54 Most Interesting Technology Research Topics for 2023

May 30, 2023

Scrambling to find technology research topics for the assignment that’s due sooner than you thought? Take a scroll down these 54 interesting technology essay topics in 10 different categories, including controversial technology topics, and some example research questions for each.

Social technology research topics

Whether you have active profiles on every social media platform, you’ve taken a social media break, or you generally try to limit your engagement as much as possible, you probably understand how pervasive social technologies have become in today’s culture. Social technology will especially appeal to those looking for widely discussed, mainstream technology essay topics.

  • How do viewers respond to virtual influencers vs human influencers? Is one more effective or ethical over the other?
  • Across social media platforms, when and where is mob mentality most prevalent? How do the nuances of mob mentality shift depending on the platform or topic?
  • Portable devices like cell phones, laptops, and tablets have certainly made daily life easier in some ways. But how have they made daily life more difficult?
  • How does access to social media affect developing brains? And what about mature brains?
  • Can dating apps alter how users perceive and interact with people in real life?
  • Studies have proven “doomscrolling” to negatively impact mental health—could there ever be any positive impacts?

Cryptocurrency and blockchain technology research topics

Following cryptocurrency and blockchain technology has been a rollercoaster the last few years. And since Bitcoin’s conception in 2009, cryptocurrency has consistently showed up on many lists of controversial technology topics.

  • Is it ethical for celebrities or influential people to promote cryptocurrencies or cryptographic assets like NFTs ?
  • What are the environmental impacts of mining cryptocurrencies? Could those impacts ever change?
  • How does cryptocurrency impact financial security and financial health?
  • Could the privacy cryptocurrency offers ever be worth the added security risks?
  • How might cryptocurrency regulations and impacts continue to evolve?
  • Created to enable cryptocurrency, blockchain has since proven useful in several other industries. What new uses could blockchain have?

Artificial intelligence technology research topics

We started 2023 with M3GAN’s box office success, and now we’re fascinated (or horrified) with ChatGPT , voice cloning , and deepfakes . While people have discussed artificial intelligence for ages, recent advances have really pushed this topic to the front of our minds. Those searching for controversial technology topics should pay close attention to this one.

  • OpenAI –the company behind ChatGPT–has shown commitment to safe, moderated AI tools that they hope will provide positive benefits to society. Sam Altman, their CEO, recently testified before a US Senate He described what AI makes possible and called for more regulation in the industry. But even with companies like OpenAI displaying efforts to produce safe AI and advocating for regulations, can AI ever have a purely positive impact? Are certain pitfalls unavoidable?
  • In a similar vein, can AI ever actually be ethically or safely produced? Will there always be certain risks?
  • How might AI tools impact society across future generations?
  • Countless movies and television shows explore the idea of AI going wrong, going back all the way to 1927’s Metropolis . What has a greater impact on public perception—representations in media or industry developments? And can public perception impact industry developments and their effectiveness?

Beauty and anti-aging technology 

Throughout human history, people in many cultures have gone to extreme lengths to capture and maintain a youthful beauty. But technology has taken the pursuit of beauty and youth to another level. For those seeking technology essay topics that are both timely and timeless, this one’s a gold mine.

  • With augmented reality technology, companies like Perfect allow app users to virtually try on makeup, hair color, hair accessories, and hand or wrist accessories. Could virtual try-ons lead to a somewhat less wasteful beauty industry? What downsides should we consider?
  • Users of the Perfect app can also receive virtual diagnoses for skin care issues and virtually “beautify” themselves with smoothed skin, erased blemishes, whitened teeth, brightened under-eye circles, and reshaped facial structures. How could advancements in beauty and anti-aging technology affect self-perception and mental health?
  • What are the best alternatives to animal testing within the beauty and anti-aging industry?
  • Is anti-aging purely a cosmetic pursuit? Could anti-aging technology provide other benefits?
  • Could people actually find a “cure” to aging? And could a cure to aging lead to longer lifespans?
  • How might longer human lifespans affect the Earth?

Geoengineering technology research topics

An umbrella term, geoengineering refers to large-scale technologies that can alter the earth and its climate. Typically, these types of technologies aim to combat climate change. Those searching for controversial technology topics should consider looking into this one.

  • What benefits can solar geoengineering provide? Can they outweigh the severe risks?
  • Compare solar geoengineering methods like mirrors in space, stratospheric aerosol injection, marine cloud brightening, and other proposed methods. How have these methods evolved? How might they continue to evolve?
  • Which direct air capture methods are most sustainable?
  • How can technology contribute to reforestation efforts?
  • What are the best uses for biochar? And how can biochar help or harm the earth?
  • Out of all the carbon geoengineering methods that exist or have been proposed, which should we focus on the most?

Creative and performing arts technology topics

While tensions often arise between artists and technology, they’ve also maintained a symbiotic relationship in many ways. It’s complicated. But of course, that’s what makes it interesting. Here’s another option for those searching for timely and timeless technology essay topics.

  • How has the relationship between art and technology evolved over time?
  • How has technology impacted the ways people create art? And how has technology impacted the ways people engage with art?
  • Technology has made creating and viewing art widely accessible. Does this increased accessibility change the value of art? And do we value physical art more than digital art?
  • Does technology complement storytelling in the performing arts? Or does technology hinder storytelling in the performing arts?
  • Which current issues in the creative or performing arts could potentially be solved with technology?

Cellular agriculture technology research topics

And another route for those drawn to controversial technology topics: cellular agriculture. You’ve probably heard about popular plant-based meat options from brands like Impossible and Beyond Meat . While products made with cellular agriculture also don’t require the raising and slaughtering of livestock, they are not plant-based. Cellular agriculture allows for the production of animal-sourced foods and materials made from cultured animal cells.

  • Many consumers have a proven bias against plant-based meats. Will that same bias extend to cultured meat, despite cultured meat coming from actual animal cells?
  • Which issues can arise from patenting genes?
  • Does the animal agriculture industry provide any benefits that cellular agriculture may have trouble replicating?
  • How might products made with cellular agriculture become more affordable?
  • Could cellular agriculture conflict with the notion of a “ circular bioeconomy ?” And should we strive for a circular bioeconomy? Can we create a sustainable relationship between technology, capitalism, and the environment, with or without cellular agriculture?

Transportation technology research topics

For decades, we’ve expected flying cars to carry us into a techno-utopia, where everything’s shiny, digital, and easy. We’ve heard promises of super fast trains that can zap us across the country or even across the world. We’ve imagined spring breaks on the moon, jet packs, and teleportation. Who wouldn’t love the option to go anywhere, anytime, super quickly? Transportation technology is another great option for those seeking widely discussed, mainstream technology essay topics.

  • Once upon a time, Lady Gaga was set to perform in space as a promotion for Virgin Galactic . While Virgin Galactic never actually launched the iconic musician/actor, soon, they hope to launch their first commercial flight full of civilians–who paid $450,000 a pop–on a 90-minute trip into the stars. And if you think that’s pricey, SpaceX launched three businessmen into space for $55 million in April, 2022 (though with meals included, this is actually a total steal). So should we be launching people into space just for fun? What are the impacts of space tourism?
  • Could technology improve the way hazardous materials get transported?
  • How can the 5.9 GHz Safety Band affect drivers?
  • Which might be safer: self-driving cars or self-flying airplanes?
  • Compare hyperloop and maglev Which is better and why?
  • Can technology improve safety for cyclists?

Gaming technology topics

A recent study involving over 2000 children found links between video game play and enhanced cognitive abilities. While many different studies have found the impacts of video games to be positive or neutral, we still don’t fully understand the impact of every type of video game on every type of brain. Regardless, most people have opinions on video gaming. So this one’s for those seeking widely discussed, mainstream, and controversial technology topics.

  • Are different types or genres of video games more cognitively beneficial than others? Or are certain gaming consoles more cognitively beneficial than others?
  • How do the impacts of video games differ from other types of games, such as board games or puzzles?
  • What ethical challenges and safety risks come with virtual reality gaming?
  • How does a player perceive reality during a virtual reality game compared to during other types of video games?
  • Can neurodivergent brains benefit from video games in different ways than neurotypical brains?

Medical technology 

Advancements in healthcare have the power to change and save lives. In the last ten years, countless new medical technologies have been developed, and in the next ten years, countless more will likely emerge. Always relevant and often controversial, this final technology research topic could interest anyone.

  • Which ethical issues might arise from editing genes using CRISPR-Cas9 technology? And should this technology continue to be illegal in the United States?
  • How has telemedicine impacted patients and the healthcare they receive?
  • Can neurotechnology devices potentially affect a user’s agency, identity, privacy, and/or cognitive liberty?
  • How could the use of medical 3-D printing continue to evolve?
  • Are patients more likely to skip digital therapeutics than in-person therapeutic methods? And can the increased screen-time required by digital therapeutics impact mental health

What do you do next?

Now that you’ve picked from this list of technology essay topics, you can do a deep dive and immerse yourself in new ideas, new information, and new perspectives. And of course, now that these topics have motivated you to change the world, look into the best computer science schools , the top feeders to tech and Silicon Valley , the best summer programs for STEM students , and the best biomedical engineering schools .

  • College Success
  • High School Success

Mariya holds a BFA in Creative Writing from the Pratt Institute and is currently pursuing an MFA in writing at the University of California Davis. Mariya serves as a teaching assistant in the English department at UC Davis. She previously served as an associate editor at Carve Magazine for two years, where she managed 60 fiction writers. She is the winner of the 2015 Stony Brook Fiction Prize, and her short stories have been published in Mid-American Review , Cutbank , Sonora Review , New Orleans Review , and The Collagist , among other magazines.

  • 2-Year Colleges
  • Application Strategies
  • Best Colleges by Major
  • Best Colleges by State
  • Big Picture
  • Career & Personality Assessment
  • College Essay
  • College Search/Knowledge
  • Costs & Financial Aid
  • Dental School Admissions
  • Extracurricular Activities
  • Graduate School Admissions
  • High Schools
  • Law School Admissions
  • Medical School Admissions
  • Navigating the Admissions Process
  • Online Learning
  • Private High School Spotlight
  • Summer Program Spotlight
  • Summer Programs
  • Test Prep Provider Spotlight

“Innovative and invaluable…use this book as your college lifeline.”

— Lynn O'Shaughnessy

Nationally Recognized College Expert

College Planning in Your Inbox

Join our information-packed monthly newsletter.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 25 October 2021

Augmented reality and virtual reality displays: emerging technologies and future perspectives

  • Jianghao Xiong 1 ,
  • En-Lin Hsiang 1 ,
  • Ziqian He 1 ,
  • Tao Zhan   ORCID: orcid.org/0000-0001-5511-6666 1 &
  • Shin-Tson Wu   ORCID: orcid.org/0000-0002-0943-0440 1  

Light: Science & Applications volume  10 , Article number:  216 ( 2021 ) Cite this article

114k Accesses

431 Citations

36 Altmetric

Metrics details

  • Liquid crystals

With rapid advances in high-speed communication and computation, augmented reality (AR) and virtual reality (VR) are emerging as next-generation display platforms for deeper human-digital interactions. Nonetheless, to simultaneously match the exceptional performance of human vision and keep the near-eye display module compact and lightweight imposes unprecedented challenges on optical engineering. Fortunately, recent progress in holographic optical elements (HOEs) and lithography-enabled devices provide innovative ways to tackle these obstacles in AR and VR that are otherwise difficult with traditional optics. In this review, we begin with introducing the basic structures of AR and VR headsets, and then describing the operation principles of various HOEs and lithography-enabled devices. Their properties are analyzed in detail, including strong selectivity on wavelength and incident angle, and multiplexing ability of volume HOEs, polarization dependency and active switching of liquid crystal HOEs, device fabrication, and properties of micro-LEDs (light-emitting diodes), and large design freedoms of metasurfaces. Afterwards, we discuss how these devices help enhance the AR and VR performance, with detailed description and analysis of some state-of-the-art architectures. Finally, we cast a perspective on potential developments and research directions of these photonic devices for future AR and VR displays.

Similar content being viewed by others

research paper topics emerging technologies

Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications

Kun Yin, En-Lin Hsiang, … Shin-Tson Wu

research paper topics emerging technologies

Achromatic diffractive liquid-crystal optics for virtual reality displays

Zhenyi Luo, Yannanqi Li, … Shin-Tson Wu

research paper topics emerging technologies

Metasurface wavefront control for high-performance user-natural augmented reality waveguide glasses

Hyunpil Boo, Yoo Seung Lee, … Chee Wei Wong

Introduction

Recent advances in high-speed communication and miniature mobile computing platforms have escalated a strong demand for deeper human-digital interactions beyond traditional flat panel displays. Augmented reality (AR) and virtual reality (VR) headsets 1 , 2 are emerging as next-generation interactive displays with the ability to provide vivid three-dimensional (3D) visual experiences. Their useful applications include education, healthcare, engineering, and gaming, just to name a few 3 , 4 , 5 . VR embraces a total immersive experience, while AR promotes the interaction between user, digital contents, and real world, therefore displaying virtual images while remaining see-through capability. In terms of display performance, AR and VR face several common challenges to satisfy demanding human vision requirements, including field of view (FoV), eyebox, angular resolution, dynamic range, and correct depth cue, etc. Another pressing demand, although not directly related to optical performance, is ergonomics. To provide a user-friendly wearing experience, AR and VR should be lightweight and ideally have a compact, glasses-like form factor. The above-mentioned requirements, nonetheless, often entail several tradeoff relations with one another, which makes the design of high-performance AR/VR glasses/headsets particularly challenging.

In the 1990s, AR/VR experienced the first boom, which quickly subsided due to the lack of eligible hardware and digital content 6 . Over the past decade, the concept of immersive displays was revisited and received a new round of excitement. Emerging technologies like holography and lithography have greatly reshaped the AR/VR display systems. In this article, we firstly review the basic requirements of AR/VR displays and their associated challenges. Then, we briefly describe the properties of two emerging technologies: holographic optical elements (HOEs) and lithography-based devices (Fig. 1 ). Next, we separately introduce VR and AR systems because of their different device structures and requirements. For the immersive VR system, the major challenges and how these emerging technologies help mitigate the problems will be discussed. For the see-through AR system, we firstly review the present status of light engines and introduce some architectures for the optical combiners. Performance summaries on microdisplay light engines and optical combiners will be provided, that serve as a comprehensive overview of the current AR display systems.

figure 1

The left side illustrates HOEs and lithography-based devices. The right side shows the challenges in VR and architectures in AR, and how the emerging technologies can be applied

Key parameters of AR and VR displays

AR and VR displays face several common challenges to satisfy the demanding human vision requirements, such as FoV, eyebox, angular resolution, dynamic range, and correct depth cue, etc. These requirements often exhibit tradeoffs with one another. Before diving into detailed relations, it is beneficial to review the basic definitions of the above-mentioned display parameters.

Definition of parameters

Taking a VR system (Fig. 2a ) as an example. The light emitting from the display module is projected to a FoV, which can be translated to the size of the image perceived by the viewer. For reference, human vision’s horizontal FoV can be as large as 160° for monocular vision and 120° for overlapped binocular vision 6 . The intersection area of ray bundles forms the exit pupil, which is usually correlated with another parameter called eyebox. The eyebox defines the region within which the whole image FoV can be viewed without vignetting. It therefore generally manifests a 3D geometry 7 , whose volume is strongly dependent on the exit pupil size. A larger eyebox offers more tolerance to accommodate the user’s diversified interpupillary distance (IPD) and wiggling of headset when in use. Angular resolution is defined by dividing the total resolution of the display panel by FoV, which measures the sharpness of a perceived image. For reference, a human visual acuity of 20/20 amounts to 1 arcmin angular resolution, or 60 pixels per degree (PPD), which is considered as a common goal for AR and VR displays. Another important feature of a 3D display is depth cue. Depth cue can be induced by displaying two separate images to the left eye and the right eye, which forms the vergence cue. But the fixed depth of the displayed image often mismatches with the actual depth of the intended 3D image, which leads to incorrect accommodation cues. This mismatch causes the so-called vergence-accommodation conflict (VAC), which will be discussed in detail later. One important observation is that the VAC issue may be more serious in AR than VR, because the image in an AR display is directly superimposed onto the real-world with correct depth cues. The image contrast is dependent on the display panel and stray light. To achieve a high dynamic range, the display panel should exhibit high brightness, low dark level, and more than 10-bits of gray levels. Nowadays, the display brightness of a typical VR headset is about 150–200 cd/m 2 (or nits).

figure 2

a Schematic of a VR display defining FoV, exit pupil, eyebox, angular resolution, and accommodation cue mismatch. b Sketch of an AR display illustrating ACR

Figure 2b depicts a generic structure of an AR display. The definition of above parameters remains the same. One major difference is the influence of ambient light on the image contrast. For a see-through AR display, ambient contrast ratio (ACR) 8 is commonly used to quantify the image contrast:

where L on ( L off ) represents the on (off)-state luminance (unit: nit), L am is the ambient luminance, and T is the see-through transmittance. In general, ambient light is measured in illuminance (lux). For the convenience of comparison, we convert illuminance to luminance by dividing a factor of π, assuming the emission profile is Lambertian. In a normal living room, the illuminance is about 100 lux (i.e., L am  ≈ 30 nits), while in a typical office lighting condition, L am  ≈ 150 nits. For outdoors, on an overcast day, L am  ≈ 300 nits, and L am  ≈ 3000 nits on a sunny day. For AR displays, a minimum ACR should be 3:1 for recognizable images, 5:1 for adequate readability, and ≥10:1 for outstanding readability. To make a simple estimate without considering all the optical losses, to achieve ACR = 10:1 in a sunny day (~3000 nits), the display needs to deliver a brightness of at least 30,000 nits. This imposes big challenges in finding a high brightness microdisplay and designing a low loss optical combiner.

Tradeoffs and potential solutions

Next, let us briefly review the tradeoff relations mentioned earlier. To begin with, a larger FoV leads to a lower angular resolution for a given display resolution. In theory, to overcome this tradeoff only requires a high-resolution-display source, along with high-quality optics to support the corresponding modulation transfer function (MTF). To attain 60 PPD across 100° FoV requires a 6K resolution for each eye. This may be realizable in VR headsets because a large display panel, say 2–3 inches, can still accommodate a high resolution with acceptable manufacture cost. However, for a glasses-like wearable AR display, the conflict between small display size and the high solution becomes obvious as further shrinking the pixel size of a microdisplay is challenging.

To circumvent this issue, the concept of the foveated display is proposed 9 , 10 , 11 , 12 , 13 . The idea is based on that the human eye only has high visual acuity in the central fovea region, which accounts for about 10° FoV. If the high-resolution image is only projected to fovea while the peripheral image remains low resolution, then a microdisplay with 2K resolution can satisfy the need. Regarding the implementation method of foveated display, a straightforward way is to optically combine two display sources 9 , 10 , 11 : one for foveal and one for peripheral FoV. This approach can be regarded as spatial multiplexing of displays. Alternatively, time-multiplexing can also be adopted, by temporally changing the optical path to produce different magnification factors for the corresponding FoV 12 . Finally, another approach without multiplexing is to use a specially designed lens with intended distortion to achieve non-uniform resolution density 13 . Aside from the implementation of foveation, another great challenge is to dynamically steer the foveated region as the viewer’s eye moves. This task is strongly related to pupil steering, which will be discussed in detail later.

A larger eyebox or FoV usually decreases the image brightness, which often lowers the ACR. This is exactly the case for a waveguide AR system with exit pupil expansion (EPE) while operating under a strong ambient light. To improve ACR, one approach is to dynamically adjust the transmittance with a tunable dimmer 14 , 15 . Another solution is to directly boost the image brightness with a high luminance microdisplay and an efficient combiner optics. Details of this topic will be discussed in the light engine section.

Another tradeoff of FoV and eyebox in geometric optical systems results from the conservation of etendue (or optical invariant). To increase the system etendue requires a larger optics, which in turn compromises the form factor. Finally, to address the VAC issue, the display system needs to generate a proper accommodation cue, which often requires the modulation of image depth or wavefront, neither of which can be easily achieved in a traditional geometric optical system. While remarkable progresses have been made to adopt freeform surfaces 16 , 17 , 18 , to further advance AR and VR systems requires additional novel optics with a higher degree of freedom in structure design and light modulation. Moreover, the employed optics should be thin and lightweight. To mitigate the above-mentioned challenges, diffractive optics is a strong contender. Unlike geometric optics relying on curved surfaces to refract or reflect light, diffractive optics only requires a thin layer of several micrometers to establish efficient light diffractions. Two major types of diffractive optics are HOEs based on wavefront recording and manually written devices like surface relief gratings (SRGs) based on lithography. While SRGs have large design freedoms of local grating geometry, a recent publication 19 indicates the combination of HOE and freeform optics can also offer a great potential for arbitrary wavefront generation. Furthermore, the advances in lithography have also enabled optical metasurfaces beyond diffractive and refractive optics, and miniature display panels like micro-LED (light-emitting diode). These devices hold the potential to boost the performance of current AR/VR displays, while keeping a lightweight and compact form factor.

Formation and properties of HOEs

HOE generally refers to a recorded hologram that reproduces the original light wavefront. The concept of holography is proposed by Dennis Gabor 20 , which refers to the process of recording a wavefront in a medium (hologram) and later reconstructing it with a reference beam. Early holography uses intensity-sensitive recording materials like silver halide emulsion, dichromated gelatin, and photopolymer 21 . Among them, photopolymer stands out due to its easy fabrication and ability to capture high-fidelity patterns 22 , 23 . It has therefore found extensive applications like holographic data storage 23 and display 24 , 25 . Photopolymer HOEs (PPHOEs) have a relatively small refractive index modulation and therefore exhibits a strong selectivity on the wavelength and incident angle. Another feature of PPHOE is that several holograms can be recorded into a photopolymer film by consecutive exposures. Later, liquid-crystal holographic optical elements (LCHOEs) based on photoalignment polarization holography have also been developed 25 , 26 . Due to the inherent anisotropic property of liquid crystals, LCHOEs are extremely sensitive to the polarization state of the input light. This feature, combined with the polarization modulation ability of liquid crystal devices, offers a new possibility for dynamic wavefront modulation in display systems.

The formation of PPHOE is illustrated in Fig. 3a . When exposed to an interfering field with high-and-low intensity fringes, monomers tend to move toward bright fringes due to the higher local monomer-consumption rate. As a result, the density and refractive index is slightly larger in bright regions. Note the index modulation δ n here is defined as the difference between the maximum and minimum refractive indices, which may be twice the value in other definitions 27 . The index modulation δ n is typically in the range of 0–0.06. To understand the optical properties of PPHOE, we simulate a transmissive grating and a reflective grating using rigorous coupled-wave analysis (RCWA) 28 , 29 and plot the results in Fig. 3b . Details of grating configuration can be found in Table S1 . Here, the reason for only simulating gratings is that for a general HOE, the local region can be treated as a grating. The observation of gratings can therefore offer a general insight of HOEs. For a transmissive grating, its angular bandwidth (efficiency > 80%) is around 5° ( λ  = 550 nm), while the spectral band is relatively broad, with bandwidth around 175 nm (7° incidence). For a reflective grating, its spectral band is narrow, with bandwidth around 10 nm. The angular bandwidth varies with the wavelength, ranging from 2° to 20°. The strong selectivity of PPHOE on wavelength and incident angle is directly related to its small δ n , which can be adjusted by controlling the exposure dosage.

figure 3

a Schematic of the formation of PPHOE. Simulated efficiency plots for b1 transmissive and b2 reflective PPHOEs. c Working principle of multiplexed PPHOE. d Formation and molecular configurations of LCHOEs. Simulated efficiency plots for e1 transmissive and e2 reflective LCHOEs. f Illustration of polarization dependency of LCHOEs

A distinctive feature of PPHOE is the ability to multiplex several holograms into one film sample. If the exposure dosage of a recording process is controlled so that the monomers are not completely depleted in the first exposure, the remaining monomers can continue to form another hologram in the following recording process. Because the total amount of monomer is fixed, there is usually an efficiency tradeoff between multiplexed holograms. The final film sample would exhibit the wavefront modulation functions of multiple holograms (Fig. 3c ).

Liquid crystals have also been used to form HOEs. LCHOEs can generally be categorized into volume-recording type and surface-alignment type. Volume-recording type LCHOEs are either based on early polarization holography recordings with azo-polymer 30 , 31 , or holographic polymer-dispersed liquid crystals (HPDLCs) 32 , 33 formed by liquid-crystal-doped photopolymer. Surface-alignment type LCHOEs are based on photoalignment polarization holography (PAPH) 34 . The first step is to record the desired polarization pattern in a thin photoalignment layer, and the second step is to use it to align the bulk liquid crystal 25 , 35 . Due to the simple fabrication process, high efficiency, and low scattering from liquid crystal’s self-assembly nature, surface-alignment type LCHOEs based on PAPH have recently attracted increasing interest in applications like near-eye displays. Here, we shall focus on this type of surface-alignment LCHOE and refer to it as LCHOE thereafter for simplicity.

The formation of LCHOEs is illustrated in Fig. 3d . The information of the wavefront and the local diffraction pattern is recorded in a thin photoalignment layer. The volume liquid crystal deposited on the photoalignment layer, depending on whether it is nematic liquid crystal or cholesteric liquid crystal (CLC), forms a transmissive or a reflective LCHOE. In a transmissive LCHOE, the bulk nematic liquid crystal molecules generally follow the pattern of the bottom alignment layer. The smallest allowable pattern period is governed by the liquid crystal distortion-free energy model, which predicts the pattern period should generally be larger than sample thickness 36 , 37 . This results in a maximum diffraction angle under 20°. On the other hand, in a reflective LCHOE 38 , 39 , the bulk CLC molecules form a stable helical structure, which is tilted to match the k -vector of the bottom pattern. The structure exhibits a very low distorted free energy 40 , 41 and can accommodate a pattern period that is small enough to diffract light into the total internal reflection (TIR) of a glass substrate.

The diffraction property of LCHOEs is shown in Fig. 3e . The maximum refractive index modulation of LCHOE is equal to the liquid crystal birefringence (Δ n ), which may vary from 0.04 to 0.5, depending on the molecular conjugation 42 , 43 . The birefringence used in our simulation is Δ n  = 0.15. Compared to PPHOEs, the angular and spectral bandwidths are significantly larger for both transmissive and reflective LCHOEs. For a transmissive LCHOE, its angular bandwidth is around 20° ( λ  = 550 nm), while the spectral bandwidth is around 300 nm (7° incidence). For a reflective LCHOE, its spectral bandwidth is around 80 nm and angular bandwidth could vary from 15° to 50°, depending on the wavelength.

The anisotropic nature of liquid crystal leads to LCHOE’s unique polarization-dependent response to an incident light. As depicted in Fig. 3f , for a transmissive LCHOE the accumulated phase is opposite for the conjugated left-handed circular polarization (LCP) and right-handed circular polarization (RCP) states, leading to reversed diffraction directions. For a reflective LCHOE, the polarization dependency is similar to that of a normal CLC. For the circular polarization with the same handedness as the helical structure of CLC, the diffraction is strong. For the opposite circular polarization, the diffraction is negligible.

Another distinctive property of liquid crystal is its dynamic response to an external voltage. The LC reorientation can be controlled with a relatively low voltage (<10 V rms ) and the response time is on the order of milliseconds, depending mainly on the LC viscosity and layer thickness. Methods to dynamically control LCHOEs can be categorized as active addressing and passive addressing, which can be achieved by either directly switching the LCHOE or modulating the polarization state with an active waveplate. Detailed addressing methods will be described in the VAC section.

Lithography-enabled devices

Lithography technologies are used to create arbitrary patterns on wafers, which lays the foundation of the modern integrated circuit industry 44 . Photolithography is suitable for mass production while electron/ion beam lithography is usually used to create photomask for photolithography or to write structures with nanometer-scale feature size. Recent advances in lithography have enabled engineered structures like optical metasurfaces 45 , SRGs 46 , as well as micro-LED displays 47 . Metasurfaces exhibit a remarkable design freedom by varying the shape of meta-atoms, which can be utilized to achieve novel functions like achromatic focus 48 and beam steering 49 . Similarly, SRGs also offer a large design freedom by manipulating the geometry of local grating regions to realize desired optical properties. On the other hand, micro-LED exhibits several unique features, such as ultrahigh peak brightness, small aperture ratio, excellent stability, and nanosecond response time, etc. As a result, micro-LED is a promising candidate for AR and VR systems for achieving high ACR and high frame rate for suppressing motion image blurs. In the following section, we will briefly review the fabrication and properties of micro-LEDs and optical modulators like metasurfaces and SRGs.

