These things are not common now, but in the future, they might be everywhere, helping us in ways we can't imagine yet. ...

  7. How to change the future of technology

    September 7, 2021 We all have the power to shape the future of technology, say Stanford scholars. Three Stanford professors want people to press control-alt-delete on how we think about our ...

  8. Society

    essay. Future of technology. Learn from machine learning. The world is a black box full of extreme specificity: it might be predictable but that doesn't mean it is understandable. ... essay. Technology and the self. Zoom and gloom. Sitting in a videoconference is a uniformly crap experience. Instead of corroding our humanity, let's design ...

  9. Science and Technology Will Change Our Future Essay

    Changes in travel. Innovation in Science and Technology will also change travel. People will be traveling on sky car that will be cruising comfortably at a speed of 300Miles per hour using regular fuel. The sky car will be equipped with onboard computers and will be fully automated. This means that one will not need a license to fly the sky car.

  10. Technology in 2050: will it save humanity

    David Adams knew these risks when he wrote about the future of technology in the Guardian in 2004 - even citing the very same prediction as an example of how they can go awry. And from our ...

  11. How Technology Has Changed Our Lives

    Hook Examples for Technology Essay. A Digital Revolution: Enter the era of smartphones, AI, and the Internet of Things, where technology is the driving force. Join me as we explore how technology has transformed our lives and the profound impact it has on society. An Intriguing Quote: Arthur C. Clarke once said, "Any sufficiently advanced ...

  12. The Biggest Technology Trends In The Next 10 Years

    Share to Linkedin. The Biggest Technology Trends In The Next 10 Years. Adobe Stock. In 10 years, we'll be half way through the next decade. And if the previous 10 years have been anything to go ...

  13. Realizing the promise: How can education technology improve learning

    Here are five specific and sequential guidelines for decisionmakers to realize the potential of education technology to accelerate student learning. 1. Take stock of how your current schools ...

  14. 200-500 Word Example Essays about Technology

    But writing a technology essay can be challenging, especially for those needing more time or help with writer's block. ... while automation is transforming the future of work. In education, technology has revolutionized the way we learn and access information. At the same time, our dependence on technology has brought new challenges in terms of ...

  15. Future technology: 22 ideas about to change our world

    Future technology: 22 ideas about to change our world - BBC Science Focus Magazine.

  16. Technology and Its Impact in the World

    Technology is defined as the use of tools, techniques and methods of organization in solving real world problems, which aims at performing specific tasks. Technology has a profound root in the society; this is because today's world relies on the advances in technology. These advances in technology in today's world has sped people's lives ...

  17. How Does Technology Affect Our Daily Lives? Essay

    Technology affects our daily lives in various ways, from how we communicate, work, learn, entertain, and even think. In this essay, you will find out how technology has changed our society, both positively and negatively, and what challenges we face in the digital era. Read on to discover the impact of technology on our daily lives and how we can cope with it.

  18. Future Technology Essay Essay

    Future Technology Essay. People often think that future is all about flying cars, robots and space travelling. Maybe it will be like that, who knows, but at least until this day the changes havent been remarkable. Companies are all the time investing more money on research and development. This indicates that companies and government are ...

  19. Technology Essay for Students in English

    Essay on Technology. The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes.

  20. Essay on Technology For Students In English

    Essay on Technology: 500+ Words Essay on Technology is provided here to help students get familiar with the advantages and disadvantages of technology and use it in the right direction. Go through it and write more essays on similar topics. ... The future of technology seems to be exciting but also scary. Futuristic predictions in technology ...

  21. Essay on Technology in the Future

    They became bigger, better, more intelligent, and more efficient as technology progressed. As robots begin to grow in size they also grew more intelligent, they seemed to be taking over the world. Robots have slowly yet surely been taking over the world. Everywhere you look these days there seem to be robots at every corner.