Fabrication and properties of micro-LEDs

LEDs with a chip size larger than 300 μm have been widely used in solid-state lighting and public information displays. Recently, micro-LEDs with chip sizes <5 μm have been demonstrated 50 . The first micro-LED disc with a diameter of about 12 µm was demonstrated in 2000 51 . After that, a single color (blue or green) LED microdisplay was demonstrated in 2012 52 . The high peak brightness, fast response time, true dark state, and long lifetime of micro-LEDs are attractive for display applications. Therefore, many companies have since released their micro-LED prototypes or products, ranging from large-size TVs to small-size microdisplays for AR/VR applications 53 , 54 . Here, we focus on micro-LEDs for near-eye display applications. Regarding the fabrication of micro-LEDs, through the metal-organic chemical vapor deposition (MOCVD) method, the AlGaInP epitaxial layer is grown on GaAs substrate for red LEDs, and GaN epitaxial layers on sapphire substrate for green and blue LEDs. Next, a photolithography process is applied to define the mesa and deposit electrodes. To drive the LED array, the fabricated micro-LEDs are transferred to a CMOS (complementary metal oxide semiconductor) driver board. For a small size (<2 inches) microdisplay used in AR or VR, the precision of the pick-and-place transfer process is hard to meet the high-resolution-density (>1000 pixel per inch) requirement. Thus, the main approach to assemble LED chips with driving circuits is flip-chip bonding 50 , 55 , 56 , 57 , as Fig. 4a depicts. In flip-chip bonding, the mesa and electrode pads should be defined and deposited before the transfer process, while metal bonding balls should be preprocessed on the CMOS substrate. After that, thermal-compression method is used to bond the two wafers together. However, due to the thermal mismatch of LED chip and driving board, as the pixel size decreases, the misalignment between the LED chip and the metal bonding ball on the CMOS substrate becomes serious. In addition, the common n-GaN layer may cause optical crosstalk between pixels, which degrades the image quality. To overcome these issues, the LED epitaxial layer can be firstly metal-bonded with the silicon driver board, followed by the photolithography process to define the LED mesas and electrodes. Without the need for an alignment process, the pixel size can be reduced to <5 µm 50 .

figure 4

a Illustration of flip-chip bonding technology. b Simulated IQE-LED size relations for red and blue LEDs based on ABC model. c Comparison of EQE of different LED sizes with and without KOH and ALD side wall treatment. d Angular emission profiles of LEDs with different sizes. Metasurfaces based on e resonance-tuning, f non-resonance tuning and g combination of both. h Replication master and i replicated SRG based on nanoimprint lithography. Reproduced from a ref. 55 with permission from AIP Publishing, b ref. 61 with permission from PNAS, c ref. 66 with permission from IOP Publishing, d ref. 67 with permission from AIP Publishing, e ref. 69 with permission from OSA Publishing f ref. 48 with permission from AAAS g ref. 70 with permission from AAAS and h , i ref. 85 with permission from OSA Publishing

In addition to manufacturing process, the electrical and optical characteristics of LED also depend on the chip size. Generally, due to Shockley-Read-Hall (SRH) non-radiative recombination on the sidewall of active area, a smaller LED chip size results in a lower internal quantum efficiency (IQE), so that the peak IQE driving point will move toward a higher current density due to increased ratio of sidewall surface to active volume 58 , 59 , 60 . In addition, compared to the GaN-based green and blue LEDs, the AlGaInP-based red LEDs with a larger surface recombination and carrier diffusion length suffer a more severe efficiency drop 61 , 62 . Figure 4b shows the simulated result of IQE drop in relation with the LED chip size of blue and red LEDs based on ABC model 63 . To alleviate the efficiency drop caused by sidewall defects, depositing passivation materials by atomic layer deposition (ALD) or plasma enhanced chemical vapor deposition (PECVD) is proven to be helpful for both GaN and AlGaInP based LEDs 64 , 65 . In addition, applying KOH (Potassium hydroxide) treatment after ALD can further reduce the EQE drop of micro-LEDs 66 (Fig. 4c ). Small-size LEDs also exhibit some advantages, such as higher light extraction efficiency (LEE). Compared to an 100-µm LED, the LEE of a 2-µm LED increases from 12.2 to 25.1% 67 . Moreover, the radiation pattern of micro-LED is more directional than that of a large-size LED (Fig. 4d ). This helps to improve the lens collection efficiency in AR/VR display systems.

Metasurfaces and SGs

Thanks to the advances in lithography technology, low-loss dielectric metasurfaces working in the visible band have recently emerged as a platform for wavefront shaping 45 , 48 , 68 . They consist of an array of subwavelength-spaced structures with individually engineered wavelength-dependent polarization/phase/ amplitude response. In general, the light modulation mechanisms can be classified into resonant tuning 69 (Fig. 4e ), non-resonant tuning 48 (Fig. 4f ), and combination of both 70 (Fig. 4g ). In comparison with non-resonant tuning (based on geometric phase and/or dynamic propagation phase), the resonant tuning (such as Fabry–Pérot resonance, Mie resonance, etc.) is usually associated with a narrower operating bandwidth and a smaller out-of-plane aspect ratio (height/width) of nanostructures. As a result, they are easier to fabricate but more sensitive to fabrication tolerances. For both types, materials with a higher refractive index and lower absorption loss are beneficial to reduce the aspect ratio of nanostructure and improve the device efficiency. To this end, titanium dioxide (TiO 2 ) and gallium nitride (GaN) are the major choices for operating in the entire visible band 68 , 71 . While small-sized metasurfaces (diameter <1 mm) are usually fabricated via electron-beam lithography or focused ion beam milling in the labs, the ability of mass production is the key to their practical adoption. The deep ultraviolet (UV) photolithography has proven its feasibility for reproducing centimeter-size metalenses with decent imaging performance, while it requires multiple steps of etching 72 . Interestingly, the recently developed UV nanoimprint lithography based on a high-index nanocomposite only takes a single step and can obtain an aspect ratio larger than 10, which shows great promise for high-volume production 73 .

The arbitrary wavefront shaping capability and the thinness of the metasurfaces have aroused strong research interests in the development of novel AR/VR prototypes with improved performance. Lee et al. employed nanoimprint lithography to fabricate a centimeter-size, geometric-phase metalens eyepiece for full-color AR displays 74 . Through tailoring its polarization conversion efficiency and stacking with a circular polarizer, the virtual image can be superimposed with the surrounding scene. The large numerical aperture (NA~0.5) of the metalens eyepiece enables a wide FoV (>76°) that conventional optics are difficult to obtain. However, the geometric phase metalens is intrinsically a diffractive lens that also suffers from strong chromatic aberrations. To overcome this issue, an achromatic lens can be designed via simultaneously engineering the group delay and the group delay dispersion 75 , 76 , which will be described in detail later. Other novel and/or improved near-eye display architectures include metasurface-based contact lens-type AR 77 , achromatic metalens array enabled integral-imaging light field displays 78 , wide FoV lightguide AR with polarization-dependent metagratings 79 , and off-axis projection-type AR with an aberration-corrected metasurface combiner 80 , 81 , 82 . Nevertheless, from the existing AR/VR prototypes, metasurfaces still face a strong tradeoff between numerical aperture (for metalenses), chromatic aberration, monochromatic aberration, efficiency, aperture size, and fabrication complexity.

On the other hand, SRGs are diffractive gratings that have been researched for decades as input/output couplers of waveguides 83 , 84 . Their surface is composed of corrugated microstructures, and different shapes including binary, blazed, slanted, and even analogue can be designed. The parameters of the corrugated microstructures are determined by the target diffraction order, operation spectral bandwidth, and angular bandwidth. Compared to metasurfaces, SRGs have a much larger feature size and thus can be fabricated via UV photolithography and subsequent etching. They are usually replicated by nanoimprint lithography with appropriate heating and surface treatment. According to a report published a decade ago, SRGs with a height of 300 nm and a slant angle of up to 50° can be faithfully replicated with high yield and reproducibility 85 (Fig. 4g, h ).

Challenges and solutions of VR displays

The fully immersive nature of VR headset leads to a relatively fixed configuration where the display panel is placed in front of the viewer’s eye and an imaging optics is placed in-between. Regarding the system performance, although inadequate angular resolution still exists in some current VR headsets, the improvement of display panel resolution with advanced fabrication process is expected to solve this issue progressively. Therefore, in the following discussion, we will mainly focus on two major challenges: form factor and 3D cue generation.

Form factor

Compact and lightweight near-eye displays are essential for a comfortable user experience and therefore highly desirable in VR headsets. Current mainstream VR headsets usually have a considerably larger volume than eyeglasses, and most of the volume is just empty. This is because a certain distance is required between the display panel and the viewing optics, which is usually close to the focal length of the lens system as illustrated in Fig. 5a . Conventional VR headsets employ a transmissive lens with ~4 cm focal length to offer a large FoV and eyebox. Fresnel lenses are thinner than conventional ones, but the distance required between the lens and the panel does not change significantly. In addition, the diffraction artifacts and stray light caused by the Fresnel grooves can degrade the image quality, or MTF. Although the resolution density, quantified as pixel per inch (PPI), of current VR headsets is still limited, eventually Fresnel lens will not be an ideal solution when a high PPI display is available. The strong chromatic aberration of Fresnel singlet should also be compensated if a high-quality imaging system is preferred.

figure 5

a Schematic of a basic VR optical configuration. b Achromatic metalens used as VR eyepiece. c VR based on curved display and lenslet array. d Basic working principle of a VR display based on pancake optics. e VR with pancake optics and Fresnel lens array. f VR with pancake optics based on purely HOEs. Reprinted from b ref. 87 under the Creative Commons Attribution 4.0 License. Adapted from c ref. 88 with permission from IEEE, e ref. 91 and f ref. 92 under the Creative Commons Attribution 4.0 License

It is tempting to replace the refractive elements with a single thin diffractive lens like a transmissive LCHOE. However, the diffractive nature of such a lens will result in serious color aberrations. Interestingly, metalenses can fulfil this objective without color issues. To understand how metalenses achieve achromatic focus, let us first take a glance at the general lens phase profile \(\Phi (\omega ,r)\) expanded as a Taylor series 75 :

where \(\varphi _0(\omega )\) is the phase at the lens center, \(F\left( \omega \right)\) is the focal length as a function of frequency ω , r is the radial coordinate, and \(\omega _0\) is the central operation frequency. To realize achromatic focus, \(\partial F{{{\mathrm{/}}}}\partial \omega\) should be zero. With a designed focal length, the group delay \(\partial \Phi (\omega ,r){{{\mathrm{/}}}}\partial \omega\) and the group delay dispersion \(\partial ^2\Phi (\omega ,r){{{\mathrm{/}}}}\partial \omega ^2\) can be determined, and \(\varphi _0(\omega )\) is an auxiliary degree of freedom of the phase profile design. In the design of an achromatic metalens, the group delay is a function of the radial coordinate and monotonically increases with the metalens radius. Many designs have proven that the group delay has a limited variation range 75 , 76 , 78 , 86 . According to Shrestha et al. 86 , there is an inevitable tradeoff between the maximum radius of the metalens, NA, and operation bandwidth. Thus, the reported achromatic metalenses at visible usually have limited lens aperture (e.g., diameter < 250 μm) and NA (e.g., <0.2). Such a tradeoff is undesirable in VR displays, as the eyepiece favors a large clear aperture (inch size) and a reasonably high NA (>0.3) to maintain a wide FoV and a reasonable eye relief 74 .

To overcome this limitation, Li et al. 87 proposed a novel zone lens method. Unlike the traditional phase Fresnel lens where the zones are determined by the phase reset, the new approach divides the zones by the group delay reset. In this way, the lens aperture and NA can be much enlarged, and the group delay limit is bypassed. A notable side effect of this design is the phase discontinuity at zone boundaries that will contribute to higher-order focusing. Therefore, significant efforts have been conducted to find the optimal zone transition locations and to minimize the phase discontinuities. Using this method, they have demonstrated an impressive 2-mm-diameter metalens with NA = 0.7 and nearly diffraction-limited focusing for the designed wavelengths (488, 532, 658 nm) (Fig. 5b ). Such a metalens consists of 681 zones and works for the visible band ranging from 470 to 670 nm, though the focusing efficiency is in the order of 10%. This is a great starting point for the achromatic metalens to be employed as a compact, chromatic-aberration-free eyepiece in near-eye displays. Future challenges are how to further increase the aperture size, correct the off-axis aberrations, and improve the optical efficiency.

Besides replacing the refractive lens with an achromatic metalens, another way to reduce system focal length without decreasing NA is to use a lenslet array 88 . As depicted in Fig. 5c , both the lenslet array and display panel adopt a curved structure. With the latest flexible OLED panel, the display can be easily curved in one dimension. The system exhibits a large diagonal FoV of 180° with an eyebox of 19 by 12 mm. The geometry of each lenslet is optimized separately to achieve an overall performance with high image quality and reduced distortions.

Aside from trying to shorten the system focal length, another way to reduce total track is to fold optical path. Recently, polarization-based folded lenses, also known as pancake optics, are under active development for VR applications 89 , 90 . Figure 5d depicts the structure of an exemplary singlet pancake VR lens system. The pancake lenses can offer better imaging performance with a compact form factor since there are more degrees of freedom in the design and the actual light path is folded thrice. By using a reflective surface with a positive power, the field curvature of positive refractive lenses can be compensated. Also, the reflective surface has no chromatic aberrations and it contributes considerable optical power to the system. Therefore, the optical power of refractive lenses can be smaller, resulting in an even weaker chromatic aberration. Compared to Fresnel lenses, the pancake lenses have smooth surfaces and much fewer diffraction artifacts and stray light. However, such a pancake lens design is not perfect either, whose major shortcoming is low light efficiency. With two incidences of light on the half mirror, the maximum system efficiency is limited to 25% for a polarized input and 12.5% for an unpolarized input light. Moreover, due to the existence of multiple surfaces in the system, stray light caused by surface reflections and polarization leakage may lead to apparent ghost images. As a result, the catadioptric pancake VR headset usually manifests a darker imagery and lower contrast than the corresponding dioptric VR.

Interestingly, the lenslet and pancake optics can be combined to further reduce the system form. Bang et al. 91 demonstrated a compact VR system with a pancake optics and a Fresnel lenslet array. The pancake optics serves to fold the optical path between the display panel and the lenslet array (Fig. 5e ). Another Fresnel lens is used to collect the light from the lenslet array. The system has a decent horizontal FoV of 102° and an eyebox of 8 mm. However, a certain degree of image discontinuity and crosstalk are still present, which can be improved with further optimizations on the Fresnel lens and the lenslet array.

One step further, replacing all conventional optics in catadioptric VR headset with holographic optics can make the whole system even thinner. Maimone and Wang demonstrated such a lightweight, high-resolution, and ultra-compact VR optical system using purely HOEs 92 . This holographic VR optics was made possible by combining several innovative optical components, including a reflective PPHOE, a reflective LCHOE, and a PPHOE-based directional backlight with laser illumination, as shown in Fig. 5f . Since all the optical power is provided by the HOEs with negligible weight and volume, the total physical thickness can be reduced to <10 mm. Also, unlike conventional bulk optics, the optical power of a HOE is independent of its thickness, only subject to the recording process. Another advantage of using holographic optical devices is that they can be engineered to offer distinct phase profiles for different wavelengths and angles of incidence, adding extra degrees of freedom in optical designs for better imaging performance. Although only a single-color backlight has been demonstrated, such a PPHOE has the potential to achieve full-color laser backlight with multiplexing ability. The PPHOE and LCHOE in the pancake optics can also be optimized at different wavelengths for achieving high-quality full-color images.

Vergence-accommodation conflict

Conventional VR displays suffer from VAC, which is a common issue for stereoscopic 3D displays 93 . In current VR display modules, the distance between the display panel and the viewing optics is fixed, which means the VR imagery is displayed at a single depth. However, the image contents are generated by parallax rendering in three dimensions, offering distinct images for two eyes. This approach offers a proper stimulus to vergence but completely ignores the accommodation cue, which leads to the well-known VAC that can cause an uncomfortable user experience. Since the beginning of this century, numerous methods have been proposed to solve this critical issue. Methods to produce accommodation cue include multifocal/varifocal display 94 , holographic display 95 , and integral imaging display 96 . Alternatively, elimination of accommodation cue using a Maxwellian-view display 93 also helps to mitigate the VAC. However, holographic displays and Maxwellian-view displays generally require a totally different optical architecture than current VR systems. They are therefore more suitable for AR displays, which will be discussed later. Integral imaging, on the other hand, has an inherent tradeoff between view number and resolution. For current VR headsets pursuing high resolution to match human visual acuity, it may not be an appealing solution. Therefore, multifocal/varifocal displays that rely on depth modulation is a relatively practical and effective solution for VR headsets. Regarding the working mechanism, multifocal displays present multiple images with different depths to imitate the original 3D scene. Varifocal displays, in contrast, only show one image at each time frame. The image depth matches the viewer’s vergence depth. Nonetheless, the pre-knowledge of the viewer’s vergence depth requires an additional eye-tracking module. Despite different operation principles, a varifocal display can often be converted to a multifocal display as long as the varifocal module has enough modulation bandwidth to support multiple depths in a time frame.

To achieve depth modulation in a VR system, traditional liquid lens 97 , 98 with tunable focus suffers from the small aperture and large aberrations. Alvarez lens 99 is another tunable-focus solution but it requires mechanical adjustment, which adds to system volume and complexity. In comparison, transmissive LCHOEs with polarization dependency can achieve focus adjustment with electronic driving. Its ultra-thinness also satisfies the requirement of small form factors in VR headsets. The diffractive behavior of transmissive LCHOEs is often interpreted by the mechanism of Pancharatnam-Berry phase (also known as geometric phase) 100 . They are therefore often called Pancharatnam-Berry optical elements (PBOEs). The corresponding lens component is referred as Pancharatnam-Berry lens (PBL).

Two main approaches are used to switch the focus of a PBL, active addressing and passive addressing. In active addressing, the PBL itself (made of LC) can be switched by an applied voltage (Fig. 6a ). The optical power of the liquid crystal PBLs can be turned-on and -off by controlling the voltage. Stacking multiple active PBLs can produce 2 N depths, where N is the number of PBLs. The drawback of using active PBLs, however, is the limited spectral bandwidth since their diffraction efficiency is usually optimized at a single wavelength. In passive addressing, the depth modulation is achieved through changing the polarization state of input light by a switchable half-wave plate (HWP) (Fig. 6b ). The focal length can therefore be switched thanks to the polarization sensitivity of PBLs. Although this approach has a slightly more complicated structure, the overall performance can be better than the active one, because the PBLs made of liquid crystal polymer can be designed to manifest high efficiency within the entire visible spectrum 101 , 102 .

figure 6

Working principles of a depth switching PBL module based on a active addressing and b passive addressing. c A four-depth multifocal display based on time multiplexing. d A two-depth multifocal display based on polarization multiplexing. Reproduced from c ref. 103 with permission from OSA Publishing and d ref. 104 with permission from OSA Publishing

With the PBL module, multifocal displays can be built using time-multiplexing technique. Zhan et al. 103 demonstrated a four-depth multifocal display using two actively switchable liquid crystal PBLs (Fig. 6c ). The display is synchronized with the PBL module, which lowers the frame rate by the number of depths. Alternatively, multifocal displays can also be achieved by polarization-multiplexing, as demonstrated by Tan et al. 104 . The basic principle is to adjust the polarization state of local pixels so the image content on two focal planes of a PBL can be arbitrarily controlled (Fig. 6d ). The advantage of polarization multiplexing is that it does not sacrifice the frame rate, but it can only support two planes because only two orthogonal polarization states are available. Still, it can be combined with time-multiplexing to reduce the frame rate sacrifice by half. Naturally, varifocal displays can also be built with a PBL module. A fast-response 64-depth varifocal module with six PBLs has been demonstrated 105 .

The compact structure of PBL module leads to a natural solution of integrating it with above-mentioned pancake optics. A compact VR headset with dynamic depth modulation to solve VAC is therefore possible in practice. Still, due to the inherent diffractive nature of PBL, the PBL module face the issue of chromatic dispersion of focal length. To compensate for different focal depths for RGB colors may require additional digital corrections in image-rendering.

Architectures of AR displays

Unlike VR displays with a relatively fixed optical configuration, there exist a vast number of architectures in AR displays. Therefore, instead of following the narrative of tackling different challenges, a more appropriate way to review AR displays is to separately introduce each architecture and discuss its associated engineering challenges. An AR display usually consists of a light engine and an optical combiner. The light engine serves as display image source, while the combiner delivers the displayed images to viewer’s eye and in the meantime transmits the environment light. Some performance parameters like frame rate and power consumption are mainly determined by the light engine. Parameters like FoV, eyebox and MTF are primarily dependent on the combiner optics. Moreover, attributes like image brightness, overall efficiency, and form factor are influenced by both light engine and combiner. In this section, we will firstly discuss the light engine, where the latest advances in micro-LED on chip are reviewed and compared with existing microdisplay systems. Then, we will introduce two main types of combiners: free-space combiner and waveguide combiner.

Light engine

The light engine determines several essential properties of the AR system like image brightness, power consumption, frame rate, and basic etendue. Several types of microdisplays have been used in AR, including micro-LED, micro-organic-light-emitting-diodes (micro-OLED), liquid-crystal-on-silicon (LCoS), digital micromirror device (DMD), and laser beam scanning (LBS) based on micro-electromechanical system (MEMS). We will firstly describe the working principles of these devices and then analyze their performance. For those who are more interested in final performance parameters than details, Table 1 provides a comprehensive summary.

Working principles

Micro-LED and micro-OLED are self-emissive display devices. They are usually more compact than LCoS and DMD because no illumination optics is required. The fundamentally different material systems of LED and OLED lead to different approaches to achieve full-color displays. Due to the “green gap” in LEDs, red LEDs are manufactured on a different semiconductor material from green and blue LEDs. Therefore, how to achieve full-color display in high-resolution density microdisplays is quite a challenge for micro-LEDs. Among several solutions under research are two main approaches. The first is to combine three separate red, green and blue (RGB) micro-LED microdisplay panels 106 . Three single-color micro-LED microdisplays are manufactured separately through flip-chip transfer technology. Then, the projected images from three microdisplay panels are integrated by a trichroic prism (Fig. 7a ).

figure 7

a RGB micro-LED microdisplays combined by a trichroic prism. b QD-based micro-LED microdisplay. c Micro-OLED display with 4032 PPI. Working principles of d LCoS, e DMD, and f MEMS-LBS display modules. Reprinted from a ref. 106 with permission from IEEE, b ref. 108 with permission from Chinese Laser Press, c ref. 121 with permission from Jon Wiley and Sons, d ref. 124 with permission from Spring Nature, e ref. 126 with permission from Springer and f ref. 128 under the Creative Commons Attribution 4.0 License

Another solution is to assemble color-conversion materials like quantum dot (QD) on top of blue or ultraviolet (UV) micro-LEDs 107 , 108 , 109 (Fig. 7b ). The quantum dot color filter (QDCF) on top of the micro-LED array is mainly fabricated by inkjet printing or photolithography 110 , 111 . However, the display performance of color-conversion micro-LED displays is restricted by the low color-conversion efficiency, blue light leakage, and color crosstalk. Extensive efforts have been conducted to improve the QD-micro-LED performance. To boost QD conversion efficiency, structure designs like nanoring 112 and nanohole 113 , 114 have been proposed, which utilize the Förster resonance energy transfer mechanism to transfer excessive excitons in the LED active region to QD. To prevent blue light leakage, methods using color filters or reflectors like distributed Bragg reflector (DBR) 115 and CLC film 116 on top of QDCF are proposed. Compared to color filters that absorb blue light, DBR and CLC film help recycle the leaked blue light to further excite QDs. Other methods to achieve full-color micro-LED display like vertically stacked RGB micro-LED array 61 , 117 , 118 and monolithic wavelength tunable nanowire LED 119 are also under investigation.

Micro-OLED displays can be generally categorized into RGB OLED and white OLED (WOLED). RGB OLED displays have separate sub-pixel structures and optical cavities, which resonate at the desirable wavelength in RGB channels, respectively. To deposit organic materials onto the separated RGB sub-pixels, a fine metal mask (FMM) that defines the deposition area is required. However, high-resolution RGB OLED microdisplays still face challenges due to the shadow effect during the deposition process through FMM. In order to break the limitation, a silicon nitride film with small shadow has been proposed as a mask for high-resolution deposition above 2000 PPI (9.3 µm) 120 .

WOLED displays use color filters to generate color images. Without the process of depositing patterned organic materials, a high-resolution density up to 4000 PPI has been achieved 121 (Fig. 7c ). However, compared to RGB OLED, the color filters in WOLED absorb about 70% of the emitted light, which limits the maximum brightness of the microdisplay. To improve the efficiency and peak brightness of WOLED microdisplays, in 2019 Sony proposed to apply newly designed cathodes (InZnO) and microlens arrays on OLED microdisplays, which increased the peak brightness from 1600 nits to 5000 nits 120 . In addition, OLEDWORKs has proposed a multi-stacked OLED 122 with optimized microcavities whose emission spectra match the transmission bands of the color filters. The multi-stacked OLED shows a higher luminous efficiency (cd/A), but also requires a higher driving voltage. Recently, by using meta-mirrors as bottom reflective anodes, patterned microcavities with more than 10,000 PPI have been obtained 123 . The high-resolution meta-mirrors generate different reflection phases in the RGB sub-pixels to achieve desirable resonant wavelengths. The narrow emission spectra from the microcavity help to reduce the loss from color filters or even eliminate the need of color filters.

LCoS and DMD are light-modulating displays that generate images by controlling the reflection of each pixel. For LCoS, the light modulation is achieved by manipulating the polarization state of output light through independently controlling the liquid crystal reorientation in each pixel 124 , 125 (Fig. 7d ). Both phase-only and amplitude modulators have been employed. DMD is an amplitude modulation device. The modulation is achieved through controlling the tilt angle of bi-stable micromirrors 126 (Fig. 7e ). To generate an image, both LCoS and DMD rely on the light illumination systems, with LED or laser as light source. For LCoS, the generation of color image can be realized either by RGB color filters on LCoS (with white LEDs) or color-sequential addressing (with RGB LEDs or lasers). However, LCoS requires a linearly polarized light source. For an unpolarized LED light source, usually, a polarization recycling system 127 is implemented to improve the optical efficiency. For a single-panel DMD, the color image is mainly obtained through color-sequential addressing. In addition, DMD does not require a polarized light so that it generally exhibits a higher efficiency than LCoS if an unpolarized light source is employed.

MEMS-based LBS 128 , 129 utilizes micromirrors to directly scan RGB laser beams to form two-dimensional (2D) images (Fig. 7f ). Different gray levels are achieved by pulse width modulation (PWM) of the employed laser diodes. In practice, 2D scanning can be achieved either through a 2D scanning mirror or two 1D scanning mirrors with an additional focusing lens after the first mirror. The small size of MEMS mirror offers a very attractive form factor. At the same time, the output image has a large depth-of-focus (DoF), which is ideal for projection displays. One shortcoming, though, is that the small system etendue often hinders its applications in some traditional display systems.

Comparison of light engine performance

There are several important parameters for a light engine, including image resolution, brightness, frame rate, contrast ratio, and form factor. The resolution requirement (>2K) is similar for all types of light engines. The improvement of resolution is usually accomplished through the manufacturing process. Thus, here we shall focus on other three parameters.

Image brightness usually refers to the measured luminance of a light-emitting object. This measurement, however, may not be accurate for a light engine as the light from engine only forms an intermediate image, which is not directly viewed by the user. On the other hand, to solely focus on the brightness of a light engine could be misleading for a wearable display system like AR. Nowadays, data projectors with thousands of lumens are available. But the power consumption is too high for a battery-powered wearable AR display. Therefore, a more appropriate way to evaluate a light engine’s brightness is to use luminous efficacy (lm/W) measured by dividing the final output luminous flux (lm) by the input electric power (W). For a self-emissive device like micro-LED or micro-OLED, the luminous efficacy is directly determined by the device itself. However, for LCoS and DMD, the overall luminous efficacy should take into consideration the light source luminous efficacy, the efficiency of illumination optics, and the efficiency of the employed spatial light modulator (SLM). For a MEMS LBS engine, the efficiency of MEMS mirror can be considered as unity so that the luminous efficacy basically equals to that of the employed laser sources.

As mentioned earlier, each light engine has a different scheme for generating color images. Therefore, we separately list luminous efficacy of each scheme for a more inclusive comparison. For micro-LEDs, the situation is more complicated because the EQE depends on the chip size. Based on previous studies 130 , 131 , 132 , 133 , we separately calculate the luminous efficacy for RGB micro-LEDs with chip size ≈ 20 µm. For the scheme of direct combination of RGB micro-LEDs, the luminous efficacy is around 5 lm/W. For QD-conversion with blue micro-LEDs, the luminous efficacy is around 10 lm/W with the assumption of 100% color conversion efficiency, which has been demonstrated using structure engineering 114 . For micro-OLEDs, the calculated luminous efficacy is about 4–8 lm/W 120 , 122 . However, the lifetime and EQE of blue OLED materials depend on the driving current. To continuously display an image with brightness higher than 10,000 nits may dramatically shorten the device lifetime. The reason we compare the light engine at 10,000 nits is that it is highly desirable to obtain 1000 nits for the displayed image in order to keep ACR>3:1 with a typical AR combiner whose optical efficiency is lower than 10%.

For an LCoS engine using a white LED as light source, the typical optical efficiency of the whole engine is around 10% 127 , 134 . Then the engine luminous efficacy is estimated to be 12 lm/W with a 120 lm/W white LED source. For a color sequential LCoS using RGB LEDs, the absorption loss from color filters is eliminated, but the luminous efficacy of RGB LED source is also decreased to about 30 lm/W due to lower efficiency of red and green LEDs and higher driving current 135 . Therefore, the final luminous efficacy of the color sequential LCoS engine is also around 10 lm/W. If RGB linearly polarized lasers are employed instead of LEDs, then the LCoS engine efficiency can be quite high due to the high degree of collimation. The luminous efficacy of RGB laser source is around 40 lm/W 136 . Therefore, the laser-based LCoS engine is estimated to have a luminous efficacy of 32 lm/W, assuming the engine optical efficiency is 80%. For a DMD engine with RGB LEDs as light source, the optical efficiency is around 50% 137 , 138 , which leads to a luminous efficacy of 15 lm/W. By switching to laser light sources, the situation is similar to LCoS, with the luminous efficacy of about 32 lm/W. Finally, for MEMS-based LBS engine, there is basically no loss from the optics so that the final luminous efficacy is 40 lm/W. Detailed calculations of luminous efficacy can be found in Supplementary Information .

Another aspect of a light engine is the frame rate, which determines the volume of information it can deliver in a unit time. A high volume of information is vital for the construction of a 3D light field to solve the VAC issue. For micro-LEDs, the device response time is around several nanoseconds, which allows for visible light communication with bandwidth up to 1.5 Gbit/s 139 . For an OLED microdisplay, a fast OLED with ~200 MHz bandwidth has been demonstrated 140 . Therefore, the limitation of frame rate is on the driving circuits for both micro-LED and OLED. Another fact concerning driving circuit is the tradeoff between resolution and frame rate as a higher resolution panel means more scanning lines in each frame. So far, an OLED display with 480 Hz frame rate has been demonstrated 141 . For an LCoS, the frame rate is mainly limited by the LC response time. Depending on the LC material used, the response time is around 1 ms for nematic LC or 200 µs for ferroelectric LC (FLC) 125 . Nematic LC allows analog driving, which accommodates gray levels, typically with 8-bit depth. FLC is bistable so that PWM is used to generate gray levels. DMD is also a binary device. The frame rate can reach 30 kHz, which is mainly constrained by the response time of micromirrors. For MEMS-based LBS, the frame rate is limited by the scanning frequency of MEMS mirrors. A frame rate of 60 Hz with around 1 K resolution already requires a resonance frequency of around 50 kHz, with a Q-factor up to 145,000 128 . A higher frame rate or resolution requires a higher Q-factor and larger laser modulation bandwidth, which may be challenging.

Form factor is another crucial aspect for the light engines of near-eye displays. For self-emissive displays, both micro-OLEDs and QD-based micro-LEDs can achieve full color with a single panel. Thus, they are quite compact. A micro-LED display with separate RGB panels naturally have a larger form factor. In applications requiring direct-view full-color panel, the extra combining optics may also increase the volume. It needs to be pointed out, however, that the combing optics may not be necessary for some applications like waveguide displays, because the EPE process results in system’s insensitivity to the spatial positions of input RGB images. Therefore, the form factor of using three RGB micro-LED panels is medium. For LCoS and DMD with RGB LEDs as light source, the form factor would be larger due to the illumination optics. Still, if a lower luminous efficacy can be accepted, then a smaller form factor can be achieved by using a simpler optics 142 . If RGB lasers are used, the collimation optics can be eliminated, which greatly reduces the form factor 143 . For MEMS-LBS, the form factor can be extremely compact due to the tiny size of MEMS mirror and laser module.

Finally, contrast ratio (CR) also plays an important role affecting the observed images 8 . Micro-LEDs and micro-OLEDs are self-emissive so that their CR can be >10 6 :1. For a laser beam scanner, its CR can also achieve 10 6 :1 because the laser can be turned off completely at dark state. On the other hand, LCoS and DMD are reflective displays, and their CR is around 2000:1 to 5000:1 144 , 145 . It is worth pointing out that the CR of a display engine plays a significant role only in the dark ambient. As the ambient brightness increases, the ACR is mainly governed by the display’s peak brightness, as previously discussed.

The performance parameters of different light engines are summarized in Table 1 . Micro-LEDs and micro-OLEDs have similar levels of luminous efficacy. But micro-OLEDs still face the burn-in and lifetime issue when driving at a high current, which hinders its use for a high-brightness image source to some extent. Micro-LEDs are still under active development and the improvement on luminous efficacy from maturing fabrication process could be expected. Both devices have nanosecond response time and can potentially achieve a high frame rate with a well-designed integrated circuit. The frame rate of the driving circuit ultimately determines the motion picture response time 146 . Their self-emissive feature also leads to a small form factor and high contrast ratio. LCoS and DMD engines have similar performance of luminous efficacy, form factor, and contrast ratio. In terms of light modulation, DMD can provide a higher 1-bit frame rate, while LCoS can offer both phase and amplitude modulations. MEMS-based LBS exhibits the highest luminous efficacy so far. It also exhibits an excellent form factor and contrast ratio, but the presently demonstrated 60-Hz frame rate (limited by the MEMS mirrors) could cause image flickering.

Free-space combiners

The term ‘free-space’ generally refers to the case when light is freely propagating in space, as opposed to a waveguide that traps light into TIRs. Regarding the combiner, it can be a partial mirror, as commonly used in AR systems based on traditional geometric optics. Alternatively, the combiner can also be a reflective HOE. The strong chromatic dispersion of HOE necessitates the use of a laser source, which usually leads to a Maxwellian-type system.

Traditional geometric designs

Several systems based on geometric optics are illustrated in Fig. 8 . The simplest design uses a single freeform half-mirror 6 , 147 to directly collimate the displayed images to the viewer’s eye (Fig. 8a ). This design can achieve a large FoV (up to 90°) 147 , but the limited design freedom with a single freeform surface leads to image distortions, also called pupil swim 6 . The placement of half-mirror also results in a relatively bulky form factor. Another design using so-called birdbath optics 6 , 148 is shown in Fig. 8b . Compared to the single-combiner design, birdbath design has an extra optics on the display side, which provides space for aberration correction. The integration of beam splitter provides a folded optical path, which reduces the form factor to some extent. Another way to fold optical path is to use a TIR-prism. Cheng et al. 149 designed a freeform TIR-prism combiner (Fig. 8c ) offering a diagonal FoV of 54° and exit pupil diameter of 8 mm. All the surfaces are freeform, which offer an excellent image quality. To cancel the optical power for the transmitted environmental light, a compensator is added to the TIR prism. The whole system has a well-balanced performance between FoV, eyebox, and form factor. To release the space in front of viewer’s eye, relay optics can be used to form an intermediate image near the combiner 150 , 151 , as illustrated in Fig. 8d . Although the design offers more optical surfaces for aberration correction, the extra lenses also add to system weight and form factor.

figure 8

a Single freeform surface as the combiner. b Birdbath optics with a beam splitter and a half mirror. c Freeform TIR prism with a compensator. d Relay optics with a half mirror. Adapted from c ref. 149 with permission from OSA Publishing and d ref. 151 with permission from OSA Publishing

Regarding the approaches to solve the VAC issue, the most straightforward way is to integrate a tunable lens into the optical path, like a liquid lens 152 or Alvarez lens 99 , to form a varifocal system. Alternatively, integral imaging 153 , 154 can also be used, by replacing the original display panel with the central depth plane of an integral imaging module. The integral imaging can also be combined with varifocal approach to overcome the tradeoff between resolution and depth of field (DoF) 155 , 156 , 157 . However, the inherent tradeoff between resolution and view number still exists in this case.

Overall, AR displays based on traditional geometric optics have a relatively simple design with a decent FoV (~60°) and eyebox (8 mm) 158 . They also exhibit a reasonable efficiency. To measure the efficiency of an AR combiner, an appropriate measure is to divide the output luminance (unit: nit) by the input luminous flux (unit: lm), which we note as combiner efficiency. For a fixed input luminous flux, the output luminance, or image brightness, is related to the FoV and exit pupil of the combiner system. If we assume no light waste of the combiner system, then the maximum combiner efficiency for a typical diagonal FoV of 60° and exit pupil (10 mm square) is around 17,000 nit/lm (Eq. S2 ). To estimate the combiner efficiency of geometric combiners, we assume 50% of half-mirror transmittance and the efficiency of other optics to be 50%. Then the final combiner efficiency is about 4200 nit/lm, which is a high value in comparison with waveguide combiners. Nonetheless, to further shrink the system size or improve system performance ultimately encounters the etendue conservation issue. In addition, AR systems with traditional geometric optics is hard to achieve a configuration resembling normal flat glasses because the half-mirror has to be tilted to some extent.

Maxwellian-type systems

The Maxwellian view, proposed by James Clerk Maxwell (1860), refers to imaging a point light source in the eye pupil 159 . If the light beam is modulated in the imaging process, a corresponding image can be formed on the retina (Fig. 9a ). Because the point source is much smaller than the eye pupil, the image is always-in-focus on the retina irrespective of the eye lens’ focus. For applications in AR display, the point source is usually a laser with narrow angular and spectral bandwidths. LED light sources can also build a Maxwellian system, by adding an angular filtering module 160 . Regarding the combiner, although in theory a half-mirror can also be used, HOEs are generally preferred because they offer the off-axis configuration that places combiner in a similar position like eyeglasses. In addition, HOEs have a lower reflection of environment light, which provides a more natural appearance of the user behind the display.

figure 9

a Schematic of the working principle of Maxwellian displays. Maxwellian displays based on b SLM and laser diode light source and c MEMS-LBS with a steering mirror as additional modulation method. Generation of depth cues by d computational digital holography and e scanning of steering mirror to produce multiple views. Adapted from b, d ref. 143 and c, e ref. 167 under the Creative Commons Attribution 4.0 License

To modulate the light, a SLM like LCoS or DMD can be placed in the light path, as shown in Fig. 9b . Alternatively, LBS system can also be used (Fig. 9c ), where the intensity modulation occurs in the laser diode itself. Besides the operation in a normal Maxwellian-view, both implementations offer additional degrees of freedom for light modulation.

For a SLM-based system, there are several options to arrange the SLM pixels 143 , 161 . Maimone et al. 143 demonstrated a Maxwellian AR display with two modes to offer a large-DoF Maxwellian-view, or a holographic view (Fig. 9d ), which is often referred as computer-generated holography (CGH) 162 . To show an always-in-focus image with a large DoF, the image can be directly displayed on an amplitude SLM, or using amplitude encoding for a phase-only SLM 163 . Alternatively, if a 3D scene with correct depth cues is to be presented, then optimization algorithms for CGH can be used to generate a hologram for the SLM. The generated holographic image exhibits the natural focus-and-blur effect like a real 3D object (Fig. 9d ). To better understand this feature, we need to again exploit the concept of etendue. The laser light source can be considered to have a very small etendue due to its excellent collimation. Therefore, the system etendue is provided by the SLM. The micron-sized pixel-pitch of SLM offers a certain maximum diffraction angle, which, multiplied by the SLM size, equals system etendue. By varying the display content on SLM, the final exit pupil size can be changed accordingly. In the case of a large-DoF Maxwellian view, the exit pupil size is small, accompanied by a large FoV. For the holographic display mode, the reduced DoF requires a larger exit pupil with dimension close to the eye pupil. But the FoV is reduced accordingly due to etendue conservation. Another commonly concerned issue with CGH is the computation time. To achieve a real-time CGH rendering flow with an excellent image quality is quite a challenge. Fortunately, with recent advances in algorithm 164 and the introduction of convolutional neural network (CNN) 165 , 166 , this issue is gradually solved with an encouraging pace. Lately, Liang et al. 166 demonstrated a real-time CGH synthesis pipeline with a high image quality. The pipeline comprises an efficient CNN model to generate a complex hologram from a 3D scene and an improved encoding algorithm to convert the complex hologram to a phase-only one. An impressive frame rate of 60 Hz has been achieved on a desktop computing unit.

For LBS-based system, the additional modulation can be achieved by integrating a steering module, as demonstrated by Jang et al. 167 . The steering mirror can shift the focal point (viewpoint) within the eye pupil, therefore effectively expanding the system etendue. When the steering process is fast and the image content is updated simultaneously, correct 3D cues can be generated, as shown in Fig. 9e . However, there exists a tradeoff between the number of viewpoint and the final image frame rate, because the total frames are equally divided into each viewpoint. To boost the frame rate of MEMS-LBS systems by the number of views (e.g., 3 by 3) may be challenging.

Maxwellian-type systems offer several advantages. The system efficiency is usually very high because nearly all the light is delivered into viewer’s eye. The system FoV is determined by the f /# of combiner and a large FoV (~80° in horizontal) can be achieved 143 . The issue of VAC can be mitigated with an infinite-DoF image that deprives accommodation cue, or completely solved by generating a true-3D scene as discussed above. Despite these advantages, one major weakness of Maxwellian-type system is the tiny exit pupil, or eyebox. A small deviation of eye pupil location from the viewpoint results in the complete disappearance of the image. Therefore, to expand eyebox is considered as one of the most important challenges in Maxwellian-type systems.

Pupil duplication and steering

Methods to expand eyebox can be generally categorized into pupil duplication 168 , 169 , 170 , 171 , 172 and pupil steering 9 , 13 , 167 , 173 . Pupil duplication simply generates multiple viewpoints to cover a large area. In contrast, pupil steering dynamically shifts the viewpoint position, depending on the pupil location. Before reviewing detailed implementations of these two methods, it is worth discussing some of their general features. The multiple viewpoints in pupil duplication usually mean to equally divide the total light intensity. In each time frame, however, it is preferable that only one viewpoint enters the user’s eye pupil to avoid ghost image. This requirement, therefore, results in a reduced total light efficiency, while also conditioning the viewpoint separation to be larger than the pupil diameter. In addition, the separation should not be too large to avoid gap between viewpoints. Considering that human pupil diameter changes in response to environment illuminance, the design of viewpoint separation needs special attention. Pupil steering, on the other hand, only produces one viewpoint at each time frame. It is therefore more light-efficient and free from ghost images. But to determine the viewpoint position requires the information of eye pupil location, which demands a real-time eye-tracking module 9 . Another observation is that pupil steering can accommodate multiple viewpoints by its nature. Therefore, a pupil steering system can often be easily converted to a pupil duplication system by simultaneously generating available viewpoints.

To generate multiple viewpoints, one can focus on modulating the incident light or the combiner. Recall that viewpoint is the image of light source. To duplicate or shift light source can achieve pupil duplication or steering accordingly, as illustrated in Fig. 10a . Several schemes of light modulation are depicted in Fig. 10b–e . An array of light sources can be generated with multiple laser diodes (Fig. 10b ). To turn on all or one of the sources achieves pupil duplication or steering. A light source array can also be produced by projecting light on an array-type PPHOE 168 (Fig. 10c ). Apart from direct adjustment of light sources, modulating light on the path can also effectively steer/duplicate the light sources. Using a mechanical steering mirror, the beam can be deflected 167 (Fig. 10d ), which equals to shifting the light source position. Other devices like a grating or beam splitter can also serve as ray deflector/splitter 170 , 171 (Fig. 10e ).

figure 10

a Schematic of duplicating (or shift) viewpoint by modulation of incident light. Light modulation by b multiple laser diodes, c HOE lens array, d steering mirror and e grating or beam splitters. f Pupil duplication with multiplexed PPHOE. g Pupil steering with LCHOE. Reproduced from c ref. 168 under the Creative Commons Attribution 4.0 License, e ref. 169 with permission from OSA Publishing, f ref. 171 with permission from OSA Publishing and g ref. 173 with permission from OSA Publishing

Nonetheless, one problem of the light source duplication/shifting methods for pupil duplication/steering is that the aberrations in peripheral viewpoints are often serious 168 , 173 . The HOE combiner is usually recorded at one incident angle. For other incident angles with large deviations, considerable aberrations will occur, especially in the scenario of off-axis configuration. To solve this problem, the modulation can be focused on the combiner instead. While the mechanical shifting of combiner 9 can achieve continuous pupil steering, its integration into AR display with a small factor remains a challenge. Alternatively, the versatile functions of HOE offer possible solutions for combiner modulation. Kim and Park 169 demonstrated a pupil duplication system with multiplexed PPHOE (Fig. 10f ). Wavefronts of several viewpoints can be recorded into one PPHOE sample. Three viewpoints with a separation of 3 mm were achieved. However, a slight degree of ghost image and gap can be observed in the viewpoint transition. For a PPHOE to achieve pupil steering, the multiplexed PPHOE needs to record different focal points with different incident angles. If each hologram has no angular crosstalk, then with an additional device to change the light incident angle, the viewpoint can be steered. Alternatively, Xiong et al. 173 demonstrated a pupil steering system with LCHOEs in a simpler configuration (Fig. 10g ). The polarization-sensitive nature of LCHOE enables the controlling of which LCHOE to function with a polarization converter (PC). When the PC is off, the incident RCP light is focused by the right-handed LCHOE. When the PC is turned on, the RCP light is firstly converted to LCP light and passes through the right-handed LCHOE. Then it is focused by the left-handed LCHOE into another viewpoint. To add more viewpoints requires stacking more pairs of PC and LCHOE, which can be achieved in a compact manner with thin glass substrates. In addition, to realize pupil duplication only requires the stacking of multiple low-efficiency LCHOEs. For both PPHOEs and LCHOEs, because the hologram for each viewpoint is recorded independently, the aberrations can be eliminated.

Regarding the system performance, in theory the FoV is not limited and can reach a large value, such as 80° in horizontal direction 143 . The definition of eyebox is different from traditional imaging systems. For a single viewpoint, it has the same size as the eye pupil diameter. But due to the viewpoint steering/duplication capability, the total system eyebox can be expanded accordingly. The combiner efficiency for pupil steering systems can reach 47,000 nit/lm for a FoV of 80° by 80° and pupil diameter of 4 mm (Eq. S2 ). At such a high brightness level, eye safety could be a concern 174 . For a pupil duplication system, the combiner efficiency is decreased by the number of viewpoints. With a 4-by-4 viewpoint array, it can still reach 3000 nit/lm. Despite the potential gain of pupil duplication/steering, when considering the rotation of eyeball, the situation becomes much more complicated 175 . A perfect pupil steering system requires a 5D steering, which proposes a challenge for practical implementation.

Pin-light systems

Recently, another type of display in close relation with Maxwellian view called pin-light display 148 , 176 has been proposed. The general working principle of pin-light display is illustrated in Fig. 11a . Each pin-light source is a Maxwellian view with a large DoF. When the eye pupil is no longer placed near the source point as in Maxwellian view, each image source can only form an elemental view with a small FoV on retina. However, if the image source array is arranged in a proper form, the elemental views can be integrated together to form a large FoV. According to the specific optical architectures, pin-light display can take different forms of implementation. In the initial feasibility demonstration, Maimone et al. 176 used a side-lit waveguide plate as the point light source (Fig. 11b ). The light inside the waveguide plate is extracted by the etched divots, forming a pin-light source array. A transmissive SLM (LCD) is placed behind the waveguide plate to modulate the light intensity and form the image. The display has an impressive FoV of 110° thanks to the large scattering angle range. However, the direct placement of LCD before the eye brings issues of insufficient resolution density and diffraction of background light.

figure 11

a Schematic drawing of the working principle of pin-light display. b Pin-light display utilizing a pin-light source and a transmissive SLM. c An example of pin-mirror display with a birdbath optics. d SWD system with LBS image source and off-axis lens array. Reprinted from b ref. 176 under the Creative Commons Attribution 4.0 License and d ref. 180 with permission from OSA Publishing

To avoid these issues, architectures using pin-mirrors 177 , 178 , 179 are proposed. In these systems, the final combiner is an array of tiny mirrors 178 , 179 or gratings 177 , in contrast to their counterparts using large-area combiners. An exemplary system with birdbath design is depicted in Fig. 11c . In this case, the pin-mirrors replace the original beam-splitter in the birdbath and can thus shrink the system volume, while at the same time providing large DoF pin-light images. Nonetheless, such a system may still face the etendue conservation issue. Meanwhile, the size of pin-mirror cannot be too small in order to prevent degradation of resolution density due to diffraction. Therefore, its influence on the see-through background should also be considered in the system design.

To overcome the etendue conservation and improve see-through quality, Xiong et al. 180 proposed another type of pin-light system exploiting the etendue expansion property of waveguide, which is also referred as scanning waveguide display (SWD). As illustrated in Fig. 11d , the system uses an LBS as the image source. The collimated scanned laser rays are trapped in the waveguide and encounter an array of off-axis lenses. Upon each encounter, the lens out-couples the laser rays and forms a pin-light source. SWD has the merits of good see-through quality and large etendue. A large FoV of 100° was demonstrated with the help of an ultra-low f /# lens array based on LCHOE. However, some issues like insufficient image resolution density and image non-uniformity remain to be overcome. To further improve the system may require optimization of Gaussian beam profile and additional EPE module 180 .

Overall, pin-light systems inherit the large DoF from Maxwellian view. With adequate number of pin-light sources, the FoV and eyebox can be expanded accordingly. Nonetheless, despite different forms of implementation, a common issue of pin-light system is the image uniformity. The overlapped region of elemental views has a higher light intensity than the non-overlapped region, which becomes even more complicated considering the dynamic change of pupil size. In theory, the displayed image can be pre-processed to compensate for the optical non-uniformity. But that would require knowledge of precise pupil location (and possibly size) and therefore an accurate eye-tracking module 176 . Regarding the system performance, pin-mirror systems modified from other free-space systems generally shares similar FoV and eyebox with original systems. The combiner efficiency may be lower due to the small size of pin-mirrors. SWD, on the other hand, shares the large FoV and DoF with Maxwellian view, and large eyebox with waveguide combiners. The combiner efficiency may also be lower due to the EPE process.

Waveguide combiner

Besides free-space combiners, another common architecture in AR displays is waveguide combiner. The term ‘waveguide’ indicates the light is trapped in a substrate by the TIR process. One distinctive feature of a waveguide combiner is the EPE process that effectively enlarges the system etendue. In the EPE process, a portion of the trapped light is repeatedly coupled out of the waveguide in each TIR. The effective eyebox is therefore enlarged. According to the features of couplers, we divide the waveguide combiners into two types: diffractive and achromatic, as described in the followings.

Diffractive waveguides

As the name implies, diffractive-type waveguides use diffractive elements as couplers. The in-coupler is usually a diffractive grating and the out-coupler in most cases is also a grating with the same period as the in-coupler, but it can also be an off-axis lens with a small curvature to generate image with finite depth. Three major diffractive couplers have been developed: SRGs, photopolymer gratings (PPGs), and liquid crystal gratings (grating-type LCHOE; also known as polarization volume gratings (PVGs)). Some general protocols for coupler design are that the in-coupler should have a relatively high efficiency and the out-coupler should have a uniform light output. A uniform light output usually requires a low-efficiency coupler, with extra degrees of freedom for local modulation of coupling efficiency. Both in-coupler and out-coupler should have an adequate angular bandwidth to accommodate a reasonable FoV. In addition, the out-coupler should also be optimized to avoid undesired diffractions, including the outward diffraction of TIR light and diffraction of environment light into user’s eyes, which are referred as light leakage and rainbow. Suppression of these unwanted diffractions should also be considered in the optimization process of waveguide design, along with performance parameters like efficiency and uniformity.

The basic working principles of diffractive waveguide-based AR systems are illustrated in Fig. 12 . For the SRG-based waveguides 6 , 8 (Fig. 12a ), the in-coupler can be a transmissive-type or a reflective-type 181 , 182 . The grating geometry can be optimized for coupling efficiency with a large degree of freedom 183 . For the out-coupler, a reflective SRG with a large slant angle to suppress the transmission orders is preferred 184 . In addition, a uniform light output usually requires a gradient efficiency distribution in order to compensate for the decreased light intensity in the out-coupling process. This can be achieved by varying the local grating configurations like height and duty cycle 6 . For the PPG-based waveguides 185 (Fig. 12b ), the small angular bandwidth of a high-efficiency transmissive PPG prohibits its use as in-coupler. Therefore, both in-coupler and out-coupler are usually reflective types. The gradient efficiency can be achieved by space-variant exposure to control the local index modulation 186 or local Bragg slant angle variation through freeform exposure 19 . Due to the relatively small angular bandwidth of PPG, to achieve a decent FoV usually requires stacking two 187 or three 188 PPGs together for a single color. The PVG-based waveguides 189 (Fig. 12c ) also prefer reflective PVGs as in-couplers because the transmissive PVGs are much more difficult to fabricate due to the LC alignment issue. In addition, the angular bandwidth of transmissive PVGs in Bragg regime is also not large enough to support a decent FoV 29 . For the out-coupler, the angular bandwidth of a single reflective PVG can usually support a reasonable FoV. To obtain a uniform light output, a polarization management layer 190 consisting of a LC layer with spatially variant orientations can be utilized. It offers an additional degree of freedom to control the polarization state of the TIR light. The diffraction efficiency can therefore be locally controlled due to the strong polarization sensitivity of PVG.

figure 12

Schematics of waveguide combiners based on a SRGs, b PPGs and c PVGs. Reprinted from a ref. 85 with permission from OSA Publishing, b ref. 185 with permission from John Wiley and Sons and c ref. 189 with permission from OSA Publishing

The above discussion describes the basic working principle of 1D EPE. Nonetheless, for the 1D EPE to produce a large eyebox, the exit pupil in the unexpanded direction of the original image should be large. This proposes design challenges in light engines. Therefore, a 2D EPE is favored for practical applications. To extend EPE in two dimensions, two consecutive 1D EPEs can be used 191 , as depicted in Fig. 13a . The first 1D EPE occurs in the turning grating, where the light is duplicated in y direction and then turned into x direction. Then the light rays encounter the out-coupler and are expanded in x direction. To better understand the 2D EPE process, the k -vector diagram (Fig. 13b ) can be used. For the light propagating in air with wavenumber k 0 , its possible k -values in x and y directions ( k x and k y ) fall within the circle with radius k 0 . When the light is trapped into TIR, k x and k y are outside the circle with radius k 0 and inside the circle with radius nk 0 , where n is the refractive index of the substrate. k x and k y stay unchanged in the TIR process and are only changed in each diffraction process. The central red box in Fig. 13b indicates the possible k values within the system FoV. After the in-coupler, the k values are added by the grating k -vector, shifting the k values into TIR region. The turning grating then applies another k -vector and shifts the k values to near x -axis. Finally, the k values are shifted by the out-coupler and return to the free propagation region in air. One observation is that the size of red box is mostly limited by the width of TIR band. To accommodate a larger FoV, the outer boundary of TIR band needs to be expanded, which amounts to increasing waveguide refractive index. Another important fact is that when k x and k y are near the outer boundary, the uniformity of output light becomes worse. This is because the light propagation angle is near 90° in the waveguide. The spatial distance between two consecutive TIRs becomes so large that the out-coupled beams are spatially separated to an unacceptable degree. The range of possible k values for practical applications is therefore further shrunk due to this fact.

figure 13

a Schematic of 2D EPE based on two consecutive 1D EPEs. Gray/black arrows indicate light in air/TIR. Black dots denote TIRs. b k-diagram of the two-1D-EPE scheme. c Schematic of 2D EPE with a 2D hexagonal grating d k-diagram of the 2D-grating scheme

Aside from two consecutive 1D EPEs, the 2D EPE can also be directly implemented with a 2D grating 192 . An example using a hexagonal grating is depicted in Fig. 13c . The hexagonal grating can provide k -vectors in six directions. In the k -diagram (Fig. 13d ), after the in-coupling, the k values are distributed into six regions due to multiple diffractions. The out-coupling occurs simultaneously with pupil expansion. Besides a concise out-coupler configuration, the 2D EPE scheme offers more degrees of design freedom than two 1D EPEs because the local grating parameters can be adjusted in a 2D manner. The higher design freedom has the potential to reach a better output light uniformity, but at the cost of a higher computation demand for optimization. Furthermore, the unslanted grating geometry usually leads to a large light leakage and possibly low efficiency. Adding slant to the geometry helps alleviate the issue, but the associated fabrication may be more challenging.

Finally, we discuss the generation of full-color images. One important issue to clarify is that although diffractive gratings are used here, the final image generally has no color dispersion even if we use a broadband light source like LED. This can be easily understood in the 1D EPE scheme. The in-coupler and out-coupler have opposite k -vectors, which cancels the color dispersion for each other. In the 2D EPE schemes, the k -vectors always form a closed loop from in-coupled light to out-coupled light, thus, the color dispersion also vanishes likewise. The issue of using a single waveguide for full-color images actually exists in the consideration of FoV and light uniformity. The breakup of propagation angles for different colors results in varied out-coupling situations for each color. To be more specific, if the red and the blue channels use the same in-coupler, the propagating angle for the red light is larger than that of the blue light. The red light in peripheral FoV is therefore easier to face the mentioned large-angle non-uniformity issue. To acquire a decent FoV and light uniformity, usually two or three layers of waveguides with different grating pitches are adopted.

Regarding the system performance, the eyebox is generally large enough (~10 mm) to accommodate different user’s IPD and alignment shift during operation. A parameter of significant concern for a waveguide combiner is its FoV. From the k -vector analysis, we can conclude the theoretical upper limit is determined by the waveguide refractive index. But the light/color uniformity also influences the effective FoV, over which the degradation of image quality becomes unacceptable. Current diffractive waveguide combiners generally achieve a FoV of about 50°. To further increase FoV, a straightforward method is to use a higher refractive index waveguide. Another is to tile FoV through direct stacking of multiple waveguides or using polarization-sensitive couplers 79 , 193 . As to the optical efficiency, a typical value for the diffractive waveguide combiner is around 50–200 nit/lm 6 , 189 . In addition, waveguide combiners adopting grating out-couplers generate an image with fixed depth at infinity. This leads to the VAC issue. To tackle VAC in waveguide architectures, the most practical way is to generate multiple depths and use the varifocal or multifocal driving scheme, similar to those mentioned in the VR systems. But to add more depths usually means to stack multiple layers of waveguides together 194 . Considering the additional waveguide layers for RGB colors, the final waveguide thickness would undoubtedly increase.

Other parameters special to waveguide includes light leakage, see-through ghost, and rainbow. Light leakage refers to out-coupled light that goes outwards to the environment, as depicted in Fig. 14a . Aside from decreased efficiency, the leakage also brings drawback of unnatural “bright-eye” appearance of the user and privacy issue. Optimization of the grating structure like geometry of SRG may reduce the leakage. See-through ghost is formed by consecutive in-coupling and out-couplings caused by the out-coupler grating, as sketched in Fig. 14b , After the process, a real object with finite depth may produce a ghost image with shift in both FoV and depth. Generally, an out-coupler with higher efficiency suffers more see-through ghost. Rainbow is caused by the diffraction of environment light into user’s eye, as sketched in Fig. 14c . The color dispersion in this case will occur because there is no cancellation of k -vector. Using the k -diagram, we can obtain a deeper insight into the formation of rainbow. Here, we take the EPE structure in Fig. 13a as an example. As depicted in Fig. 14d , after diffractions by the turning grating and the out-coupler grating, the k values are distributed in two circles that shift from the origin by the grating k -vectors. Some diffracted light can enter the see-through FoV and form rainbow. To reduce rainbow, a straightforward way is to use a higher index substrate. With a higher refractive index, the outer boundary of k diagram is expanded, which can accommodate larger grating k -vectors. The enlarged k -vectors would therefore “push” these two circles outwards, leading to a decreased overlapping region with the see-through FoV. Alternatively, an optimized grating structure would also help reduce the rainbow effect by suppressing the unwanted diffraction.

figure 14

Sketches of formations of a light leakage, b see-through ghost and c rainbow. d Analysis of rainbow formation with k-diagram

Achromatic waveguide

Achromatic waveguide combiners use achromatic elements as couplers. It has the advantage of realizing full-color image with a single waveguide. A typical example of achromatic element is a mirror. The waveguide with partial mirrors as out-coupler is often referred as geometric waveguide 6 , 195 , as depicted in Fig. 15a . The in-coupler in this case is usually a prism to avoid unnecessary color dispersion if using diffractive elements otherwise. The mirrors couple out TIR light consecutively to produce a large eyebox, similarly in a diffractive waveguide. Thanks to the excellent optical property of mirrors, the geometric waveguide usually exhibits a superior image regarding MTF and color uniformity to its diffractive counterparts. Still, the spatially discontinuous configuration of mirrors also results in gaps in eyebox, which may be alleviated by using a dual-layer structure 196 . Wang et al. designed a geometric waveguide display with five partial mirrors (Fig. 15b ). It exhibits a remarkable FoV of 50° by 30° (Fig. 15c ) and an exit pupil of 4 mm with a 1D EPE. To achieve 2D EPE, similar architectures in Fig. 13a can be used by integrating a turning mirror array as the first 1D EPE module 197 . Unfortunately, the k -vector diagrams in Fig. 13b, d cannot be used here because the k values in x-y plane no longer conserve in the in-coupling and out-coupling processes. But some general conclusions remain valid, like a higher refractive index leading to a larger FoV and gradient out-coupling efficiency improving light uniformity.

figure 15

a Schematic of the system configuration. b Geometric waveguide with five partial mirrors. c Image photos demonstrating system FoV. Adapted from b , c ref. 195 with permission from OSA Publishing

The fabrication process of geometric waveguide involves coating mirrors on cut-apart pieces and integrating them back together, which may result in a high cost, especially for the 2D EPE architecture. Another way to implement an achromatic coupler is to use multiplexed PPHOE 198 , 199 to mimic the behavior of a tilted mirror (Fig. 16a ). To understand the working principle, we can use the diagram in Fig. 16b . The law of reflection states the angle of reflection equals to the angle of incidence. If we translate this behavior to k -vector language, it means the mirror can apply any length of k -vector along its surface normal direction. The k -vector length of the reflected light is always equal to that of the incident light. This puts a condition that the k -vector triangle is isosceles. With a simple geometric deduction, it can be easily observed this leads to the law of reflection. The behavior of a general grating, however, is very different. For simplicity we only consider the main diffraction order. The grating can only apply a k -vector with fixed k x due to the basic diffraction law. For the light with a different incident angle, it needs to apply different k z to produce a diffracted light with equal k -vector length as the incident light. For a grating with a broad angular bandwidth like SRG, the range of k z is wide, forming a lengthy vertical line in Fig. 16b . For a PPG with a narrow angular bandwidth, the line is short and resembles a dot. If multiple of these tiny dots are distributed along the oblique line corresponding to a mirror, then the final multiplexed PPGs can imitate the behavior of a tilted mirror. Such a PPHOE is sometimes referred as a skew-mirror 198 . In theory, to better imitate the mirror, a lot of multiplexed PPGs is preferred, while each PPG has a small index modulation δn . But this proposes a bigger challenge in device fabrication. Recently, Utsugi et al. demonstrated an impressive skew-mirror waveguide based on 54 multiplexed PPGs (Fig. 16c, d ). The display exhibits an effective FoV of 35° by 36°. In the peripheral FoV, there still exists some non-uniformity (Fig. 16e ) due to the out-coupling gap, which is an inherent feature of the flat-type out-couplers.

figure 16

a System configuration. b Diagram demonstrating how multiplexed PPGs resemble the behavior of a mirror. Photos showing c the system and d image. e Picture demonstrating effective system FoV. Adapted from c – e ref. 199 with permission from ITE

Finally, it is worth mentioning that metasurfaces are also promising to deliver achromatic gratings 200 , 201 for waveguide couplers ascribed to their versatile wavefront shaping capability. The mechanism of the achromatic gratings is similar to that of the achromatic lenses as previously discussed. However, the current development of achromatic metagratings is still in its infancy. Much effort is needed to improve the optical efficiency for in-coupling, control the higher diffraction orders for eliminating ghost images, and enable a large size design for EPE.

Generally, achromatic waveguide combiners exhibit a comparable FoV and eyebox with diffractive combiners, but with a higher efficiency. For a partial-mirror combiner, its combiner efficiency is around 650 nit/lm 197 (2D EPE). For a skew-mirror combiner, although the efficiency of multiplexed PPHOE is relatively low (~1.5%) 199 , the final combiner efficiency of the 1D EPE system is still high (>3000 nit/lm) due to multiple out-couplings.

Table 2 summarizes the performance of different AR combiners. When combing the luminous efficacy in Table 1 and the combiner efficiency in Table 2 , we can have a comprehensive estimate of the total luminance efficiency (nit/W) for different types of systems. Generally, Maxwellian-type combiners with pupil steering have the highest luminance efficiency when partnered with laser-based light engines like laser-backlit LCoS/DMD or MEM-LBS. Geometric optical combiners have well-balanced image performances, but to further shrink the system size remains a challenge. Diffractive waveguides have a relatively low combiner efficiency, which can be remedied by an efficient light engine like MEMS-LBS. Further development of coupler and EPE scheme would also improve the system efficiency and FoV. Achromatic waveguides have a decent combiner efficiency. The single-layer design also enables a smaller form factor. With advances in fabrication process, it may become a strong contender to presently widely used diffractive waveguides.

Conclusions and perspectives

VR and AR are endowed with a high expectation to revolutionize the way we interact with digital world. Accompanied with the expectation are the engineering challenges to squeeze a high-performance display system into a tightly packed module for daily wearing. Although the etendue conservation constitutes a great obstacle on the path, remarkable progresses with innovative optics and photonics continue to take place. Ultra-thin optical elements like PPHOEs and LCHOEs provide alternative solutions to traditional optics. Their unique features of multiplexing capability and polarization dependency further expand the possibility of novel wavefront modulations. At the same time, nanoscale-engineered metasurfaces/SRGs provide large design freedoms to achieve novel functions beyond conventional geometric optical devices. Newly emerged micro-LEDs open an opportunity for compact microdisplays with high peak brightness and good stability. Further advances on device engineering and manufacturing process are expected to boost the performance of metasurfaces/SRGs and micro-LEDs for AR and VR applications.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper. Additional data related to this paper may be requested from the authors.

Cakmakci, O. & Rolland, J. Head-worn displays: a review. J. Disp. Technol. 2 , 199–216 (2006).

Article   ADS   Google Scholar  

Zhan, T. et al. Augmented reality and virtual reality displays: perspectives and challenges. iScience 23 , 101397 (2020).

Rendon, A. A. et al. The effect of virtual reality gaming on dynamic balance in older adults. Age Ageing 41 , 549–552 (2012).

Article   Google Scholar  

Choi, S., Jung, K. & Noh, S. D. Virtual reality applications in manufacturing industries: past research, present findings, and future directions. Concurrent Eng. 23 , 40–63 (2015).

Li, X. et al. A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Autom. Constr. 86 , 150–162 (2018).

Kress, B. C. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets (Bellingham: SPIE Press, 2020).

Cholewiak, S. A. et al. A perceptual eyebox for near-eye displays. Opt. Express 28 , 38008–38028 (2020).

Lee, Y. H., Zhan, T. & Wu, S. T. Prospects and challenges in augmented reality displays. Virtual Real. Intell. Hardw. 1 , 10–20 (2019).

Kim, J. et al. Foveated AR: dynamically-foveated augmented reality display. ACM Trans. Graph. 38 , 99 (2019).

Tan, G. J. et al. Foveated imaging for near-eye displays. Opt. Express 26 , 25076–25085 (2018).

Lee, S. et al. Foveated near-eye display for mixed reality using liquid crystal photonics. Sci. Rep. 10 , 16127 (2020).

Yoo, C. et al. Foveated display system based on a doublet geometric phase lens. Opt. Express 28 , 23690–23702 (2020).

Akşit, K. et al. Manufacturing application-driven foveated near-eye displays. IEEE Trans. Vis. Computer Graph. 25 , 1928–1939 (2019).

Zhu, R. D. et al. High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer. J. Soc. Inf. Disp. 24 , 229–233 (2016).

Lincoln, P. et al. Scene-adaptive high dynamic range display for low latency augmented reality. In Proc. 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games . (ACM, San Francisco, CA, 2017).

Duerr, F. & Thienpont, H. Freeform imaging systems: fermat’s principle unlocks “first time right” design. Light.: Sci. Appl. 10 , 95 (2021).

Bauer, A., Schiesser, E. M. & Rolland, J. P. Starting geometry creation and design method for freeform optics. Nat. Commun. 9 , 1756 (2018).

Rolland, J. P. et al. Freeform optics for imaging. Optica 8 , 161–176 (2021).

Jang, C. et al. Design and fabrication of freeform holographic optical elements. ACM Trans. Graph. 39 , 184 (2020).

Gabor, D. A new microscopic principle. Nature 161 , 777–778 (1948).

Kostuk, R. K. Holography: Principles and Applications (Boca Raton: CRC Press, 2019).

Lawrence, J. R., O'Neill, F. T. & Sheridan, J. T. Photopolymer holographic recording material. Optik 112 , 449–463 (2001).

Guo, J. X., Gleeson, M. R. & Sheridan, J. T. A review of the optimisation of photopolymer materials for holographic data storage. Phys. Res. Int. 2012 , 803439 (2012).

Jang, C. et al. Recent progress in see-through three-dimensional displays using holographic optical elements [Invited]. Appl. Opt. 55 , A71–A85 (2016).

Xiong, J. H. et al. Holographic optical elements for augmented reality: principles, present status, and future perspectives. Adv. Photonics Res. 2 , 2000049 (2021).

Tabiryan, N. V. et al. Advances in transparent planar optics: enabling large aperture, ultrathin lenses. Adv. Optical Mater. 9 , 2001692 (2021).

Zanutta, A. et al. Photopolymeric films with highly tunable refractive index modulation for high precision diffractive optics. Optical Mater. Express 6 , 252–263 (2016).

Moharam, M. G. & Gaylord, T. K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Optical Soc. Am. 71 , 811–818 (1981).

Xiong, J. H. & Wu, S. T. Rigorous coupled-wave analysis of liquid crystal polarization gratings. Opt. Express 28 , 35960–35971 (2020).

Xie, S., Natansohn, A. & Rochon, P. Recent developments in aromatic azo polymers research. Chem. Mater. 5 , 403–411 (1993).

Shishido, A. Rewritable holograms based on azobenzene-containing liquid-crystalline polymers. Polym. J. 42 , 525–533 (2010).

Bunning, T. J. et al. Holographic polymer-dispersed liquid crystals (H-PDLCs). Annu. Rev. Mater. Sci. 30 , 83–115 (2000).

Liu, Y. J. & Sun, X. W. Holographic polymer-dispersed liquid crystals: materials, formation, and applications. Adv. Optoelectron. 2008 , 684349 (2008).

Xiong, J. H. & Wu, S. T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1 , 3 (2021).

Yaroshchuk, O. & Reznikov, Y. Photoalignment of liquid crystals: basics and current trends. J. Mater. Chem. 22 , 286–300 (2012).

Sarkissian, H. et al. Periodically aligned liquid crystal: potential application for projection displays. Mol. Cryst. Liq. Cryst. 451 , 1–19 (2006).

Komanduri, R. K. & Escuti, M. J. Elastic continuum analysis of the liquid crystal polarization grating. Phys. Rev. E 76 , 021701 (2007).

Kobashi, J., Yoshida, H. & Ozaki, M. Planar optics with patterned chiral liquid crystals. Nat. Photonics 10 , 389–392 (2016).

Lee, Y. H., Yin, K. & Wu, S. T. Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays. Opt. Express 25 , 27008–27014 (2017).

Lee, Y. H., He, Z. Q. & Wu, S. T. Optical properties of reflective liquid crystal polarization volume gratings. J. Optical Soc. Am. B 36 , D9–D12 (2019).

Xiong, J. H., Chen, R. & Wu, S. T. Device simulation of liquid crystal polarization gratings. Opt. Express 27 , 18102–18112 (2019).

Czapla, A. et al. Long-period fiber gratings with low-birefringence liquid crystal. Mol. Cryst. Liq. Cryst. 502 , 65–76 (2009).

Dąbrowski, R., Kula, P. & Herman, J. High birefringence liquid crystals. Crystals 3 , 443–482 (2013).

Mack, C. Fundamental Principles of Optical Lithography: The Science of Microfabrication (Chichester: John Wiley & Sons, 2007).

Genevet, P. et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4 , 139–152 (2017).

Guo, L. J. Nanoimprint lithography: methods and material requirements. Adv. Mater. 19 , 495–513 (2007).

Park, J. et al. Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses. Nat. Photonics 15 , 449–455 (2021).

Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352 , 1190–1194 (2016).

Li, S. Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364 , 1087–1090 (2019).

Liang, K. L. et al. Advances in color-converted micro-LED arrays. Jpn. J. Appl. Phys. 60 , SA0802 (2020).

Jin, S. X. et al. GaN microdisk light emitting diodes. Appl. Phys. Lett. 76 , 631–633 (2000).

Day, J. et al. Full-scale self-emissive blue and green microdisplays based on GaN micro-LED arrays. In Proc. SPIE 8268, Quantum Sensing and Nanophotonic Devices IX (SPIE, San Francisco, California, United States, 2012).

Huang, Y. G. et al. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light.: Sci. Appl. 9 , 105 (2020).

Parbrook, P. J. et al. Micro-light emitting diode: from chips to applications. Laser Photonics Rev. 15 , 2000133 (2021).

Day, J. et al. III-Nitride full-scale high-resolution microdisplays. Appl. Phys. Lett. 99 , 031116 (2011).

Liu, Z. J. et al. 360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon (LEDoS) micro-displays. J. Disp. Technol. 9 , 678–682 (2013).

Zhang, L. et al. Wafer-scale monolithic hybrid integration of Si-based IC and III–V epi-layers—A mass manufacturable approach for active matrix micro-LED micro-displays. J. Soc. Inf. Disp. 26 , 137–145 (2018).

Tian, P. F. et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Appl. Phys. Lett. 101 , 231110 (2012).

Olivier, F. et al. Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: a size effect study. Appl. Phys. Lett. 111 , 022104 (2017).

Konoplev, S. S., Bulashevich, K. A. & Karpov, S. Y. From large-size to micro-LEDs: scaling trends revealed by modeling. Phys. Status Solidi (A) 215 , 1700508 (2018).

Li, L. Z. et al. Transfer-printed, tandem microscale light-emitting diodes for full-color displays. Proc. Natl Acad. Sci. USA 118 , e2023436118 (2021).

Oh, J. T. et al. Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures. Opt. Express 26 , 11194–11200 (2018).

Shen, Y. C. et al. Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91 , 141101 (2007).

Wong, M. S. et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt. Express 26 , 21324–21331 (2018).

Han, S. C. et al. AlGaInP-based Micro-LED array with enhanced optoelectrical properties. Optical Mater. 114 , 110860 (2021).

Wong, M. S. et al. Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation. Appl. Phys. Express 12 , 097004 (2019).

Ley, R. T. et al. Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation. Appl. Phys. Lett. 116 , 251104 (2020).

Moon, S. W. et al. Recent progress on ultrathin metalenses for flat optics. iScience 23 , 101877 (2020).

Arbabi, A. et al. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Opt. Express 23 , 33310–33317 (2015).

Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334 , 333–337 (2011).

Liang, H. W. et al. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica 6 , 1461–1470 (2019).

Park, J. S. et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 19 , 8673–8682 (2019).

Yoon, G. et al. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11 , 2268 (2020).

Lee, G. Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9 , 4562 (2018).

Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13 , 220–226 (2018).

Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13 , 227–232 (2018).

Lan, S. F. et al. Metasurfaces for near-eye augmented reality. ACS Photonics 6 , 864–870 (2019).

Fan, Z. B. et al. A broadband achromatic metalens array for integral imaging in the visible. Light.: Sci. Appl. 8 , 67 (2019).

Shi, Z. J., Chen, W. T. & Capasso, F. Wide field-of-view waveguide displays enabled by polarization-dependent metagratings. In Proc. SPIE 10676, Digital Optics for Immersive Displays (SPIE, Strasbourg, France, 2018).

Hong, C. C., Colburn, S. & Majumdar, A. Flat metaform near-eye visor. Appl. Opt. 56 , 8822–8827 (2017).

Bayati, E. et al. Design of achromatic augmented reality visors based on composite metasurfaces. Appl. Opt. 60 , 844–850 (2021).

Nikolov, D. K. et al. Metaform optics: bridging nanophotonics and freeform optics. Sci. Adv. 7 , eabe5112 (2021).

Tamir, T. & Peng, S. T. Analysis and design of grating couplers. Appl. Phys. 14 , 235–254 (1977).

Miller, J. M. et al. Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection. Appl. Opt. 36 , 5717–5727 (1997).

Levola, T. & Laakkonen, P. Replicated slanted gratings with a high refractive index material for in and outcoupling of light. Opt. Express 15 , 2067–2074 (2007).

Shrestha, S. et al. Broadband achromatic dielectric metalenses. Light.: Sci. Appl. 7 , 85 (2018).

Li, Z. Y. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 7 , eabe4458 (2021).

Ratcliff, J. et al. ThinVR: heterogeneous microlens arrays for compact, 180 degree FOV VR near-eye displays. IEEE Trans. Vis. Computer Graph. 26 , 1981–1990 (2020).

Wong, T. L. et al. Folded optics with birefringent reflective polarizers. In Proc. SPIE 10335, Digital Optical Technologies 2017 (SPIE, Munich, Germany, 2017).

Li, Y. N. Q. et al. Broadband cholesteric liquid crystal lens for chromatic aberration correction in catadioptric virtual reality optics. Opt. Express 29 , 6011–6020 (2021).

Bang, K. et al. Lenslet VR: thin, flat and wide-FOV virtual reality display using fresnel lens and lenslet array. IEEE Trans. Vis. Computer Graph. 27 , 2545–2554 (2021).

Maimone, A. & Wang, J. R. Holographic optics for thin and lightweight virtual reality. ACM Trans. Graph. 39 , 67 (2020).

Kramida, G. Resolving the vergence-accommodation conflict in head-mounted displays. IEEE Trans. Vis. Computer Graph. 22 , 1912–1931 (2016).

Zhan, T. et al. Multifocal displays: review and prospect. PhotoniX 1 , 10 (2020).

Shimobaba, T., Kakue, T. & Ito, T. Review of fast algorithms and hardware implementations on computer holography. IEEE Trans. Ind. Inform. 12 , 1611–1622 (2016).

Xiao, X. et al. Advances in three-dimensional integral imaging: sensing, display, and applications [Invited]. Appl. Opt. 52 , 546–560 (2013).

Kuiper, S. & Hendriks, B. H. W. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85 , 1128–1130 (2004).

Liu, S. & Hua, H. Time-multiplexed dual-focal plane head-mounted display with a liquid lens. Opt. Lett. 34 , 1642–1644 (2009).

Wilson, A. & Hua, H. Design and demonstration of a vari-focal optical see-through head-mounted display using freeform Alvarez lenses. Opt. Express 27 , 15627–15637 (2019).

Zhan, T. et al. Pancharatnam-Berry optical elements for head-up and near-eye displays [Invited]. J. Optical Soc. Am. B 36 , D52–D65 (2019).

Oh, C. & Escuti, M. J. Achromatic diffraction from polarization gratings with high efficiency. Opt. Lett. 33 , 2287–2289 (2008).

Zou, J. Y. et al. Broadband wide-view Pancharatnam-Berry phase deflector. Opt. Express 28 , 4921–4927 (2020).

Zhan, T., Lee, Y. H. & Wu, S. T. High-resolution additive light field near-eye display by switchable Pancharatnam–Berry phase lenses. Opt. Express 26 , 4863–4872 (2018).

Tan, G. J. et al. Polarization-multiplexed multiplane display. Opt. Lett. 43 , 5651–5654 (2018).

Lanman, D. R. Display systems research at facebook reality labs (conference presentation). In Proc. SPIE 11310, Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) (SPIE, San Francisco, California, United States, 2020).

Liu, Z. J. et al. A novel BLU-free full-color LED projector using LED on silicon micro-displays. IEEE Photonics Technol. Lett. 25 , 2267–2270 (2013).

Han, H. V. et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt. Express 23 , 32504–32515 (2015).

Lin, H. Y. et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photonics Res. 5 , 411–416 (2017).

Liu, Z. J. et al. Micro-light-emitting diodes with quantum dots in display technology. Light.: Sci. Appl. 9 , 83 (2020).

Kim, H. M. et al. Ten micrometer pixel, quantum dots color conversion layer for high resolution and full color active matrix micro-LED display. J. Soc. Inf. Disp. 27 , 347–353 (2019).

Xuan, T. T. et al. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays. J. Phys. Chem. Lett. 11 , 5184–5191 (2020).

Chen, S. W. H. et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res. 7 , 416–422 (2019).

Krishnan, C. et al. Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield. Optica 3 , 503–509 (2016).

Kang, J. H. et al. RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots. ACS Applied Mater. Interfaces 12 , 30890–30895 (2020).

Chen, G. S. et al. Monolithic red/green/blue micro-LEDs with HBR and DBR structures. IEEE Photonics Technol. Lett. 30 , 262–265 (2018).

Hsiang, E. L. et al. Enhancing the efficiency of color conversion micro-LED display with a patterned cholesteric liquid crystal polymer film. Nanomaterials 10 , 2430 (2020).

Kang, C. M. et al. Hybrid full-color inorganic light-emitting diodes integrated on a single wafer using selective area growth and adhesive bonding. ACS Photonics 5 , 4413–4422 (2018).

Geum, D. M. et al. Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding-interface-engineered vertical stacking and surface passivation. Nanoscale 11 , 23139–23148 (2019).

Ra, Y. H. et al. Full-color single nanowire pixels for projection displays. Nano Lett. 16 , 4608–4615 (2016).

Motoyama, Y. et al. High-efficiency OLED microdisplay with microlens array. J. Soc. Inf. Disp. 27 , 354–360 (2019).

Fujii, T. et al. 4032 ppi High-resolution OLED microdisplay. J. Soc. Inf. Disp. 26 , 178–186 (2018).

Hamer, J. et al. High-performance OLED microdisplays made with multi-stack OLED formulations on CMOS backplanes. In Proc. SPIE 11473, Organic and Hybrid Light Emitting Materials and Devices XXIV . Online Only (SPIE, 2020).

Joo, W. J. et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science 370 , 459–463 (2020).

Vettese, D. Liquid crystal on silicon. Nat. Photonics 4 , 752–754 (2010).

Zhang, Z. C., You, Z. & Chu, D. P. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light.: Sci. Appl. 3 , e213 (2014).

Hornbeck, L. J. The DMD TM projection display chip: a MEMS-based technology. MRS Bull. 26 , 325–327 (2001).

Zhang, Q. et al. Polarization recycling method for light-pipe-based optical engine. Appl. Opt. 52 , 8827–8833 (2013).

Hofmann, U., Janes, J. & Quenzer, H. J. High-Q MEMS resonators for laser beam scanning displays. Micromachines 3 , 509–528 (2012).

Holmström, S. T. S., Baran, U. & Urey, H. MEMS laser scanners: a review. J. Microelectromechanical Syst. 23 , 259–275 (2014).

Bao, X. Z. et al. Design and fabrication of AlGaInP-based micro-light-emitting-diode array devices. Opt. Laser Technol. 78 , 34–41 (2016).

Olivier, F. et al. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J. Lumin. 191 , 112–116 (2017).

Liu, Y. B. et al. High-brightness InGaN/GaN Micro-LEDs with secondary peak effect for displays. IEEE Electron Device Lett. 41 , 1380–1383 (2020).

Qi, L. H. et al. 848 ppi high-brightness active-matrix micro-LED micro-display using GaN-on-Si epi-wafers towards mass production. Opt. Express 29 , 10580–10591 (2021).

Chen, E. G. & Yu, F. H. Design of an elliptic spot illumination system in LED-based color filter-liquid-crystal-on-silicon pico projectors for mobile embedded projection. Appl. Opt. 51 , 3162–3170 (2012).

Darmon, D., McNeil, J. R. & Handschy, M. A. 70.1: LED-illuminated pico projector architectures. Soc. Inf. Disp. Int. Symp . Dig. Tech. Pap. 39 , 1070–1073 (2008).

Essaian, S. & Khaydarov, J. State of the art of compact green lasers for mobile projectors. Optical Rev. 19 , 400–404 (2012).

Sun, W. S. et al. Compact LED projector design with high uniformity and efficiency. Appl. Opt. 53 , H227–H232 (2014).

Sun, W. S., Chiang, Y. C. & Tsuei, C. H. Optical design for the DLP pocket projector using LED light source. Phys. Procedia 19 , 301–307 (2011).

Chen, S. W. H. et al. High-bandwidth green semipolar (20–21) InGaN/GaN micro light-emitting diodes for visible light communication. ACS Photonics 7 , 2228–2235 (2020).

Yoshida, K. et al. 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link. Nat. Commun. 11 , 1171 (2020).

Park, D. W. et al. 53.5: High-speed AMOLED pixel circuit and driving scheme. Soc. Inf. Disp. Int. Symp . Dig. Tech. Pap. 41 , 806–809 (2010).

Tan, L., Huang, H. C. & Kwok, H. S. 78.1: Ultra compact polarization recycling system for white light LED based pico-projection system. Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 41 , 1159–1161 (2010).

Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36 , 85 (2017).

Pan, J. W. et al. Portable digital micromirror device projector using a prism. Appl. Opt. 46 , 5097–5102 (2007).

Huang, Y. et al. Liquid-crystal-on-silicon for augmented reality displays. Appl. Sci. 8 , 2366 (2018).

Peng, F. L. et al. Analytical equation for the motion picture response time of display devices. J. Appl. Phys. 121 , 023108 (2017).

Pulli, K. 11-2: invited paper: meta 2: immersive optical-see-through augmented reality. Soc. Inf. Disp. Int. Symp . Dig. Tech. Pap. 48 , 132–133 (2017).

Lee, B. & Jo, Y. in Advanced Display Technology: Next Generation Self-Emitting Displays (eds Kang, B., Han, C. W. & Jeong, J. K.) 307–328 (Springer, 2021).

Cheng, D. W. et al. Design of an optical see-through head-mounted display with a low f -number and large field of view using a freeform prism. Appl. Opt. 48 , 2655–2668 (2009).

Zheng, Z. R. et al. Design and fabrication of an off-axis see-through head-mounted display with an x–y polynomial surface. Appl. Opt. 49 , 3661–3668 (2010).

Wei, L. D. et al. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface. Opt. Express 26 , 8550–8565 (2018).

Liu, S., Hua, H. & Cheng, D. W. A novel prototype for an optical see-through head-mounted display with addressable focus cues. IEEE Trans. Vis. Computer Graph. 16 , 381–393 (2010).

Hua, H. & Javidi, B. A 3D integral imaging optical see-through head-mounted display. Opt. Express 22 , 13484–13491 (2014).

Song, W. T. et al. Design of a light-field near-eye display using random pinholes. Opt. Express 27 , 23763–23774 (2019).

Wang, X. & Hua, H. Depth-enhanced head-mounted light field displays based on integral imaging. Opt. Lett. 46 , 985–988 (2021).

Huang, H. K. & Hua, H. Generalized methods and strategies for modeling and optimizing the optics of 3D head-mounted light field displays. Opt. Express 27 , 25154–25171 (2019).

Huang, H. K. & Hua, H. High-performance integral-imaging-based light field augmented reality display using freeform optics. Opt. Express 26 , 17578–17590 (2018).

Cheng, D. W. et al. Design and manufacture AR head-mounted displays: a review and outlook. Light.: Adv. Manuf. 2 , 24 (2021).

Google Scholar  

Westheimer, G. The Maxwellian view. Vis. Res. 6 , 669–682 (1966).

Do, H., Kim, Y. M. & Min, S. W. Focus-free head-mounted display based on Maxwellian view using retroreflector film. Appl. Opt. 58 , 2882–2889 (2019).

Park, J. H. & Kim, S. B. Optical see-through holographic near-eye-display with eyebox steering and depth of field control. Opt. Express 26 , 27076–27088 (2018).

Chang, C. L. et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica 7 , 1563–1578 (2020).

Hsueh, C. K. & Sawchuk, A. A. Computer-generated double-phase holograms. Appl. Opt. 17 , 3874–3883 (1978).

Chakravarthula, P. et al. Wirtinger holography for near-eye displays. ACM Trans. Graph. 38 , 213 (2019).

Peng, Y. F. et al. Neural holography with camera-in-the-loop training. ACM Trans. Graph. 39 , 185 (2020).

Shi, L. et al. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591 , 234–239 (2021).

Jang, C. et al. Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans. Graph. 36 , 190 (2017).

Jang, C. et al. Holographic near-eye display with expanded eye-box. ACM Trans. Graph. 37 , 195 (2018).

Kim, S. B. & Park, J. H. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox. Opt. Lett. 43 , 767–770 (2018).

Shrestha, P. K. et al. Accommodation-free head mounted display with comfortable 3D perception and an enlarged eye-box. Research 2019 , 9273723 (2019).

Lin, T. G. et al. Maxwellian near-eye display with an expanded eyebox. Opt. Express 28 , 38616–38625 (2020).

Jo, Y. et al. Eye-box extended retinal projection type near-eye display with multiple independent viewpoints [Invited]. Appl. Opt. 60 , A268–A276 (2021).

Xiong, J. H. et al. Aberration-free pupil steerable Maxwellian display for augmented reality with cholesteric liquid crystal holographic lenses. Opt. Lett. 46 , 1760–1763 (2021).

Viirre, E. et al. Laser safety analysis of a retinal scanning display system. J. Laser Appl. 9 , 253–260 (1997).

Ratnam, K. et al. Retinal image quality in near-eye pupil-steered systems. Opt. Express 27 , 38289–38311 (2019).

Maimone, A. et al. Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources. In Proc. ACM SIGGRAPH 2014 Emerging Technologies (ACM, Vancouver, Canada, 2014).

Jeong, J. et al. Holographically printed freeform mirror array for augmented reality near-eye display. IEEE Photonics Technol. Lett. 32 , 991–994 (2020).

Ha, J. & Kim, J. Augmented reality optics system with pin mirror. US Patent 10,989,922 (2021).

Park, S. G. Augmented and mixed reality optical see-through combiners based on plastic optics. Inf. Disp. 37 , 6–11 (2021).

Xiong, J. H. et al. Breaking the field-of-view limit in augmented reality with a scanning waveguide display. OSA Contin. 3 , 2730–2740 (2020).

Levola, T. 7.1: invited paper: novel diffractive optical components for near to eye displays. Soc. Inf. Disp. Int. Symp . Dig. Tech. Pap. 37 , 64–67 (2006).

Laakkonen, P. et al. High efficiency diffractive incouplers for light guides. In Proc. SPIE 6896, Integrated Optics: Devices, Materials, and Technologies XII . (SPIE, San Jose, California, United States, 2008).

Bai, B. F. et al. Optimization of nonbinary slanted surface-relief gratings as high-efficiency broadband couplers for light guides. Appl. Opt. 49 , 5454–5464 (2010).

Äyräs, P., Saarikko, P. & Levola, T. Exit pupil expander with a large field of view based on diffractive optics. J. Soc. Inf. Disp. 17 , 659–664 (2009).

Yoshida, T. et al. A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses. J. Soc. Inf. Disp. 26 , 280–286 (2018).

Yu, C. et al. Highly efficient waveguide display with space-variant volume holographic gratings. Appl. Opt. 56 , 9390–9397 (2017).

Shi, X. L. et al. Design of a compact waveguide eyeglass with high efficiency by joining freeform surfaces and volume holographic gratings. J. Optical Soc. Am. A 38 , A19–A26 (2021).

Han, J. et al. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms. Opt. Express 23 , 3534–3549 (2015).

Weng, Y. S. et al. Liquid-crystal-based polarization volume grating applied for full-color waveguide displays. Opt. Lett. 43 , 5773–5776 (2018).

Lee, Y. H. et al. Compact see-through near-eye display with depth adaption. J. Soc. Inf. Disp. 26 , 64–70 (2018).

Tekolste, R. D. & Liu, V. K. Outcoupling grating for augmented reality system. US Patent 10,073,267 (2018).

Grey, D. & Talukdar, S. Exit pupil expanding diffractive optical waveguiding device. US Patent 10,073, 267 (2019).

Yoo, C. et al. Extended-viewing-angle waveguide near-eye display with a polarization-dependent steering combiner. Opt. Lett. 45 , 2870–2873 (2020).

Schowengerdt, B. T., Lin, D. & St. Hilaire, P. Multi-layer diffractive eyepiece with wavelength-selective reflector. US Patent 10,725,223 (2020).

Wang, Q. W. et al. Stray light and tolerance analysis of an ultrathin waveguide display. Appl. Opt. 54 , 8354–8362 (2015).

Wang, Q. W. et al. Design of an ultra-thin, wide-angle, stray-light-free near-eye display with a dual-layer geometrical waveguide. Opt. Express 28 , 35376–35394 (2020).

Frommer, A. Lumus: maximus: large FoV near to eye display for consumer AR glasses. In Proc. SPIE 11764, AVR21 Industry Talks II . Online Only (SPIE, 2021).

Ayres, M. R. et al. Skew mirrors, methods of use, and methods of manufacture. US Patent 10,180,520 (2019).

Utsugi, T. et al. Volume holographic waveguide using multiplex recording for head-mounted display. ITE Trans. Media Technol. Appl. 8 , 238–244 (2020).

Aieta, F. et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347 , 1342–1345 (2015).

Arbabi, E. et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4 , 625–632 (2017).

Download references

Acknowledgements

The authors are indebted to Goertek Electronics for the financial support and Guanjun Tan for helpful discussions.

Author information

Authors and affiliations.

College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA

Jianghao Xiong, En-Lin Hsiang, Ziqian He, Tao Zhan & Shin-Tson Wu

You can also search for this author in PubMed   Google Scholar

Contributions

J.X. conceived the idea and initiated the project. J.X. mainly wrote the manuscript and produced the figures. E.-L.H., Z.H., and T.Z. contributed to parts of the manuscript. S.W. supervised the project and edited the manuscript.

Corresponding author

Correspondence to Shin-Tson Wu .

Ethics declarations

Conflict of interest.

The authors declare no competing interests.

Supplementary information

Supplementary information, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Xiong, J., Hsiang, EL., He, Z. et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl 10 , 216 (2021). https://doi.org/10.1038/s41377-021-00658-8

Download citation

Received : 06 June 2021

Revised : 26 September 2021

Accepted : 04 October 2021

Published : 25 October 2021

DOI : https://doi.org/10.1038/s41377-021-00658-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Color liquid crystal grating based color holographic 3d display system with large viewing angle.

  • Qiong-Hua Wang

Light: Science & Applications (2024)

Mass-produced and uniformly luminescent photochromic fibers toward future interactive wearable displays

Effects of virtual reality exposure therapy on state-trait anxiety in individuals with dentophobia.

  • Elham Majidi
  • Gholamreza Manshaee

Current Psychology (2024)

A review of convolutional neural networks in computer vision

  • Milan Parmar

Artificial Intelligence Review (2024)

Visual analytics for digital twins: a conceptual framework and case study

  • Hangbin Zheng
  • Tianyuan Liu
  • Jinsong Bao

Journal of Intelligent Manufacturing (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research paper topics emerging technologies

  • Email Alert

research paper topics emerging technologies

论文  全文  图  表  新闻 

  • Abstracting/Indexing
  • Journal Metrics
  • Current Editorial Board
  • Early Career Advisory Board
  • Previous Editor-in-Chief
  • Past Issues
  • Current Issue
  • Special Issues
  • Early Access
  • Online Submission
  • Information for Authors
  • Share facebook twitter google linkedin

research paper topics emerging technologies

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8 , Top 4% (SCI Q1) CiteScore: 17.6 , Top 3% (Q1) Google Scholar h5-index: 77, TOP 5

Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies

Doi:  10.1109/jas.2021.1003925.

  • Othmane Friha 1 ,  , 
  • Mohamed Amine Ferrag 2 ,  , 
  • Lei Shu 3, 4 ,  ,  , 
  • Leandros Maglaras 5 ,  , 
  • Xiaochan Wang 6 , 

Networks and Systems Laboratory, University of Badji Mokhtar-Annaba, Annaba 23000, Algeria

Department of Computer Science, Guelma University, Gulema 24000, Algeria

College of Engineering, Nanjing Agricultural University, Nanjing 210095, China

School of Engineering, University of Lincoln, Lincoln LN67TS, UK

School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, UK

Department of Electrical Engineering, Nanjing Agricultural University, Nanjing 210095, China

Othmane Friha received the master degree in computer science from Badji Mokhtar-Annaba University, Algeria, in 2018. He is currently working toward the Ph.D. degree in the University of Badji Mokhtar-Annaba, Algeria. His current research interests include network and computer security, internet of things (IoT), and applied cryptography

Mohamed Amine Ferrag received the bachelor degree (June, 2008), master degree (June, 2010), Ph.D. degree (June, 2014), HDR degree (April, 2019) from Badji Mokhtar-Annaba University, Algeria, all in computer science. Since October 2014, he is a Senior Lecturer at the Department of Computer Science, Guelma University, Algeria. Since July 2019, he is a Visiting Senior Researcher, NAULincoln Joint Research Center of Intelligent Engineering, Nanjing Agricultural University. His research interests include wireless network security, network coding security, and applied cryptography. He is featured in Stanford University’s list of the world’s Top 2% Scientists for the year 2019. He has been conducting several research projects with international collaborations on these topics. He has published more than 60 papers in international journals and conferences in the above areas. Some of his research findings are published in top-cited journals, such as the IEEE Communications Surveys and Tutorials , IEEE Internet of Things Journal , IEEE Transactions on Engineering Management , IEEE Access , Journal of Information Security and Applications (Elsevier), Transactions on Emerging Telecommunications Technologies (Wiley), Telecommunication Systems (Springer), International Journal of Communication Systems (Wiley), Sustainable Cities and Society (Elsevier), Security and Communication Networks (Wiley), and Journal of Network and Computer Applications (Elsevier). He has participated in many international conferences worldwide, and has been granted short-term research visitor internships to many renowned universities including, De Montfort University, UK, and Istanbul Technical University, Turkey. He is currently serving on various editorial positions such as Editorial Board Member in Journals (Indexed SCI and Scopus) such as, IET Networks and International Journal of Internet Technology and Secured Transactions (Inderscience Publishers)

Lei Shu (M’07–SM’15) received the B.S. degree in computer science from South Central University for Nationalities in 2002, and the M.S. degree in computer engineering from Kyung Hee University, South Korea, in 2005, and the Ph.D. degree from the Digital Enterprise Research Institute, National University of Ireland, Ireland, in 2010. Until 2012, he was a Specially Assigned Researcher with the Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University, Japan. He is currently a Distinguished Professor with Nanjing Agricultural University and a Lincoln Professor with the University of Lincoln, U.K. He is also the Director of the NAU-Lincoln Joint Research Center of Intelligent Engineering. He has published over 400 papers in related conferences, journals, and books in the areas of sensor networks and internet of things (IoT). His current H-index is 54 and i10-index is 197 in Google Scholar Citation. His current research interests include wireless sensor networks and IoT. He has also served as a TPC Member for more than 150 conferences, such as ICDCS, DCOSS, MASS, ICC, GLOBECOM, ICCCN, WCNC, and ISCC. He was a Recipient of the 2014 Top Level Talents in Sailing Plan of Guangdong Province, China, the 2015 Outstanding Young Professor of Guangdong Province, and the GLOBECOM 2010, ICC 2013, ComManTel 2014, WICON 2016, SigTelCom 2017 Best Paper Awards, the 2017 and 2018 IEEE Systems Journal Best Paper Awards, the 2017 Journal of Network and Computer Applications Best Research Paper Award, and the Outstanding Associate Editor Award of 2017, and the 2018 IEEE ACCESS. He has also served over 50 various Co-Chair for international conferences/workshops, such as IWCMC, ICC, ISCC, ICNC, Chinacom, especially the Symposium Co-Chair for IWCMC 2012, ICC 2012, the General Co-Chair for Chinacom 2014, Qshine 2015, Collaboratecom 2017, DependSys 2018, and SCI 2019, the TPC Chair for InisCom 2015, NCCA 2015, WICON 2016, NCCA 2016, Chinacom 2017, InisCom 2017, WMNC 2017, and NCCA 2018

Leandros Maglaras (SM’15) received the B.Sc. degree from Aristotle University of Thessaloniki, Greece, in 1998, M.Sc. in industrial production and management from University of Thessaly in 2004, and M.Sc. and Ph.D. degrees in electrical & computer engineering from University of Volos in 2008 and 2014, respectively. He is the Head of the National Cyber Security Authority of Greece and a Visiting Lecturer in the School of Computer Science and Informatics at the De Montfort University, U.K. He serves on the Editorial Board of several International peer-reviewed journals such as IEEE Access , Wiley Journal on Security & Communication Networks , EAI Transactions on e-Learning and EAI Transactions on Industrial Networks and Intelligent Systems . He is an author of more than 80 papers in scientific magazines and conferences and is a Senior Member of IEEE. His research interests include wireless sensor networks and vehicular ad hoc networks

Xiaochan Wang is currently a Professor in the Department of Electrical Engineering at Nanjing Agricultural University. His main research fields include intelligent equipment for horticulture and intelligent measurement and control. He is an ASABE Member, and the Vice Director of CSAM (Chinese Society for Agricultural Machinery), and also the Senior Member of Chinese Society of Agricultural Engineering. He was awarded the Second Prize of Science and Technology Invention by the Ministry of Education (2016) and the Advanced Worker for Chinese Society of Agricultural Engineering (2012), and he also gotten the “Blue Project” in Jiangsu province young and middle-aged academic leaders (2010)

  • Corresponding author: Lei Shu, e-mail: [email protected]
  • Revised Date: 2020-11-25
  • Accepted Date: 2020-12-30
  • Agricultural internet of things (IoT) , 
  • internet of things (IoT) , 
  • smart agriculture , 
  • smart farming , 
  • sustainable agriculture

Proportional views

通讯作者: 陈斌, [email protected].

沈阳化工大学材料科学与工程学院 沈阳 110142

Figures( 12 )  /  Tables( 9 )

Article Metrics

  • PDF Downloads( 2030 )
  • Abstract views( 10591 )
  • HTML views( 1385 )
  • We review the emerging technologies used by the Internet of Things for the future of smart agriculture.
  • We provide a classification of IoT applications for smart agriculture into seven categories, including, smart monitoring, smart water management, agrochemicals applications, disease management, smart harvesting, supply chain management, and smart agricultural practices.
  • We provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward supply chain management based on the blockchain technology for agricultural IoTs.
  • We highlight open research challenges and discuss possible future research directions for agricultural IoTs.
  • Copyright © 2022 IEEE/CAA Journal of Automatica Sinica
  • 京ICP备14019135号-24
  • E-mail: [email protected]  Tel: +86-10-82544459, 10-82544746
  • Address: 95 Zhongguancun East Road, Handian District, Beijing 100190, China

research paper topics emerging technologies

Export File

shu

  • Figure 1. The four agricultural revolutions
  • Figure 2. Survey structure
  • Figure 3. IoT-connected smart agriculture sensors enable the IoT
  • Figure 4. The architecture of a typical IoT sensor node
  • Figure 5. Fog computing-based agricultural IoT
  • Figure 6. SDN/NFV architecture for smart agriculture
  • Figure 7. Classification of IoT applications for smart agriculture
  • Figure 8. Greenhouse system [ 101 ]
  • Figure 9. Aerial-ground robotics system [ 67 ]
  • Figure 10. Photovoltaic agri-IoT schematic diagram [ 251 ]
  • Figure 11. Smart dairy farming system [ 254 ]
  • Figure 12. IoT-based solar insecticidal lamp [ 256 ], [ 257 ]

Identifying emerging technologies using expert opinions on the future: A topic modeling and fuzzy clustering approach

  • Published: 23 June 2021
  • Volume 126 , pages 6505–6532, ( 2021 )

Cite this article

  • Wooseok Jang 1 ,
  • Yongtae Park 2 &
  • Hyeonju Seol   ORCID: orcid.org/0000-0001-6953-9766 3  

1055 Accesses

6 Citations

1 Altmetric

Explore all metrics

As technology rapidly advances with the Fourth Industrial Revolution, many emerging technologies have been developed in several technology sectors. These technologies can (1) provide breakthroughs and fast growth and (2) have a tremendous impact on social and technological development. Many previous studies have attempted to identify emerging technologies by constructing a deterministic methodology with journal and patent data. However, previous research frameworks are not well suited to discover potential future influences due to two limitations: (1) they rely on past and present data and (2) methodologies analyze technologies based on discovered data. In contrast to previous attempts, this study suggests a framework on how to identify whether candidate emerging technologies will intensively grow and affect social and technological fields in the future. To do so, this study collects “expert opinions on the future” which contain future-oriented experts’ opinions from general and focused technology communities. Topic modeling was then conducted using Latent Dirichlet Allocation to discover the underlying topics and technologies that will be of interest in the future. Lastly, to identify the actual emerging technologies, fuzzy clustering was conducted using diversity and centrality index scores for the candidate technologies. To conduct this empirical study, this work selected 12 food processing technologies addressing hazards that threaten microbial contamination in food. The results of the analysis indicate that three food processing technologies (Pulsed electric field, Cold atmospheric plasma, and nanotechnology in food processing) can be classified as emerging technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

research paper topics emerging technologies

Similar content being viewed by others

research paper topics emerging technologies

A Comprehensive Survey of Clustering Algorithms

Dongkuan Xu & Yingjie Tian

research paper topics emerging technologies

Big Data Analytics: Applications, Prospects and Challenges

research paper topics emerging technologies

Industry 5.0 or industry 4.0S? Introduction to industry 4.0 and a peek into the prospective industry 5.0 technologies

Abirami Raja Santhi & Padmakumar Muthuswamy

Abercrombie, R. K., Udoeyop, A. W., & Schlicher, B. G. (2012). A study of scientometric methods to identify emerging technologies via modeling of milestones. Scientometrics, 91 (2), 327–342

Article   Google Scholar  

Altuntas, S., Erdogan, Z., & Dereli, T. (2020). A clustering-based approach for the evaluation of candidate emerging technologies. Scientometrics, 124 , 1157–1177

Barba, F. J., Parniakov, O., Pereira, S. A., Wiktor, A., Grimi, N., Boussetta, N., Saraiva, J., Raso, J., Olga, M., Dorota, R., Lebovka, N., & Lebovka, N. (2015). Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, 77 , 773–798

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3 , 993–1022

MATH   Google Scholar  

Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2 (1), 113–120

Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29 (4), 555–564

Boon, W., & Moors, E. (2008). Exploring emerging technologies using metaphors–a study of orphan drugs and pharmacogenomics. Social Science & Medicine, 66 (9), 1915–1927

Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27 (1), 55–71

Article   MathSciNet   Google Scholar  

Breitzman, A., & Thomas, P. (2015). The emerging clusters model: A tool for identifying emerging technologies across multiple patent systems. Research Policy, 44 (1), 195–205

Cachia, R., Compañó, R., & Da Costa, O. (2007). Grasping the potential of online social networks for foresight. Technological Forecasting and Social Change, 74 (8), 1179–1203

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1 (2), 245–276

Choi, S., Yoon, J., Kim, K., Lee, J. Y., & Kim, C. H. (2011). SAO network analysis of patents for technology trends identification: A case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells. Scientometrics, 88 (3), 863–883

Cook, W. D. (2006). Distance-based and ad hoc consensus models in ordinal preference ranking. European Journal of Operational Research, 172 (2), 369–385

Article   MathSciNet   MATH   Google Scholar  

Cozzens, S., Gatchair, S., Kang, J., Kim, K. S., Lee, H. J., Ordóñez, G., & Porter, A. (2010). Emerging technologies: Quantitative identification and measurement. Technology Analysis & Strategic Management, 22 (3), 361–376

Daim, T., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73 (8), 981–1012

Einsiedel, E. F. (Ed.). (2009). Emerging technologies: From hindsight to foresight . UBC press.

Google Scholar  

Érdi, P., Makovi, K., Somogyvári, Z., Strandburg, K., Tobochnik, J., Volf, P., & Zalányi, L. (2013). Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics, 95 (1), 225–242

Furukawa, T., Mori, K., Arino, K., Hayashi, K., & Shirakawa, N. (2015). Identifying the evolutionary process of emerging technologies: A chronological network analysis of World Wide Web conference sessions. Technological Forecasting and Social Change, 91 , 280–294

Guo, H., Weingart, S., & Börner, K. (2011). Mixed-indicators model for identifying emerging research areas. Scientometrics, 89 (1), 421–435

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences, 101 (1), 5228–5235

Halaweh, M. (2013). Emerging technology: What is it. Journal of Technology Management & Innovation, 8 (3), 108–115

Huang, H. (2020). The effect of the small-firm dominated ecology on regional innovation. The Annals of Regional Science, 65 , 703–725

Huutoniemi, K., & Rafols, I. (2016). Interdisciplinarity in Research Evaluation. In: Robert Frodeman (Hg.), The Oxford Handbook of Interdisciplinarity , Oxford: Oxford University Press. http://ssrn.com/abstract=2818321 .

Ittipanuvat, V., Fujita, K., Sakata, I., & Kajikawa, Y. (2014). Finding linkage between technology and social issue: A literature based discovery approach. Journal of Engineering and Technology Management, 32 , 160–184

Jarić, I., Knežević-Jarić, J., & Lenhardt, M. (2014). Relative age of references as a tool to identify emerging research fields with an application to the field of ecology and environmental sciences. Scientometrics, 100 (2), 519–529

Jeyaraj, A., & Zadeh, A. H. (2020). Evolution of information systems research: Insights from topic modeling. Information & Management, 57 (4), 103207

Joung, J., & Kim, K. (2017). Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data. Technological Forecasting and Social Change, 114 , 281–292

Jin, J., & Von Zedtwitz, M. (2008). Technological capability development in China’s mobile phone industry. Technovation, 28 (6), 327–334

Ju, Y., & Sohn, S. Y. (2015). Patent-based QFD framework development for identification of emerging technologies and related business models: A case of robot technology in Korea. Technological Forecasting and Social Change, 94 , 44–64

Katz, J. S. (2006). Indicators for complex innovation systems. Research Policy, 35 (7), 893–909

Klimenko, A. Y. (2014). Complexity and intransitivity in technological development. Journal of Systems Science and Systems Engineering, 23 (2), 128–152

Kim, E., Cho, Y., & Kim, W. (2014). Dynamic patterns of technological convergence in printed electronics technologies: Patent citation network. Scientometrics, 98 (2), 975–998

Kim, J., Han, M., Lee, Y., & Park, Y. (2016). Futuristic data-driven scenario building: Incorporating text mining and fuzzy association rule mining into fuzzy cognitive map. Expert Systems with Applications, 57 , 311–323

Kim, S., Lee, J., Yeo, W., Park, Y., Song, I., & Hong, S. (2016). Development of post-evaluation model for future and emerging technology item reflecting environmental changes. Futures, 77 , 67–79

Kim, G., & Bae, J. (2017). A novel approach to forecast promising technology through patent analysis. Technological Forecasting and Social Change, 117 , 228–237

Kajikawa, Y., Yoshikawa, J., Takeda, Y., & Matsushima, K. (2008). Tracking emerging technologies in energy research: Toward a roadmap for sustainable energy. Technological Forecasting and Social Change, 75 (6), 771–782

Kyebambe, M. N., Cheng, G., Huang, Y., He, C., & Zhang, Z. (2017). Forecasting emerging technologies: A supervised learning approach through patent analysis. Technological Forecasting and Social Change, 125 , 236–244

Lee, H., Kim, C., Cho, H., & Park, Y. (2009). An ANP-based technology network for identification of core technologies: A case of telecommunication technologies. Expert Systems with Applications, 36 (1), 894–908

Lee, S. H., Mohtar, R. H., Choi, J. Y., & Yoo, S. H. (2016). Analysis of the characteristics of the global virtual water trade network using degree and eigenvector centrality, with a focus on food and feed crops. Hydrology and Earth System Sciences, 20 (10), 4223–4235

Lee, C., Kwon, O., Kim, M., & Kwon, D. (2018). Early identification of emerging technologies: A machine learning approach using multiple patent indicators. Technological Forecasting and Social Change, 127 , 291–303

Lee, P., Chen, S., & Su, H. (2018). Exploring technological resilience at the country level with patents. Technology Analysis & Strategic Management, 30 (9), 1105–1120

Li, X., Xie, Q., Huang, L., Yuan, Z. (2017). Twitter data mining for the social awareness of emerging technologies. In 2017 Portland international conference on management of engineering and technology (PICMET) , 1–10.

Lin, Y., Chen, J., & Chen, Y. (2011). Backbone of technology evolution in the modern era automobile industry: An analysis by the patents citation network. Journal of Systems Science and Systems Engineering, 20 (4), 416–442

Litvinski, O., & Litvinski, O. (2018). Emerging technology: Toward a conceptual definition. International Journal of Trade, Economics and Finance, 9 (6), 256–262

Moaniba, I. M., Su, H. N., & Lee, P. C. (2018). Does reverse causality explains the relationship between economic performance and technological diversity? Technological and Economic Development of Economy, 24 (3), 859–892

Moed, H. F. (2010). Measuring contextual citation impact of scientific journals. Journal of Informetrics, 4 (3), 265–277

Mugabushaka, A. M., Kyriakou, A., & Papazoglou, T. (2016). Bibliometric indicators of interdisciplinarity: The potential of the Leinster-Cobbold diversity indices to study disciplinary diversity. Scientometrics, 107 (2), 593–607

Pal, N. R., Pal, K., Keller, J. M., & Bezdek, J. C. (2005). A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems, 13 (4), 517–530

Pang, A. (2010). Social scanning: improving futures through Web 2.0; or, finally a use for twitter. Futures, 42 (10), 1222–1230

Porter, A. L., & Youtie, J. (2009). How interdisciplinary is nanotechnology? Journal of Nanoparticle Research, 11 (5), 1023–1041

Porter, A. L., Chiavetta, D., & Newman, N. C. (2020). Measuring tech emergence: A contest. Technological Forecasting and Social Change, 159 , 120176

Prisecaru, P. (2016). Challenges of the fourth industrial revolution. Knowledge Horizons Economics, 8 (1), 57–62

Rafols, I., & Meyer, M. (2009). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82 (2), 263–287

Ramos, J. (2003). Using tf-idf to determine word relevance in document queries. Proceedings of the First Instructional Conference on Machine Learning, 242 , 133–142

Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology? Research Policy, 44 (10), 1827–1843

Rotolo, D., Rafols, I., Hopkins, M. M., & Leydesdorff, L. (2017). Strategic intelligence on emerging technologies: Scientometric overlay mapping. Journal of the Association for Information Science and Technology, 68 (1), 214–233

Ruhnau, B. (2000). Eigenvector-centrality—a node-centrality? Social Networks, 22 (4), 357–365

Sakr, M., & Liu, S. (2014). A comprehensive review on applications of ohmic heating (OH). Renewable and Sustainable Energy Reviews, 39 , 262–269

Scharnhorst, A., Garfield, E. (2010). Tracing scientific influence. http://arxiv.org/abs/1010.3525v1 .

Schatzmann, J., Schäfer, R., & Eichelbaum, F. (2013). Foresight 2.0-Definition, overview & evaluation. European Journal of Futures Research, 1 (1), 1–15

Schultz, L., & Joutz, F. (2010). Methods for identifying emerging general purpose technologies: A case study of nanotechnologies. Scientometrics, 85 (1), 155–170

Small, H., Boyack, K. W., & Klavans, R. (2014). Identifying emerging topics in science and technology. Research Policy, 43 (8), 1450–1467

Spellerberg, I. F., & Fedor, P. J. (2003). A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’Index. Global Ecology and Biogeography, 12 (3), 177–179

Srinivasan, R. (2008). Sources, characteristics and effects of emerging technologies: Research opportunities in innovation. Industrial Marketing Management, 37 (6), 633–640

Stahl, B. C. (2011). What does the future hold? A critical view of emerging information and communication technologies and their social consequences. Researching the future in information systems. (pp. 59–76). Springer.

Chapter   Google Scholar  

Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society Interface, 4 (15), 707–719

Stoffels, E., Sakiyama, Y., & Graves, D. B. (2008). Cold atmospheric plasma: Charged species and their interactions with cells and tissues. IEEE Transactions on Plasma Science, 36 (4), 1441–1457

Sun, D. (2005). Emerging technologies for food processing . Elsevier.

Tu, Y. N., & Seng, J. L. (2012). Indices of novelty for emerging topic detection. Information Processing & Management, 48 (2), 303–325

Van Rijnsoever, F. J., Van Den Berg, J., Koch, J., & Hekkert, M. P. (2015). Smart innovation policy: How network position and project composition affect the diversity of an emerging technology. Research Policy, 44 (5), 1094–1107

Wang, H., Jin, Y., & Yao, X. (2016). Diversity assessment in many-objective optimization. IEEE Transactions on Cybernetics, 47 (6), 1510–1522

Wang, Q. (2018). A bibliometric model for identifying emerging research topics. Journal of the Association for Information Science and Technology, 69 (2), 290–304

Weigand, K., Flanagan, T., Dye, K., & Jones, P. (2014). Collaborative foresight: Complementing long-horizon strategic planning. Technological Forecasting and Social Change, 85 , 134–152

Wu, C. C., & Leu, H. J. (2014). Examining the trends of technological development in hydrogen energy using patent co-word map analysis. International Journal of Hydrogen Energy, 39 (33), 19262–19269

Xu, S., Hao, L., An, X., Yang, G., & Wang, F. (2019). Emerging research topics detection with multiple machine learning models. Journal of Informetrics, 13 (4), 100983

Xu, S., Hao, L., Yang, G., Lu, K., & An, X. (2021). A topic models based framework for detecting and forecasting emerging technologies. Technological Forecasting and Social Change, 162 , 120366

Yu, J., Hwang, J. G., Hwang, J., Jun, S. C., Kang, S., Lee, C., & Kim, H. (2020). Identification of vacant and emerging technologies in smart mobility through the GTM-based patent map development. Sustainability, 12 (22), 9310–9331

Zhang, L., Rousseau, R., & Glänzel, W. (2016). Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account. Journal of the Association for Information Science and Technology, 67 (5), 1257–1265

Zhou, Y., Lin, H., Liu, Y., & Ding, W. (2019). A novel method to identify emerging technologies using a semi-supervised topic clustering model: A case of 3D printing industry. Scientometrics, 120 (1), 167–185

Download references

Acknowledgements

This research was supported by Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (NRF-2017R1D1A1B03036213).

Author information

Authors and affiliations.

Division of Data Analysis, Korea Institute of Science and Technology Information, 66 Hoegi-ro, Dongdaemun-gu, Seoul, Republic of Korea

Wooseok Jang

Department of Industrial Engineering, School of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea

Yongtae Park

School of Integrated National Security, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea

Hyeonju Seol

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hyeonju Seol .

Rights and permissions

Reprints and permissions

About this article

Jang, W., Park, Y. & Seol, H. Identifying emerging technologies using expert opinions on the future: A topic modeling and fuzzy clustering approach. Scientometrics 126 , 6505–6532 (2021). https://doi.org/10.1007/s11192-021-04024-8

Download citation

Received : 21 July 2020

Accepted : 28 April 2021

Published : 23 June 2021

Issue Date : August 2021

DOI : https://doi.org/10.1007/s11192-021-04024-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Emerging technology
  • Topic modeling
  • Fuzzy clustering
  • Expert opinion
  • Find a journal
  • Publish with us
  • Track your research

CodeAvail

199+ Technology Research Topics to Shape Your Future

technology research topics

In the ever-evolving landscape of technology, staying abreast of the latest research topics is crucial. This blog aims to delve into the depths of various technology research topics that not only capture our present but also hold the key to shaping our future.

Why Should You Study Technology Research Topics?

Table of Contents

  • Stay Informed: Understand the latest advancements shaping our digital world.
  • Future Preparedness: Equip yourself for upcoming technological shifts.
  • Industry Insight: Gain a deep understanding of diverse tech sectors.
  • Ethical Awareness: Grasp the ethical considerations in technological innovation.
  • Career Relevance: Enhance your professional skills with knowledge of cutting-edge technologies.

Best Ways To Select Technology Research Topics

Selecting technology research topics can be both exciting and challenging. The world of technology is vast, with numerous areas of study and research. Here are some best ways to help you narrow down and select compelling technology research topics:

  • Identify Your Interests

Start by reflecting on your personal interests within the broad field of technology. What aspects of technology fascinate you the most? Identifying your passions can lead to more meaningful and engaging research.

  • Current Trends and Innovations

Stay updated on current trends and innovations in technology. Explore recent developments, breakthroughs, and emerging technologies. Topics that are at the forefront of technological advancement often make for compelling research.

  • Industry Needs and Challenges

Consider the needs and challenges within specific industries. Research topics that address real-world problems or contribute to advancements in a particular sector. This can lead to impactful and relevant research.

  • Consult with Experts

Engage in conversations with professors, industry professionals, or experts in the field of technology. They can provide valuable insights, suggest interesting research areas, and guide you toward topics with significance.

Literature Review

Conduct a thorough literature review to understand the existing body of knowledge. Identify gaps or areas that require further exploration. Building on existing research can contribute to the academic discourse.

  • Interdisciplinary Approaches

Explore interdisciplinary approaches by combining technology with other fields such as psychology, sociology, business, or environmental science. These intersections often lead to innovative and multifaceted research topics.

  • Consider Societal Impact

Evaluate how a particular technology or research area impacts society. Topics that have societal implications, such as ethical considerations, privacy concerns, or accessibility, can be both relevant and thought-provoking.

  • Explore Future Technologies

Look into emerging technologies and speculate on their potential impact on various aspects of life. Researching topics related to the future of technology allows you to contribute to forward-thinking discussions.

  • Collaborate on Industry Projects

Collaborate with industry partners on projects or internships. This hands-on experience can provide insights into real-world challenges and inspire research topics that align with industry needs.

  • Check Academic Journals and Conferences

Review recent publications in academic journals and conference proceedings. Pay attention to the latest research trends and the topics that researchers are currently exploring.

  • Consider Practical Applications

Think about how your research can be practically applied. Topics with tangible applications or solutions are often more appealing to both researchers and potential stakeholders.

  • Brainstorming Sessions

Organize brainstorming sessions with peers or mentors. Discuss various ideas and perspectives, and use this collaborative approach to generate a list of potential research topics.

  • Pilot Studies

Conduct pilot studies or small-scale research projects to test the feasibility and viability of potential topics. This can help you gauge your interest and the potential impact of the research.

Remember that selecting a research topic is a dynamic process, and it’s okay to refine your focus as you delve deeper into the subject matter. Stay curious, be open to exploration, and choose a topic that aligns with your interests and academic goals.

199+ Technology Research Topics: Category-Wise

Artificial intelligence and machine learning.

  • Explainable AI: Bridging the gap between complexity and understanding.
  • Bias in Machine Learning: Identifying and mitigating algorithmic biases.
  • Reinforcement Learning Applications in Robotics.
  • Natural Language Processing for Healthcare Data Analysis.
  • Generative Adversarial Networks (GANs) in Image Synthesis.
  • AI in Predictive Policing: Assessing ethical implications.
  • Transfer Learning: Enhancing model efficiency across domains.
  • Quantum Machine Learning: Harnessing quantum computing for AI.
  • AI-driven Personalization in E-commerce.
  • Human-AI Collaboration: Optimizing synergies for productivity.

Internet of Things (IoT)

  • Edge Computing in IoT: Reducing latency and improving efficiency.
  • IoT Security: Addressing vulnerabilities in connected devices.
  • Smart Cities and IoT: Enhancing urban living through technology.
  • Industrial IoT (IIoT): Revolutionizing manufacturing processes.
  • IoT in Agriculture: Precision farming for sustainable practices.
  • Wearable IoT Devices for Health Monitoring.
  • Energy Harvesting in IoT: Sustainable power sources.
  • Blockchain and IoT Integration for Enhanced Security.
  • IoT in Transportation: Smart solutions for efficient mobility.
  • 5G and IoT: Transforming connectivity and communication.

Blockchain and Cryptocurrency

  • Decentralized Finance (DeFi) Platforms: Challenges and opportunities.
  • Smart Contracts in Blockchain: Real-world applications and limitations.
  • Cryptocurrency Adoption in Developing Economies.
  • Blockchain in Supply Chain Management: Improving transparency.
  • Non-Fungible Tokens (NFTs): A new era of digital ownership.
  • Central Bank Digital Currencies (CBDCs): Implications and challenges.
  • Blockchain for Identity Management: Ensuring privacy and security.
  • Cross-Border Payments with Blockchain Technology.
  • Blockchain in Healthcare: Securing patient data and interoperability.
  • Regulatory Challenges in the Cryptocurrency Space.

Cybersecurity

  • Threat Intelligence: Enhancing proactive cybersecurity measures.
  • Cybersecurity Awareness Training: Impact and effectiveness.
  • Zero Trust Security Model: Rethinking network security.
  • Cybersecurity for Internet of Things (IoT) Devices.
  • Biometric Authentication: Advancements and vulnerabilities.
  • Cybersecurity in Cloud Computing Environments.
  • Quantum Cryptography: Future-proofing data encryption.
  • Cyber Insurance: Evaluating the evolving landscape.
  • Incident Response Planning: Minimizing damage in cyberattacks.
  • Deepfake Detection: Strategies for identifying manipulated content.

Sustainability and Green Technology

  • Renewable Energy Technologies: Advancements and adoption.
  • Circular Economy in Electronics: Reducing e-waste.
  • Sustainable Materials in Technology Manufacturing.
  • Energy-efficient Data Centers: Trends and innovations.
  • Green Building Technologies: Improving energy efficiency.
  • Carbon Footprint Tracking Apps: Encouraging eco-friendly lifestyles.
  • Sustainable Agriculture Technologies for Food Security.
  • Water Conservation Technologies in Smart Cities.
  • Eco-friendly Packaging Innovations in Technology.
  • Environmental Impact Assessment of Emerging Technologies.

Health Technology

  • Telemedicine Adoption: Challenges and opportunities.
  • AI in Diagnostics: Improving accuracy in medical imaging.
  • Wearable Health Tech for Early Disease Detection.
  • Robotics in Surgery: Enhancing precision and outcomes.
  • Personalized Medicine: Integrating genetics and technology.
  • Telehealth Regulations: Navigating legal and ethical concerns.
  • Health Data Privacy: Balancing accessibility and security.
  • Mental Health Apps: Efficacy and user experience.
  • 3D Printing in Healthcare: Customized medical solutions.
  • Neurotechnology: Advancements in brain-machine interfaces.

Ethics in Technology

  • Ethical Considerations in AI Decision-Making.
  • Privacy-preserving Technologies: Balancing innovation and protection.
  • Bias Mitigation in Algorithmic Systems.
  • Responsible AI Development: Guidelines and best practices.
  • Ethical Implications of Human Augmentation Technologies.
  • Technology and Social Justice: Bridging the digital divide.
  • Transparency in Data Collection and Usage.
  • Digital Ethics Education: Fostering responsible tech practices.
  • Corporate Social Responsibility in the Tech Industry.
  • Ethical Considerations in Biotechnology and Genetic Engineering.

Space Technology

  • Space Tourism: Opportunities and challenges.
  • CubeSat Technology: Miniaturizing satellites for space exploration.
  • Space Debris Cleanup Technologies.
  • Mars Colonization: Feasibility and ethical considerations.
  • Lunar Exploration Missions: Future prospects.
  • Space-based Solar Power: Harvesting energy from space.
  • Space Weather Monitoring: Protecting satellite infrastructure.
  • International Collaboration in Space Exploration.
  • Space Elevators: Theoretical framework and potential challenges.
  • Asteroid Mining: Extracting resources from celestial bodies.

Future of Work

  • Remote Work Technologies: Shaping the future workplace.
  • Augmented Reality in Remote Collaboration.
  • Human-AI Hybrid Work Environments.
  • Gig Economy and Platform Work: Challenges and regulations.
  • Impact of Automation on Job Markets: Assessing risks and opportunities.
  • Reskilling and Upskilling Initiatives for the Digital Workforce.
  • Neurodiversity in the Workplace: Leveraging technology for inclusivity.
  • Blockchain-based Credentials: Transforming the hiring process.
  • Virtual Reality Training Simulations: Enhancing workforce skills.
  • Cybersecurity Workforce Challenges and Solutions.

Augmented and Virtual Reality

  • AR and VR in Education: Enhancing learning experiences.
  • Mixed Reality in Healthcare Training.
  • VR Gaming: Trends and future developments.
  • AR for Navigation and Wayfinding in Smart Cities.
  • Virtual Reality Therapy for Mental Health.
  • Augmented Reality in Retail: Enhancing the customer experience.
  • VR in Architecture and Urban Planning: Design visualization.
  • AR/VR Accessibility: Ensuring inclusivity in design.
  • Social Implications of Extended Reality (XR).
  • Haptic Technology: Adding touch to virtual experiences.

Biotechnology and Genetics

  • CRISPR Technology: Progress and ethical considerations.
  • Gene Editing for Disease Prevention: Current research and challenges.
  • Synthetic Biology: Engineering life for various applications.
  • Personal Genomics: Navigating privacy and ethical concerns.
  • Organ-on-a-Chip Technology: Advancing drug development.
  • Bioprinting: 3D printing tissues and organs.
  • Ethical Considerations in Human Enhancement Technologies.
  • Precision Medicine: Customizing healthcare based on genetics.
  • Biotechnology and Environmental Conservation.
  • Genetically Modified Organisms (GMOs): Balancing benefits and risks.

Emerging Technologies

  • Neuromorphic Computing: Mimicking the human brain in hardware.
  • 6G Technology: Beyond 5G for ultra-fast connectivity.
  • Swarm Robotics: Cooperative behavior in robotic systems.
  • Quantum Computing Applications: From cryptography to optimization.
  • Robotic Process Automation (RPA) in Business.
  • Biohybrid Robots: Combining biological and synthetic components.
  • Space-based Internet Constellations: Global connectivity.
  • Light-based Computing: Overcoming the limitations of traditional computing.
  • Advanced Materials for Future Technologies.
  • Augmented Human: Integrating technology into the human body.

Regulatory and Legal Aspects of Technology

  • Data Protection Laws Worldwide: A comparative analysis.
  • Cybersecurity Regulations for Critical Infrastructure.
  • Intellectual Property Issues in Emerging Technologies.
  • Antitrust Concerns in the Tech Industry.
  • Regulation of Biotechnology and Genetic Engineering.
  • E-Government Initiatives: Transforming public services.
  • International Cooperation in Cybersecurity Governance.
  • Data Localization Laws: Balancing sovereignty and global data flow.
  • Ethical Standards for AI and Robotics: Global perspectives.
  • Legal Implications of Autonomous Vehicles.

Human-Computer Interaction

  • Natural User Interfaces: Redefining how we interact with technology.
  • Accessibility in User Interface Design: Ensuring inclusivity.
  • Emotional Intelligence in AI: Creating empathetic interactions.
  • Gesture-based Control Systems: Future of user interface.
  • Brain-Computer Interfaces: Direct communication between brain and technology.
  • Wearable Technology Design: Balancing fashion and functionality.
  • Tangible User Interfaces: Physical interaction with digital systems.
  • Usability Testing in User Interface Design: Best practices.
  • Voice User Interface (VUI) Design: Enhancing user experience.
  • Gamification in User Interface Design: Motivating user engagement.

Educational Technology

  • Adaptive Learning Systems: Personalizing education for students.
  • Virtual Classroom Platforms: Transforming remote learning.
  • Educational Data Mining: Analyzing student performance data.
  • Gamified Learning: Enhancing engagement in educational settings.
  • Mobile Learning Apps: Impact on formal and informal education.
  • AI Tutors: Personalized learning experiences through artificial intelligence.
  • Blockchain in Education: Verifying academic credentials.
  • Augmented Reality in Educational Simulations.
  • Open Educational Resources (OER): Promoting accessible education.
  • Robotics in Education: Enhancing STEM learning.

Social Media and Technology

  • Social Media Algorithms: Impact on information dissemination.
  • Deepfake Technology : Implications for social media and beyond.
  • Social Media and Mental Health: Exploring the link.
  • Social Media Influencers: Ethics and responsibilities.
  • Online Disinformation: Combating fake news in the digital age.
  • Cyberbullying Prevention: Technological interventions.
  • Virtual Communities: Impact on social interaction.
  • Social Media Privacy Settings: User awareness and preferences.
  • Social Media Marketing Trends: Shaping brand promotion.
  • Social Media and Political Activism: The digital revolution.

E-commerce Technology

  • Conversational Commerce: The role of chatbots in online shopping.
  • Augmented Reality in E-commerce: Virtual try-on experiences.
  • Blockchain in Supply Chain Management for E-commerce.
  • Personalization Algorithms in Online Retail.
  • Drone Delivery Services: Transforming the logistics of e-commerce.
  • Mobile Payment Technologies: Security and convenience.
  • Voice Commerce: Shopping through virtual assistants.
  • Subscription E-commerce Models: Trends and challenges.
  • Cross-border E-commerce: Overcoming regulatory and logistical hurdles.
  • Sustainability in E-commerce: Eco-friendly practices in online retail.

Autonomous Systems

  • Autonomous Vehicles: Safety and regulatory considerations.
  • Drones in Precision Agriculture: Monitoring crops and optimizing yield.
  • Autonomous Robots in Warehouse Management.
  • Unmanned Aerial Vehicles (UAVs) for Disaster Response.
  • AI-powered Personal Assistants: Enhancing daily life.
  • Autonomous Underwater Vehicles (AUVs) for Ocean Exploration.
  • Robotic Exoskeletons: Assisting individuals with mobility challenges.
  • Smart Homes: Integration of AI for automated living.
  • Autonomous Freight Trucks: Revolutionizing logistics.
  • Cognitive Automation: Merging AI and automation for complex tasks.

Data Science and Big Data

  • Predictive Analytics for Business Decision-Making.
  • Big Data Ethics: Balancing innovation and privacy.
  • Data Visualization Techniques: Communicating complex information.
  • Data-driven Personalization in Marketing.
  • Streaming Analytics: Real-time insights from continuous data.
  • Data Warehousing: Architectures and best practices.
  • Explainable AI in Data Science Models.
  • Geospatial Data Analysis: Mapping trends and patterns.
  • Data Integration Platforms: Ensuring seamless data flow.
  • Data Governance in the Era of Big Data.

Quantum Computing

  • Quantum Supremacy: Achievements and implications.
  • Quantum Cryptography for Unbreakable Communication.
  • Quantum Machine Learning Algorithms.
  • Quantum Computing in Drug Discovery.
  • Quantum Computing and Climate Modeling.
  • Quantum Internet: Secure communication at a global scale.
  • Quantum Computing in Financial Modeling.
  • Quantum Dots: Applications in computing and imaging.
  • Quantum Computing and Optimization Problems.
  • Quantum Error Correction: Ensuring the reliability of quantum computers.

Tips For Successful Technology Research

Define Clear Objectives

  • Clearly outline the goals and objectives of your research.
  • Identify the specific questions or problems you aim to address.
  • Conduct a comprehensive literature review to understand the existing knowledge in the chosen area.
  • Identify gaps in the current understanding that your research can fill.

Stay Updated

  • Regularly check for the latest research papers, articles, and technological advancements related to your topic.
  • Subscribe to relevant journals, attend conferences, and engage with online communities.

Choose a Relevant and Timely Topic

  • Select a research topic that aligns with current technological trends and has real-world relevance.
  • Consider the potential impact and applications of your research.

Research Methodology

  • Clearly define your research methodology, including data collection methods, tools, and techniques.
  • Justify your chosen methodology and explain how it aligns with your research goals.

Data Security and Privacy

  • If your research involves collecting or analyzing sensitive data, prioritize security and privacy.
  • Adhere to ethical guidelines and obtain necessary permissions for data usage.

Collaborate and Network

  • Collaborate with experts, researchers, and professionals in the field.
  • Attend conferences, workshops, and seminars to build a network and gain insights.

Utilize Cutting-edge Technologies

  • Incorporate the latest tools and technologies in your research process.
  • Explore emerging methodologies and consider how they can enhance your study.

Thorough Analysis

  • Use appropriate statistical or analytical methods to interpret your data.
  • Clearly present your findings and discuss their implications.

Think Interdisciplinarily

  • Technology often intersects with various disciplines. Consider interdisciplinary approaches to enrich your research.
  • Collaborate with experts from related fields to gain diverse perspectives.

Adaptability and Flexibility

  • Be prepared to adapt your research plan based on unexpected challenges or new opportunities.
  • Embrace flexibility in your methods and approaches.

Peer Review

  • Submit your research papers to peer-reviewed journals for constructive feedback.
  • Participate in peer review processes to stay engaged with the broader research community.

Effective Communication

  • Clearly communicate your research methods, results, and conclusions.
  • Use visuals such as graphs and charts to enhance clarity.

Continuous Learning

  • Stay curious and continuously update your knowledge about evolving technologies.
  • Be open to learning from both successes and failures in your research journey.

Ethical Considerations

  • Prioritize ethical considerations in all aspects of your research, from data collection to publication.
  • Ensure the responsible and transparent use of technology in your study.

In conclusion, the technology landscape is vast and ever-changing. By exploring these diverse technology research topics, we gain insight into the present and glimpse the possibilities of the future. 

As we navigate the complexities of these advancements, staying informed and engaged is not just a choice but a necessity. 

The future is being shaped by technology, and by understanding these research topics, we can actively participate in shaping a future that aligns with our values and aspirations.

Related Posts

Tips on How to Design Professional Venn Diagrams in Python

Tips on How to Design Professional Venn Diagrams in Python

Venn diagram is the most popular diagram in scientific research articles and can be utilized to describe the relationship between various data sets. From the…

How to Get Help With Programming in R With Online Resources

How to Get Help With Programming in R With Online Resources

Writing a programming assignment is not an easy task for many students. In the modern education system, students need R programming assignments because of the…

These are the top 10 emerging technologies of 2023: Here's how they can impact the world

The 'Top 10 Emerging Technologies of 2023' report lists this year's most impactful emerging technologies.

The 'Top 10 Emerging Technologies of 2023' report lists this year's most impactful emerging technologies. Image:  Midjourney, Studio Miko

.chakra .wef-1c7l3mo{-webkit-transition:all 0.15s ease-out;transition:all 0.15s ease-out;cursor:pointer;-webkit-text-decoration:none;text-decoration:none;outline:none;color:inherit;}.chakra .wef-1c7l3mo:hover,.chakra .wef-1c7l3mo[data-hover]{-webkit-text-decoration:underline;text-decoration:underline;}.chakra .wef-1c7l3mo:focus,.chakra .wef-1c7l3mo[data-focus]{box-shadow:0 0 0 3px rgba(168,203,251,0.5);} Sebastian Buckup

Stephan kuster.

A hand holding a looking glass by a lake

.chakra .wef-1nk5u5d{margin-top:16px;margin-bottom:16px;line-height:1.388;color:#2846F8;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-1nk5u5d{font-size:1.125rem;}} Get involved .chakra .wef-9dduvl{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-9dduvl{font-size:1.125rem;}} with our crowdsourced digital platform to deliver impact at scale

Stay up to date:, emerging technologies.

Listen to the article

  • The World Economic Forum's newly-launched ' Top 10 Emerging Technologies of 2023 ' report lists this year's most impactful emerging technologies.
  • The Top 10 list includes environmental innovations, such as sustainable aviation fuels and wearable plant sensors.
  • Other emerging technologies range from innovations harnessing the power of AI to reengineering molecular biology.

Technology is a relentless disruptor. It changes the context for how we live, work and play, redefines businesses and industries, and offers unprecedented solutions for addressing complex planetary and societal challenges. But in a quick-changing world where ideas come and go, what emerging technologies should raise to the top of the agenda for decision-makers, entrepreneurs and citizen in the years to come? The World Economic Forum’s ' Top 10 Emerging Technologies of 2023 ' Report, in collaboration with Frontiers , brings together the perspectives of over 90 academics, industry leaders and futurists from 20 countries around the world, to discover the technologies most likely to impact people and the planet in the next three to five years.

From sustainable solutions that help combat climate change to step-change generative AI models, here are the top 10 emerging technologies most likely to improve our future lives.

Combatting the climate and nature crises

Sustainable aviation fuel.

The aviation industry generates between 2-3% of global CO2 emissions, but all regions of the world are set to see big increases by 2050. Unlike many other industries, the weight-to-power ratio of batteries makes electrification a challenge. That’s where sustainable aviation fuel (SAF) comes in. Synthetic fuels are made from biological sources like biomass or non-biological sources like CO2, and can be used with existing aviation infrastructure and equipment. Today, SAFs meet around 1% of aviation industry fuel demand, but this must increase to 13-15% by 2040 to help the industry reach net-zero emissions by 2050, says the report.

Sustainable aviation fuel Moving the aviation industry towards net-zero carbon emissions.

Wearable plant sensors

Global food production will need to increase by 70% by 2050 to feed a growing world population, according to the United Nations Food and Agriculture Organization. Crop monitoring is a key part of achieving this goal. Traditional soil testing and visual inspections of crops are expensive and time-consuming, giving rise to monitoring using low-resolution satellite data and later sensor-equipped drones and tractors.

Wearable plant sensors: Revolutionizing agricultural data collection to feed the world

However, micro-sized needle sensors embedded in individual plants could harvest a wealth of data to improve plant health and increase agricultural productivity, says the report. These devices monitor temperature, humidity, moisture and nutrient levels to help optimize crop yields, reduce water and fertilizer use and detect early signs of disease.

The Forum’s Artificial Intelligence for Agriculture Innovation (AI4AI) initiative aims to transform the agriculture sector using AI and other cutting-edge technologies.

Led by the Forum’s Centre for the Fourth Industrial Revolution (C4IR) in India, the initiative has already helped more than 7000 chilli farmers increase their yields and reduce costs.

C4IR India is sharing its learnings with other centres in the C4IR Global Network, including Saudi Arabia, South Africa and Colombia.

Sustainable computing

Exponential growth in AI, cloud computing and other technologies requires bigger, more powerful and more plentiful data centre capacity. Data centres consume 1% of total global electricity production, but powering our increasingly data-hungry digital society means this is set to increase. Several technologies are emerging, aimed at making the goal of net-zero-energy data centres a reality, says the report. These include using water or dielectric liquid cooling to dissipate heat, alongside technologies that repurpose excess heat to warm buildings, heat water or for industrial processes.

Also, AI-enabled systems can analyze and optimize energy use in real-time, maximizing efficiency and performance – reducing energy consumption by as much as 40% at Google’s data centres. And making data processing and storage infrastructure modular and demand-based means systems like cloud and edge computing can be distributed across multiple devices, systems and locations to optimize energy use.

Have you read?

How emerging tech could mitigate emerging human crises, ‘tech for good’ had a very good year in 2022. here are 6 companies that led the way, how can technology help in a holistic approach to ensure inclusion, powered by artificial intelligence, generative ai.

Generative artificial intelligence models are fast becoming a part of everyday life. The models use complex algorithms to recognize and utilize patterns in data. The recent introduction of AI-based language models, like ChatGPT, has already impacted life at schools, universities and workplaces, but if used properly, such tools can enhance productivity and creative output. However, Gen AI technology goes beyond producing written texts, images and sound, with applications including drug design to target specific medical conditions, architecture and engineering. NASA engineers are developing AI systems to create lightweight space instruments, reducing development time and improving structural performance, for example.

Generative artificial intelligence Expanding the boundaries of human endeavour.

AI in healthcare

Emerging AI-based technologies and machine learning tools could help the global healthcare sector both anticipate and better prepare for future pandemics or other challenges.

Such systems could help increase the efficiency of national and global healthcare systems to tackle health crises and improve access to healthcare. Innovations like this could also reduce treatment waiting times, by aligning treatment needs with available medical resources and increasing medical outreach, says the report.

The benefits of AI in healthcare could be magnified in developing countries, which often lack sufficient infrastructure and staff to provide widespread access to healthcare services.

How is the World Economic Forum creating guardrails for Artificial Intelligence?

In response to the uncertainties surrounding generative AI and the need for robust AI governance frameworks to ensure responsible and beneficial outcomes for all, the Forum’s Centre for the Fourth Industrial Revolution (C4IR) has launched the AI Governance Alliance .

The Alliance will unite industry leaders, governments, academic institutions, and civil society organizations to champion responsible global design and release of transparent and inclusive AI systems.

Emerging Technologies in Health

Metaverse for mental health.

There’s been a lot of hype surrounding the metaverse, and we are a long way from this concept becoming a reality. That said, the virtual world can create shared digital spaces where people can meet each other socially and professionally. Virtual environments open up new opportunities to provide mental health treatments, covering a range of telemedicine applications, including prevention, diagnostics, therapy, education and research. Several gaming platforms have been established to help people with conditions like depression and anxiety or encourage mindfulness and meditation, for example.

Designer phages

Human, animal and plant microbiomes are home to vast communities of microbes that are crucial to each organism’s health. Recent advances in bioengineering allow scientists to engineer microbiomes to increase human and animal well-being and agricultural productivity. The technology centres around phages, which are viruses that identify and infect specific types of bacteria with genetic information, says the report. Bioengineers can reprogramme a phage’s genetic information so it transmits genetic instructions to bacteria to change how it functions, enabling microbiome-associated diseases to be targeted and treated.

Spatial omics

The human body is a collection of around 37.2 trillion cells that work together. To understand how microbiological processes like this work, scientists have developed a method called spatial omics, which combines advanced imaging techniques with sophisticated DNA sequencing processes to map biological processes at the molecular level. Using spatial omics, scientists can observe intricate details of cell architecture and biological processes that were previously unobservable, according to the report.

Spatial omics Molecular-level mapping of biological processes to unlock life’s mysteries.

Engineering

Flexible batteries.

As electronic devices become ever more flexible, a more pliable type of battery is emerging to power them. Flexible batteries are made of lightweight materials that can be twisted, stretched, bent into shape and even coated onto carbon-based materials like carbon fibre or cloth. These rechargeable, bendable batteries are increasingly energizing growing markets – like roll-up computer screens, smart clothing and wearable electronics, including healthcare devices and biometric sensors, says the report.

Flexible neural electronics

Brain-machine interfaces (BMI) allow direct communication between the brain and external computers. So far, the technology has been based on rigid electronics and limited by the mechanical and geometrical mismatch with brain tissue. But breakthroughs in flexible electronics and more biocompatible materials mean a less invasive experience for patients.

BMI-type technologies are already in use to treat patients with epilepsy and with prosthetic limbs that use electrodes to connect with the nervous system.

Click here to read the full report.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:

The agenda .chakra .wef-n7bacu{margin-top:16px;margin-bottom:16px;line-height:1.388;font-weight:400;} weekly.

A weekly update of the most important issues driving the global agenda

.chakra .wef-1dtnjt5{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;} More on Emerging Technologies .chakra .wef-nr1rr4{display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;white-space:normal;vertical-align:middle;text-transform:uppercase;font-size:0.75rem;border-radius:0.25rem;font-weight:700;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;line-height:1.2;-webkit-letter-spacing:1.25px;-moz-letter-spacing:1.25px;-ms-letter-spacing:1.25px;letter-spacing:1.25px;background:none;padding:0px;color:#B3B3B3;-webkit-box-decoration-break:clone;box-decoration-break:clone;-webkit-box-decoration-break:clone;}@media screen and (min-width:37.5rem){.chakra .wef-nr1rr4{font-size:0.875rem;}}@media screen and (min-width:56.5rem){.chakra .wef-nr1rr4{font-size:1rem;}} See all

research paper topics emerging technologies

South Korean nuclear fusion reactor sets new record, and other technology news you need to know

Sebastian Buckup

April 19, 2024

research paper topics emerging technologies

How to build the skills needed for the age of AI

Juliana Guaqueta Ospina

April 11, 2024

research paper topics emerging technologies

Space is booming. Here's how to embrace the $1.8 trillion opportunity

Nikolai Khlystov and Gayle Markovitz

April 8, 2024

research paper topics emerging technologies

These 6 countries are using space technology to build their digital capabilities. Here’s how

Simon Torkington

research paper topics emerging technologies

What is e-voting? Who’s using it and is it safe?

Victoria Masterson

April 4, 2024

research paper topics emerging technologies

This Dubai-based company turns used cooking oil into biofuels

A perspective on embracing emerging technologies research for organizational behavior

Organization Management Journal

ISSN : 2753-8567

Article publication date: 24 October 2021

Issue publication date: 14 June 2022

Emerging technologies are capable of enhancing organizational- and individual-level outcomes. The organizational behavior (OB) field is beginning to pursue opportunities for researching emerging technologies. This study aims to describe a framework consisting of white, black and grey boxes to demonstrate the tight coupling of phenomena and paradigms in the field and discusses deconstructing OB’s white box to encourage data-driven phenomena to coexist in the spatial framework.

Design/methodology/approach

A scoping literature review was conducted to offer a preliminary assessment of technology-oriented research currently occurring in OB.

The literature search revealed two findings. First, the number of published papers on emerging technologies in top management journals has been increasing at a steady pace. Second, various theoretical perspectives at the micro- and macro- organizational level have been used so far for conducting technology-oriented research.

Originality/value

By conducting a scoping review of emerging technologies research in OB literature, this paper reveals a conceptual black box relating to technology-oriented research. The essay advocates for loosening OB’s tightly coupled white box to incorporate emerging technologies both as a phenomenon and as data analytical techniques.

  • Emerging technologies
  • Artificial intelligence
  • Machine learning
  • Organizational behavior

Philip, J. (2022), "A perspective on embracing emerging technologies research for organizational behavior", Organization Management Journal , Vol. 19 No. 3, pp. 88-98. https://doi.org/10.1108/OMJ-10-2020-1063

Emerald Publishing Limited

Copyright © 2021, Jestine Philip.

Published in Organization Management Journal . Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence maybe seen at http://creativecommons.org/licences/by/4.0/legalcode

Introduction

Emerging technologies such as artificial intelligence (AI), blockchain, virtual reality (VR), robotics, Internet of Things (IoT) and quantum computing powered by data analytics, machine learning (ML) algorithms and automations enhance organizational- and individual-level outcomes ( Alpaydin, 2020 ). Management literature appreciates the significant advancements in firm performance that emerging technologies can bring ( Eggers & Kaul, 2018 ) and encourages scholars to use them in research for theory development ( George, Osinga, Lavie, & Scott, 2016 ). Incorporating data science in management research enables scholars to develop better answers to old research questions by establishing causal relationships ( Tonidandel, King, & Cortina, 2015 ). Even with such and more thrilling opportunities for research using these technologies, organizational behavior (OB) is only just beginning to pursue this area.

Existing challenges in conducting OB research pertaining to emerging technologies may stem from limited training on data science and machines ( Barnes et al. , 2018 ) and the technicality involving coding and mathematical modeling. Moreover, current OB research programs are heavily theory-driven and deductive. A theory-focused approach is more influenced by the gaps and perplexities in a theory or phenomenon and less by the actual experiences of individuals ( Weick, 1992 ). With the vast amounts of data and enhanced algorithmic capabilities available today, an appropriate balance and integration of theory and data can help reveal the intricate complexities in employee behaviors. Weick (1992) recognized technology as a concept at the psychological-level that would benefit from a revisited research agenda in theory-heavy OB scholarship. In offering a discussion on this topic for OB, this essay poses the research question – How can the prevalent theory-driven mindset in OB be revised to conduct more technology-oriented research?

For the purposes of this essay, technology-oriented research in OB is defined as comprising of two aspects. The first involves researching various emerging technologies within the OB context such as in decision-making, identity, trust, bias, leadership and so on, while the second aspect entails incorporating advanced data analysis techniques. Subsequent to a review of pertinent literature, this essay describes a framework consisting of white, black and grey boxes and offers guidance to help condense the conceptual black box.

Literature review

As the goal of this literature review is to offer a preliminary understanding of technology-oriented research currently occurring in OB, a scoping review was conducted. Unlike structured or systematic reviews, which are done to produce interdisciplinary assessment of a topic or to answer a review-based research question and offer practical implications, a scoping review is conducted when researchers are interested in providing an overview of the evidence of a topic being investigated in a given field ( Munn et al. , 2018 ). Moreover, a scoping review was deemed suitable for the current paper as the use of emerging technologies is a relatively nascent area, just at the cusp of OB and human resource management (HRM) research.

Inclusion criteria

The search was performed on a select list of journals. To find papers on both aspects of technology-oriented research, journals in the OB field that publish theoretical as well as theory-anchored empirical papers were searched. To generate the list of journals, I first included the top 10 journals in I/O psychology and management sciences offered by Zickar and Highhouse’s (2001) impact analysis. Next, following existing practice of adding and/or replacing certain journals based on the topic area of the literature review (c.f. Anderson, De Dreu, & Nijstad, 2004 ), I arrived at the journals listed in Table 1 . With the date range for the search set from 2005 (year of big data emergence, Oracle, n.d.) to present, the abstracts of the listed journals were searched for the names of top emerging technologies and related terms ( CompTIA, 2020 ). No other search criteria were set and any paper that mentioned the technology terms in the abstract was included in the database. Upon searching all journals for each technology term, the compiled list was further refined by only retaining papers that discussed a specific OB, management, or organizational theory in the context of that technology. This resulted in a list of 88 papers, consisting of 78 research articles, 5 editorials and 5 book reviews.

Reported findings of the literature search

The scoping search revealed two crucial findings. First, the number of published papers that either conceptually discuss or apply the technology terms listed in Table 1 has been increasing at a steady pace. While averaging under 5 papers a year until 2018, a steep rise is seen from then on, going up to 16 in 2019, 31 in 2020 and 14 papers published by mid-2021. Second, various organizational theoretical perspectives at the micro- and macro-level ( Table 1 ) have been used so far to conduct technology-oriented research. Two instances are Newman, Fast, & Harmon’s (2020) article that extends procedural justice theory by discussing the role of algorithmic decision-making in HRM and Doornenbal, Spisak, & van der Laken’s (2021) application of ML models (like random forest) to conduct a predictive study for leader traits. These findings reveal that scholars are attempting to integrate behavioral topics and emerging technologies. The somewhat slower pace of progress of technology-oriented research occurring in OB, however, warrants further discussion.

The box framework

Figure 1 displays the framework consisting of white, black and grey boxes.

The white box

This essay credits current research programs in OB – where phenomena and paradigms are viewed and interpreted by offering theory to answer research questions – in the white box. Such a depiction and understanding of a white box is borrowed from computer science and software model testing as a space where there is sufficient conceptual knowledge ( Khan & Khan, 2012 ). The white box model has also been used by scientists in biology ( Lo-Thong, 2020 ), ocean research ( Leifsson, 2008 ) and cryptography ( Bock, 2019 ). In behavioral science, the white box was employed to depict the observer’s depth of knowledge regarding the internal functioning of a system ( Glanville, 1982 ). Consistent with these framings, the white box in OB research would consist of existing theoretical models and conceptual understanding of various management phenomena. The OB white box is tightly bound by theory, largely adheres to the positivist paradigm and consists of strong relationships and interdependencies between phenomena and paradigms ( Wardlow, 1989 ). As loosely coupled systems are advantageous in complex environments due to their weak interdependencies ( Orton & Weick, 1990 ), strong underpinnings of core phenomena and conceptualizations in OB lead to rigid mindsets that hinder newer approaches from being considered and explored. In Figure 1 , the solid line boundaries around the white box and circles depict the tight coupling of OB’s current research programs.

As new technological phenomena emerge in the workplace and affect employee attitudes and behaviors, a revision of the current theory driven agendas in behavioral research may be useful. Scholars advocate for renewed research programs to advance theory when studying technological innovations in firms ( Carter, 2020 ), like applying abductive reasoning in studying AI-based decision-making ( von Krogh, 2018 ). Contemporary phenomena affecting management including open innovation, AI, ML, IoT, VR, robotics and quantum computing ( Makadok, Burton, & Barney, 2018 ) stand to benefit from the proposed decoupling that facilitates the infusion of new paradigms. To advance technology-oriented research in OB, loosening of existing interdependencies - that fuel conventional phenomena-based theorizing - is justified. Scholars have previously encouraged conducting unconventional management research in new and varied contexts that focus on phenomena outside of management, thereby, setting fresh paradigms for the field ( Bamberger & Pratt, 2010 ). For example, Becker, Cropanzano, & Sanfey (2011) discuss organizational neuroscience as a new paradigm for exploration, providing directions to assimilate OB theories in the neural black box. As micro-organizational scholars continually advocate for addressing the research-practice gap in behavioral management ( Fisher, 1989 ; Tenhiälä et al. , 2016 ) and for the integration of micro- and macro-level theories, paradigms and methodologies for scientific advancement ( Aguinis, Boyd, Pierce, & Short, 2011 ), it is an opportune time for OB scholarship to embed AI and related technology research within its white box.

The black box

When prominent scholars promote non-traditional research as a means to advance the field, it signals an implied recognition that a black box exists within the white box, and that that black box would potentially expand if the principles of the field’s prevailing paradigms were not relaxed to encourage fresh perspectives. Applying the same understanding of the white box from computer science, the black box[ 1 ] in OB would comprise of a space with low granularity in which there is limited to no subject knowledge. In ML, the black box relates to highly complex algorithms that generate through repeated data feeds and learning cycles, which eventually become too complicated for the human brain to comprehend. After numerous data loops, the human coder is only capable of reading the input and output codes – what happens inside the machine is a mystery, hence the need to decode the black box ( Castelvecchi, 2016 ). By the same token, this essay posits that OB’s black box is implicit, unapparent, and not readily visible to OB scholars until they engage in some form of research that requires exploration of new approaches, methods, and techniques. In other words, so long as OB scholars continue to study traditional micro-organizational phenomena using fundamental paradigms (i.e. engage in tightly coupled research), they would not likely realize that a black box exists or be forced to understand what is inside it. That said, with companies investing in AI and other technologies to improve business processes and performance, corresponding discussions of these technologies should occur in scholarly investigations to better understand organizational and individual outcomes. To begin decoupling the white box – and subsequently condensing the black box – a flexibility and appreciation for studying phenomena surrounding AI and other technologies through varied paradigms is critical.

In Figure 1 , the black box is shown as encompassing some portion of OB’s white box, thereby illustrating the suffusing of emerging phenomena like AI in the field. The placement of the black box inside of the white box is consistent with Glanville’s (1982) prognostic integration of cybernetics and psychological concepts. To emphasize the decoupling of conventional phenomena and paradigms in OB, Figure 1 displays the white box boundary and circles in dashed lines rather than solid lines.

The grey box

Alongside attempting decoupling efforts for the white box, a parallel endeavor should be undertaken - when necessary - towards adopting a digitally driven mindset and encouraging diverse data analytical techniques in OB research. When illustrated pictorially, we find from Figure 1 , that the size of the black box could be reduced by extending the two white bubbles towards the grey box. While OB research engages in paradigm continuity, incorporating contemporary phenomena would facilitate “paradigm extension”. One way to do so is by using advanced research methodology paradigms ( Qiu, Donaldson, & Luo, 2012 ) to progress conventional organizational theory ( Donaldson, 2010 ). Advances in data science have enabled data-driven phenomena and paradigms to become increasingly normalized in today’s digital age. Thus, this essay regards advanced data-driven approaches as constituting the paradigm of research methodology. As displayed in Figure 1 , extending the dashed circles of data-driven phenomenon and paradigms (grey box) towards the white box will overlap OB’s black box, and consequently shrink the black box.

To elaborate further, the grey box in this context comprises of approaches in data science such as data-driven modelling (DDM), ML algorithms (like neural networks and deep learning) and other nuanced data-driven methods. Because DDM represents advances achieved through AI, ML and data mining, where relationships between the input and output variables can be drawn without detailed knowledge regarding the system’s behavior ( Solomatine, See, & Abrahart, 2009 ), applying such methods in congruence with established conceptual knowledge produces refined understanding of constructs and relationships in a field. As examples, big data can capture patterns in a construct in real-time and social media data - like those from Twitter – can reveal the existence of socially sensitive behaviors like biases and discrimination in workplaces. Such theory extension, propelled by data, can occur through multiple nested-levels of analyses ( Barnes et al. , 2018 ). In taking these initiatives, OB research would be aligning itself with and drawing a page from advances in its sister field of psychology, where scholars are engaged in decoupling their white box. Jack, Crivelli, & Wheatley (2018) , for example, advocate for using data-driven methods alongside relaxing Darwin’s theoretical constraints when studying facial expressions associated with various emotions. Advanced methodologies have shown to improve researchers’ understanding of how people in different cultures use facial expressions during verbal communication.

A preliminary course of action for methodology paradigm extension could involve narrowing the research question ( Makadok et al. , 2018 ) toward quantitative precision. With much attention being presently given to AI’s ability to enhance managerial decision-making, a sample open-ended question could be, “How can AI blend with human reasoning to advance managerial decision-making?” The empirical approaches employed to answer such a research question should appropriate the technology being studied. This is emphasized through Figure 1 , which illustrates that in order to shrink the black box, we must include some portion of the grey box. Hence, using decision-making theory would encompass the white box and applying ML algorithms as the methodology to answer the research question in real-time in a variety of managerial settings suggests inclusion of the grey box. Furthermore, we might even propose a close-ended question like, “ Can AI blend with human reasoning to advance managerial decision-making?” This could be sufficiently answered through ML-based decision tree and clustering algorithms. Machine learning techniques can help reveal under what specific situations which manager(s) in the organization are able to effectively integrate their own reasoning abilities with algorithmic recommendations offered to them. Such research questions offer even personality researchers an avenue for exploration. These attempts represent theory extension by identifying highly specific boundary conditions for human decision-making theory in the age of machines. If the ML algorithm provides a positive recommendation, a follow-up research question, “ To what degree can AI advance managerial decision-making?” could be asked. In doing so, we are not only framing a theory-driven research question in a distinct and specific context, but also utilizing real-time data to quantifiably answer it, thereby extending OB’s white box and using the data-driven grey box to condense the black box.

The “Triple A” potency

With emerging technologies reshaping management practices and changing the nature of work at all hierarchies in the organization ( Manyika, Chui, Madgavkar, & Lund, 2017 ), this essay recognizes that the influential combined driving force of analytics, algorithms and automation serves as a catalyst to initiate a decoupling of OB’s white box.

Moving forward with a boundary condition

In acknowledging that a black box exists, we can begin to consider how we move forward to advance the field. The simplest visualization of condensing the black box involves two steps – first, separating the white box circles, and second, expanding the areas of these circles to approach and converge with the grey box. As a guide to conducting technology-oriented research in OB, an initial item on the black box reduction checklist could involve identifying which OB theories have strong potential for decoupling and expansion within the white box and then, subsequently applying varied approaches to expand those theories to fit within the emerging technologies context. Nelson (2020) combines interpretive and inductive approaches through ML techniques to suggest a three-step process to generate computational grounded theory. McAbee, Landis, & Burke (2017) recommend integrating interpretivist and positivist approaches in grounded theory and the latest computational techniques to break away from epistemological conventions like deductivism. We should begin revising some of our existing deductive research programs and start by first observing and asking research questions from practice ( Mathieu, 2016 ). Researchers in the hard sciences and humanities assert that big data and emerging technologies are leading us to renew our epistemology and make paradigm shifts ( Kitchin, 2014 ). Similarly, it is timely for OB scholars to encourage a mindset that creates opportunities for data-driven phenomena and paradigms (the grey box) to coexist alongside OB’s white box. In doing so, we augment both phenomenon-based DDM’s and data-driven theorizing.

The black box in ML is being tackled by scientists using “explainable AI” ( Zednik, 2019 ), where experts develop rules to make the opaque box of unknown codes as transparent as humanly comprehendible. A similar approach could be taken in OB as a way to condense our black box, where we generate a set of guiding principles for researching emerging technologies. Categorizing projects based on the interrogative word of the research question, such as the what , why , how , how much, and when of open- and close-ended questions ( Rajagopalan, 2020 ) and offering researchers a layout of OB phenomena and paradigms that complement data-driven approaches (i.e. specifying what parts of the white box combine with what parts of the grey box) might be helpful. AI and related technologies can aid research methods by offering nuance and improving predictability. Using ML in data analysis in behavioral studies would help build better predictive models and enable scholars to conduct more predictive style research alongside engaging in conventional hypothesis-driven research ( Doornenbal et al. , 2021 ). AI would also allow us to answer research questions quantitively with high precision (e.g.: by how much, to what degree).

In recommending so, this essay identifies a boundary condition in the methodological application of AI technologies in OB. As ML techniques are capable of enriching our understanding of intricate variable relationships, DDM and conventional methods should thrive simultaneously for methodological rigor in OB. Methodological monism in ML results in the loss of dialogue among paradigms ( Lindebaum & Ashraf, 2021 ). Hence, in keeping with the perspectives of positivism and interpretivism and in adopting methodological pluralism for OB research programs, this essay argues that while conventional quantitative and qualitative methods continue to be utilized to explain and understand behaviors ( Buchanan, 1998 ; Bryman & Bell, 2003 ), applying ML-based algorithms is recommended when the goals are exploration of patterns, investigation of complex relationships among variables, and precision (in research models and in answers to research questions). Using AI in research methodologies adheres to abductive inquiry, wherein unexpected observations made by ML add value for inductive theorizing and subsequent hypothesis generation ( Doornenbal et al. , 2021 ). In acknowledging concerns relating to the lack of transparency in decision-making in ML ( Lindebaum & Ashraf, 2021 ), the conditional applications of grey box techniques would enrich and complement existing core methodologies rather than competing with them ( Leavitt, Schabram, Hariharan, & Barnes, 2020 ).

In conclusion, this essay revealed a conceptual black box relating to technology-oriented research in OB by conducting a scoping review. From the findings of the review, opportunities for OB scholarship to engage in technology-oriented research are discussed. In answering the research question, the essay advocates for loosening OB’s tightly coupled white box so that emerging technologies could be incorporated both as a phenomenon and as data analytical techniques.

research paper topics emerging technologies

The box framework: white box, black box and grey box

Literature search: Management journals, key terms and findings

Beyond Zickar and Highhouse’s (2001) journal list, 4 Academy of Management journals (Annals, AMD, AMLE, AMP), 2 high impact HRM journals (HRMJ, HRMR), and 5 OB-relevant journals with an impact factor of at least 3.00 (JBP, JBE, JBR, JMS, LQ) were included. JMP was included as it had a special issue on technology in 2020

The usage of the term black box in this essay is intended to reflect the common understanding of the black box as it is used in computer programming, data science, neuroscience, and more recently in management research ( Castelvecchi, 2016 ; Becker, Cropanzano, & Sanfey, 2011 ; Doornenbal, Spisak, & van der Laken, 2021 ). While consideration was given to developing alternate terminology to data “boxes,” the goal of this essay was not intended to rename, but to draw attention to these technologies. Therefore, this essay adheres to the widely recognized terms. 

Aguinis , H. , Boyd , B.K. , Pierce , C.A. & Short , J.C. ( 2011 ). “ Walking new avenues in management research methods and theories: bridging micro and macro domains ”. Journal of Management , 37 ( 2 ), 395 - 403 . doi: 10.1177/0149206310382456 .

Alpaydin , E. ( 2020 ). Introduction to Machine Learning , MIT press .

Anderson , N. , De Dreu , C.K. & Nijstad , B.A. ( 2004 ). “ The routinization of innovation research: a constructively critical review of the state‐of‐the‐science ”. Journal of Organizational Behavior , 25 ( 2 ), 147 - 173 . doi: 10.1002/job.236 .

Bamberger , P.A. & Pratt , M.G. ( 2010 ). “ Moving forward by looking back: Reclaiming unconventional research contexts and samples in organizational scholarship ”. Academy of Management Journal , 53 ( 4 ), 665 - 671 . doi: 10.5465/amj.2010.52814357 .

Barnes , C.M. , Dang , C.T. , Leavitt , K. , Guarana , C.L. & Uhlmann , E.L. ( 2018 ). “ Archival data in micro-organizational research: a toolkit for moving to a broader set of topics ”. Journal of Management , 44 ( 4 ), 1453 - 1478 . doi: 10.1177/0149206315604188 .

Becker , W.J. , Cropanzano , R. & Sanfey , A.G. ( 2011 ). “ Organizational neuroscience: Taking organizational theory inside the neural black box ”. Journal of Management , 37 ( 4 ), 933 - 961 . doi: 10.1177/0149206311398955 .

Bock , E.A. , Bos , J.W. , Brzuska , C. , Hubain , C. , Michiels , W. , Mune , C. & Treff , A. ( 2019 ). “ White-box cryptography: don’t forget about grey-box attacks ”. Journal of Cryptology , 32 ( 4 ), 1095 - 1143 . doi: 10.1007/s00145-019-09315-1 .

Bryman , A. & Bell , E. ( 2003 ). Business research methods , Oxford : Oxford University Press .

Buchanan , D.R. ( 1998 ). “ Beyond positivism: humanistic perspectives on theory and research in health education ”. Health Education Research , 13 ( 3 ), 439 - 450 . doi: 10.1093/her/13.3.439 .

Carter , W. ( 2020 ). “ Putting choice in the spotlight to advance theory on organizational adaptation to technological discontinuities ”. Organization Management Journal , 17 ( 2 ) doi: 10.1108/OMJ-04-2019-0720 .

Castelvecchi , D. ( 2016 ). “ Can we open the black box of AI? ” Nature News , 538 ( 7623 ), 20 doi: 10.1038/538020a .

CompTIA. ( 2020 ). “ 2020 Emerging technology top 10 list ”. Retrieved from; https://connect.comptia.org/content/infographic/2020-emerging-technology-top-10-list

Donaldson , L. ( 2010 ). The Meta-analytic organization: Introducing Statistico-Organizational Theory , Armonk, New York, NY : M.E. Sharpe .

Doornenbal , B.M. , Spisak , B. R. & van der Laken , P.A. ( 2021 ). “ Opening the black box: uncovering the leader trait paradigm through machine learning ”. The Leadership Quarterly , doi: 10.1016/j.leaqua.2021.101515 .

Eggers , J.P. & Kaul , A. ( 2018 ). “ Motivation and ability? A behavioral perspective on the pursuit of radical invention in multi-technology incumbents ”. Academy of Management Journal , 61 ( 1 ), 67 - 93 . doi: 10.5465/amj.2015.1123 .

Fisher , C.D. ( 1989 ). “ Current and recurrent challenges in HRM ”. Journal of Management , 15 ( 2 ), 157 - 180 . doi: 10.1177/014920638901500203 .

George , G. , Osinga , E.C. , Lavie , D. & Scott , B.A. ( 2016 ). “ Big data and data science methods for management research ”. Academy of Management Journal , 59 ( 5 ), 1493 - 1507 . doi: 10.5465/amj.2016.4005 .

Glanville , R. ( 1982 ). “ Inside every white box there are two black boxes trying to get out ”. Behavioral Science , 27 ( 1 ), 1 - 11 . doi: 10.1002/bs.3830270102 .

Jack , R.E. , Crivelli , C. & Wheatley , T. ( 2018 ). “ Data-driven methods to diversify knowledge of human psychology ”. Trends in Cognitive Sciences , 22 ( 1 ), 1 - 5 . doi: 10.1016/j.tics.2017.10.002 .

Khan , M.E. & Khan , F. ( 2012 ). “ A comparative study of white box, black box and grey box testing techniques ”. International Journal of Advanced Computer Science and Applications , 3 ( 6 ) doi: 10.14569/IJACSA.2012.030603 .

Kitchin , R. ( 2014 ). “ Big data, new epistemologies and paradigm shifts ”. Big Data & Society , 1 ( 1 ), 2053951714528481 , doi: 10.1177/2053951714528481 .

Leavitt , K. , Schabram , K. , Hariharan , P. & Barnes , C.M. ( 2020 ). “ Ghost in the machine: on organizational theory in the age of machine learning ”. Academy of Management Review , doi: 10.5465/amr.2019.0247 .

Leifsson , L.Þ. , Sævarsdóttir , H. , Sigurðsson , S.Þ. & Vésteinsson , A. ( 2008 ). “ Grey-box modeling of an ocean vessel for operational optimization ”. Simulation Modelling Practice and Theory , 16 ( 8 ), 923 - 932 . doi: 10.1016/j.simpat.2008.03.006 .

Lindebaum , D. & Ashraf , M. ( 2021 ). “ The ghost in the machine, or the ghost in organizational theory? A complementary view on the use of machine learning ”. Academy of Management Review , doi: 10.5465/amr.2021.0036

Lo-Thong , O. , Charton , P. , Cadet , X.F. , Grondin-Perez , B. , Saavedra , E. , Damour , C. & Cadet , F. ( 2020 ). “ Identification of flux checkpoints in a metabolic pathway through white-box, grey-box and black-box modeling approaches ”. Scientific Reports , 10 ( 1 ), 1 - 19 . doi: 10.1038/s41598-020-70295-5 .

Makadok , R. , Burton , R. & Barney , J. ( 2018 ). “ A practical guide for making theory contributions in strategic management ”. Strategic Management Journal , 39 ( 6 ), 1530 - 1545 . doi: 10.1002/smj.2789 .

Manyika , J. , Chui , M. , Madgavkar , A. & Lund , S. ( 2017 ). What’s now and next in analytics, AI, and automation , McKiinsey Global Institute . Retrived from: www.mckinsey.com/featured-insights/digital-disruption/whats-now-and-next-in-analytics-ai-and-automation#

Mathieu , J.E. ( 2016 ). “ The problem with [in] management theory ”. Journal of Organizational Behavior , 37 ( 8 ), 1132 - 1141 . doi: 10.1002/job.2114 .

McAbee , S.T. , Landis , R.S. & Burke , M.I. ( 2017 ). “ Inductive reasoning: the promise of big data ”. Human Resource Management Review , 27 ( 2 ), 277 - 290 . doi: 10.1016/j.hrmr.2016.08.005 .

Munn , Z. , Peters , M.D. , Stern , C. , Tufanaru , C. , McArthur , A. & Aromataris , E. ( 2018 ). “ Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach ”. BMC Medical Research Methodology , 18 ( 1 ), 1 - 7 . doi: 10.1186/s12874-018-0611-x .

Nelson , L.K. ( 2020 ). “ Computational grounded theory: a methodological framework ”. Sociological Methods & Research , 49 ( 1 ), 3 - 42 . doi: 10.1177/0049124117729703 .

Newman , D.T. , Fast , N.J. & Harmon , D.J. ( 2020 ). “ When eliminating bias isn’t fair: Algorithmic reductionism and procedural justice in human resource decisions ”. Organizational Behavior and Human Decision Processes , 160 , 149 - 167 . doi: 10.1016/j.obhdp.2020.03.008 .

Oracle, (n.d.) , “ What is big data? ”, Retrieved from: www.oracle.com/big-data/what-is-big-data.html

Orton , J.D. & Weick , K.E. ( 1990 ). “ Loosely coupled systems: a reconceptualization ”. Academy of Management Review , 15 ( 2 ), 203 - 223 . doi: 10.5465/amr.1990.4308154 .

Qiu , J. , Donaldson , L. & Luo , B.N. ( 2012 ). “ The benefits of persisting with paradigms in organizational research ”. Academy of Management Perspectives , 26 ( 1 ) doi: 10.5465/amp.2011.0125 .

Rajagopalan , N. ( 2020 ). “ Rigor, relevance, and resilience in management research ”. Journal of Management Inquiry , 29 ( 2 ), 150 - 153 . doi: 10.1177/1056492619861690 .

Solomatine , D. , See , L.M. & Abrahart , R.J. ( 2009 ). “ Data-driven modelling: concepts, approaches and experiences ”. Practical HydroinFormatics , pp. 17 - 30 . Berlin, Heidelberg : Springer . In

Tenhiälä , A. , Giluk , T.L. , Kepes , S. , Simon , C. , Oh , I.S. & Kim , S. ( 2016 ). “ The research‐practice gap in human resource management: a cross‐cultural study ”. Human Resource Management , 55 ( 2 ), 179 - 200 . doi: 10.1002/hrm.21656 .

Tonidandel , S. King , E.B. & Cortina , J.M. (Eds), ( 2015 ). Big Data at Work: the Data Science Revolution and Organizational Psychology , Routledge .

Von Krogh , G. ( 2018 ). “ Artificial intelligence in organizations: New opportunities for phenomenon-based theorizing ”. Academy of Management Discoveries , 4 ( 4 ), doi: 10.5465/amd.2018.0084 .

Wardlow , G. ( 1989 ). “ Alternative modes of inquiry for agricultural education ”. Journal of Agricultural Education , 30 ( 4 ), 2 - 7 . doi: 10.5032/jae.1989.04002 .

Weick , K.E. ( 1992 ). “ Agenda setting in organizational behavior: a theory-focused approach ”. Journal of Management Inquiry , 1 ( 3 ), 171 - 182 . doi: 10.1177/105649269213001 .

Zednik , C. ( 2019 ). “ Solving the black box problem: a normative framework for explainable artificial intelligence ”. Philosophy Technology , 1 - 24 .

Zickar , M.J. & Highhouse , S. ( 2001 ). “ Measuring prestige of journals in industrial-organizational psychology ”. The Industrial-Organizational Psychologist , 38 ( 4 ), 29 - 36 .

Corresponding author

Related articles, we’re listening — tell us what you think, something didn’t work….

Report bugs here

All feedback is valuable

Please share your general feedback

Join us on our journey

Platform update page.

Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

Questions & More Information

Answers to the most commonly asked questions here

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Sensors (Basel)

Logo of sensors

Study and Investigation on 5G Technology: A Systematic Review

Ramraj dangi.

1 School of Computing Science and Engineering, VIT University Bhopal, Bhopal 466114, India; [email protected] (R.D.); [email protected] (P.L.)

Praveen Lalwani

Gaurav choudhary.

2 Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark; moc.liamg@7777yrahduohcvaruag

3 Department of Information Security Engineering, Soonchunhyang University, Asan-si 31538, Korea

Giovanni Pau

4 Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy; [email protected]

Associated Data

Not applicable.

In wireless communication, Fifth Generation (5G) Technology is a recent generation of mobile networks. In this paper, evaluations in the field of mobile communication technology are presented. In each evolution, multiple challenges were faced that were captured with the help of next-generation mobile networks. Among all the previously existing mobile networks, 5G provides a high-speed internet facility, anytime, anywhere, for everyone. 5G is slightly different due to its novel features such as interconnecting people, controlling devices, objects, and machines. 5G mobile system will bring diverse levels of performance and capability, which will serve as new user experiences and connect new enterprises. Therefore, it is essential to know where the enterprise can utilize the benefits of 5G. In this research article, it was observed that extensive research and analysis unfolds different aspects, namely, millimeter wave (mmWave), massive multiple-input and multiple-output (Massive-MIMO), small cell, mobile edge computing (MEC), beamforming, different antenna technology, etc. This article’s main aim is to highlight some of the most recent enhancements made towards the 5G mobile system and discuss its future research objectives.

1. Introduction

Most recently, in three decades, rapid growth was marked in the field of wireless communication concerning the transition of 1G to 4G [ 1 , 2 ]. The main motto behind this research was the requirements of high bandwidth and very low latency. 5G provides a high data rate, improved quality of service (QoS), low-latency, high coverage, high reliability, and economically affordable services. 5G delivers services categorized into three categories: (1) Extreme mobile broadband (eMBB). It is a nonstandalone architecture that offers high-speed internet connectivity, greater bandwidth, moderate latency, UltraHD streaming videos, virtual reality and augmented reality (AR/VR) media, and many more. (2) Massive machine type communication (eMTC), 3GPP releases it in its 13th specification. It provides long-range and broadband machine-type communication at a very cost-effective price with less power consumption. eMTC brings a high data rate service, low power, extended coverage via less device complexity through mobile carriers for IoT applications. (3) ultra-reliable low latency communication (URLLC) offers low-latency and ultra-high reliability, rich quality of service (QoS), which is not possible with traditional mobile network architecture. URLLC is designed for on-demand real-time interaction such as remote surgery, vehicle to vehicle (V2V) communication, industry 4.0, smart grids, intelligent transport system, etc. [ 3 ].

1.1. Evolution from 1G to 5G

First generation (1G): 1G cell phone was launched between the 1970s and 80s, based on analog technology, which works just like a landline phone. It suffers in various ways, such as poor battery life, voice quality, and dropped calls. In 1G, the maximum achievable speed was 2.4 Kbps.

Second Generation (2G): In 2G, the first digital system was offered in 1991, providing improved mobile voice communication over 1G. In addition, Code-Division Multiple Access (CDMA) and Global System for Mobile (GSM) concepts were also discussed. In 2G, the maximum achievable speed was 1 Mpbs.

Third Generation (3G): When technology ventured from 2G GSM frameworks into 3G universal mobile telecommunication system (UMTS) framework, users encountered higher system speed and quicker download speed making constant video calls. 3G was the first mobile broadband system that was formed to provide the voice with some multimedia. The technology behind 3G was high-speed packet access (HSPA/HSPA+). 3G used MIMO for multiplying the power of the wireless network, and it also used packet switching for fast data transmission.

Fourth Generation (4G): It is purely mobile broadband standard. In digital mobile communication, it was observed information rate that upgraded from 20 to 60 Mbps in 4G [ 4 ]. It works on LTE and WiMAX technologies, as well as provides wider bandwidth up to 100 Mhz. It was launched in 2010.

Fourth Generation LTE-A (4.5G): It is an advanced version of standard 4G LTE. LTE-A uses MIMO technology to combine multiple antennas for both transmitters as well as a receiver. Using MIMO, multiple signals and multiple antennas can work simultaneously, making LTE-A three times faster than standard 4G. LTE-A offered an improved system limit, decreased deferral in the application server, access triple traffic (Data, Voice, and Video) wirelessly at any time anywhere in the world.LTE-A delivers speeds of over 42 Mbps and up to 90 Mbps.

Fifth Generation (5G): 5G is a pillar of digital transformation; it is a real improvement on all the previous mobile generation networks. 5G brings three different services for end user like Extreme mobile broadband (eMBB). It offers high-speed internet connectivity, greater bandwidth, moderate latency, UltraHD streaming videos, virtual reality and augmented reality (AR/VR) media, and many more. Massive machine type communication (eMTC), it provides long-range and broadband machine-type communication at a very cost-effective price with less power consumption. eMTC brings a high data rate service, low power, extended coverage via less device complexity through mobile carriers for IoT applications. Ultra-reliable low latency communication (URLLC) offers low-latency and ultra-high reliability, rich quality of service (QoS), which is not possible with traditional mobile network architecture. URLLC is designed for on-demand real-time interaction such as remote surgery, vehicle to vehicle (V2V) communication, industry 4.0, smart grids, intelligent transport system, etc. 5G faster than 4G and offers remote-controlled operation over a reliable network with zero delays. It provides down-link maximum throughput of up to 20 Gbps. In addition, 5G also supports 4G WWWW (4th Generation World Wide Wireless Web) [ 5 ] and is based on Internet protocol version 6 (IPv6) protocol. 5G provides unlimited internet connection at your convenience, anytime, anywhere with extremely high speed, high throughput, low-latency, higher reliability and scalability, and energy-efficient mobile communication technology [ 6 ]. 5G mainly divided in two parts 6 GHz 5G and Millimeter wave(mmWave) 5G.

6 GHz is a mid frequency band which works as a mid point between capacity and coverage to offer perfect environment for 5G connectivity. 6 GHz spectrum will provide high bandwidth with improved network performance. It offers continuous channels that will reduce the need for network densification when mid-band spectrum is not available and it makes 5G connectivity affordable at anytime, anywhere for everyone.

mmWave is an essential technology of 5G network which build high performance network. 5G mmWave offer diverse services that is why all network providers should add on this technology in their 5G deployment planning. There are lots of service providers who deployed 5G mmWave, and their simulation result shows that 5G mmwave is a far less used spectrum. It provides very high speed wireless communication and it also offers ultra-wide bandwidth for next generation mobile network.

The evolution of wireless mobile technologies are presented in Table 1 . The abbreviations used in this paper are mentioned in Table 2 .

Summary of Mobile Technology.

Table of Notations and Abbreviations.

1.2. Key Contributions

The objective of this survey is to provide a detailed guide of 5G key technologies, methods to researchers, and to help with understanding how the recent works addressed 5G problems and developed solutions to tackle the 5G challenges; i.e., what are new methods that must be applied and how can they solve problems? Highlights of the research article are as follows.

  • This survey focused on the recent trends and development in the era of 5G and novel contributions by the researcher community and discussed technical details on essential aspects of the 5G advancement.
  • In this paper, the evolution of the mobile network from 1G to 5G is presented. In addition, the growth of mobile communication under different attributes is also discussed.
  • This paper covers the emerging applications and research groups working on 5G & different research areas in 5G wireless communication network with a descriptive taxonomy.
  • This survey discusses the current vision of the 5G networks, advantages, applications, key technologies, and key features. Furthermore, machine learning prospects are also explored with the emerging requirements in the 5G era. The article also focused on technical aspects of 5G IoT Based approaches and optimization techniques for 5G.
  • we provide an extensive overview and recent advancement of emerging technologies of 5G mobile network, namely, MIMO, Non-Orthogonal Multiple Access (NOMA), mmWave, Internet of Things (IoT), Machine Learning (ML), and optimization. Also, a technical summary is discussed by highlighting the context of current approaches and corresponding challenges.
  • Security challenges and considerations while developing 5G technology are discussed.
  • Finally, the paper concludes with the future directives.

The existing survey focused on architecture, key concepts, and implementation challenges and issues. In contrast, this survey covers the state-of-the-art techniques as well as corresponding recent novel developments by researchers. Various recent significant papers are discussed with the key technologies accelerating the development and production of 5G products.

2. Existing Surveys and Their Applicability

In this paper, a detailed survey on various technologies of 5G networks is presented. Various researchers have worked on different technologies of 5G networks. In this section, Table 3 gives a tabular representation of existing surveys of 5G networks. Massive MIMO, NOMA, small cell, mmWave, beamforming, and MEC are the six main pillars that helped to implement 5G networks in real life.

A comparative overview of existing surveys on different technologies of 5G networks.

2.1. Limitations of Existing Surveys

The existing survey focused on architecture, key concepts, and implementation challenges and issues. The numerous current surveys focused on various 5G technologies with different parameters, and the authors did not cover all the technologies of the 5G network in detail with challenges and recent advancements. Few authors worked on MIMO (Non-Orthogonal Multiple Access) NOMA, MEC, small cell technologies. In contrast, some others worked on beamforming, Millimeter-wave (mmWave). But the existing survey did not cover all the technologies of the 5G network from a research and advancement perspective. No detailed survey is available in the market covering all the 5G network technologies and currently published research trade-offs. So, our main aim is to give a detailed study of all the technologies working on the 5G network. In contrast, this survey covers the state-of-the-art techniques as well as corresponding recent novel developments by researchers. Various recent significant papers are discussed with the key technologies accelerating the development and production of 5G products. This survey article collected key information about 5G technology and recent advancements, and it can be a kind of a guide for the reader. This survey provides an umbrella approach to bring multiple solutions and recent improvements in a single place to accelerate the 5G research with the latest key enabling solutions and reviews. A systematic layout representation of the survey in Figure 1 . We provide a state-of-the-art comparative overview of the existing surveys on different technologies of 5G networks in Table 3 .

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g001.jpg

Systematic layout representation of survey.

2.2. Article Organization

This article is organized under the following sections. Section 2 presents existing surveys and their applicability. In Section 3 , the preliminaries of 5G technology are presented. In Section 4 , recent advances of 5G technology based on Massive MIMO, NOMA, Millimeter Wave, 5G with IoT, machine learning for 5G, and Optimization in 5G are provided. In Section 5 , a description of novel 5G features over 4G is provided. Section 6 covered all the security concerns of the 5G network. Section 7 , 5G technology based on above-stated challenges summarize in tabular form. Finally, Section 8 and Section 9 conclude the study, which paves the path for future research.

3. Preliminary Section

3.1. emerging 5g paradigms and its features.

5G provides very high speed, low latency, and highly salable connectivity between multiple devices and IoT worldwide. 5G will provide a very flexible model to develop a modern generation of applications and industry goals [ 26 , 27 ]. There are many services offered by 5G network architecture are stated below:

Massive machine to machine communications: 5G offers novel, massive machine-to-machine communications [ 28 ], also known as the IoT [ 29 ], that provide connectivity between lots of machines without any involvement of humans. This service enhances the applications of 5G and provides connectivity between agriculture, construction, and industries [ 30 ].

Ultra-reliable low latency communications (URLLC): This service offers real-time management of machines, high-speed vehicle-to-vehicle connectivity, industrial connectivity and security principles, and highly secure transport system, and multiple autonomous actions. Low latency communications also clear up a different area where remote medical care, procedures, and operation are all achievable [ 31 ].

Enhanced mobile broadband: Enhance mobile broadband is an important use case of 5G system, which uses massive MIMO antenna, mmWave, beamforming techniques to offer very high-speed connectivity across a wide range of areas [ 32 ].

For communities: 5G provides a very flexible internet connection between lots of machines to make smart homes, smart schools, smart laboratories, safer and smart automobiles, and good health care centers [ 33 ].

For businesses and industry: As 5G works on higher spectrum ranges from 24 to 100 GHz. This higher frequency range provides secure low latency communication and high-speed wireless connectivity between IoT devices and industry 4.0, which opens a market for end-users to enhance their business models [ 34 ].

New and Emerging technologies: As 5G came up with many new technologies like beamforming, massive MIMO, mmWave, small cell, NOMA, MEC, and network slicing, it introduced many new features to the market. Like virtual reality (VR), users can experience the physical presence of people who are millions of kilometers away from them. Many new technologies like smart homes, smart workplaces, smart schools, smart sports academy also came into the market with this 5G Mobile network model [ 35 ].

3.2. Commercial Service Providers of 5G

5G provides high-speed internet browsing, streaming, and downloading with very high reliability and low latency. 5G network will change your working style, and it will increase new business opportunities and provide innovations that we cannot imagine. This section covers top service providers of 5G network [ 36 , 37 ].

Ericsson: Ericsson is a Swedish multinational networking and telecommunications company, investing around 25.62 billion USD in 5G network, which makes it the biggest telecommunication company. It claims that it is the only company working on all the continents to make the 5G network a global standard for the next generation wireless communication. Ericsson developed the first 5G radio prototype that enables the operators to set up the live field trials in their network, which helps operators understand how 5G reacts. It plays a vital role in the development of 5G hardware. It currently provides 5G services in over 27 countries with content providers like China Mobile, GCI, LGU+, AT&T, Rogers, and many more. It has 100 commercial agreements with different operators as of 2020.

Verizon: It is American multinational telecommunication which was founded in 1983. Verizon started offering 5G services in April 2020, and by December 2020, it has actively provided 5G services in 30 cities of the USA. They planned that by the end of 2021, they would deploy 5G in 30 more new cities. Verizon deployed a 5G network on mmWave, a very high band spectrum between 30 to 300 GHz. As it is a significantly less used spectrum, it provides very high-speed wireless communication. MmWave offers ultra-wide bandwidth for next-generation mobile networks. MmWave is a faster and high-band spectrum that has a limited range. Verizon planned to increase its number of 5G cells by 500% by 2020. Verizon also has an ultra wide-band flagship 5G service which is the best 5G service that increases the market price of Verizon.

Nokia: Nokia is a Finnish multinational telecommunications company which was founded in 1865. Nokia is one of the companies which adopted 5G technology very early. It is developing, researching, and building partnerships with various 5G renders to offer 5G communication as soon as possible. Nokia collaborated with Deutsche Telekom and Hamburg Port Authority and provided them 8000-hectare site for their 5G MoNArch project. Nokia is the only company that supplies 5G technology to all the operators of different countries like AT&T, Sprint, T-Mobile US and Verizon in the USA, Korea Telecom, LG U+ and SK Telecom in South Korea and NTT DOCOMO, KDDI, and SoftBank in Japan. Presently, Nokia has around 150+ agreements and 29 live networks all over the world. Nokia is continuously working hard on 5G technology to expand 5G networks all over the globe.

AT&T: AT&T is an American multinational company that was the first to deploy a 5G network in reality in 2018. They built a gigabit 5G network connection in Waco, TX, Kalamazoo, MI, and South Bend to achieve this. It is the first company that archives 1–2 gigabit per second speed in 2019. AT&T claims that it provides a 5G network connection among 225 million people worldwide by using a 6 GHz spectrum band.

T-Mobile: T-Mobile US (TMUS) is an American wireless network operator which was the first service provider that offers a real 5G nationwide network. The company knew that high-band 5G was not feasible nationwide, so they used a 600 MHz spectrum to build a significant portion of its 5G network. TMUS is planning that by 2024 they will double the total capacity and triple the full 5G capacity of T-Mobile and Sprint combined. The sprint buyout is helping T-Mobile move forward the company’s current market price to 129.98 USD.

Samsung: Samsung started their research in 5G technology in 2011. In 2013, Samsung successfully developed the world’s first adaptive array transceiver technology operating in the millimeter-wave Ka bands for cellular communications. Samsung provides several hundred times faster data transmission than standard 4G for core 5G mobile communication systems. The company achieved a lot of success in the next generation of technology, and it is considered one of the leading companies in the 5G domain.

Qualcomm: Qualcomm is an American multinational corporation in San Diego, California. It is also one of the leading company which is working on 5G chip. Qualcomm’s first 5G modem chip was announced in October 2016, and a prototype was demonstrated in October 2017. Qualcomm mainly focuses on building products while other companies talk about 5G; Qualcomm is building the technologies. According to one magazine, Qualcomm was working on three main areas of 5G networks. Firstly, radios that would use bandwidth from any network it has access to; secondly, creating more extensive ranges of spectrum by combining smaller pieces; and thirdly, a set of services for internet applications.

ZTE Corporation: ZTE Corporation was founded in 1985. It is a partially Chinese state-owned technology company that works in telecommunication. It was a leading company that worked on 4G LTE, and it is still maintaining its value and doing research and tests on 5G. It is the first company that proposed Pre5G technology with some series of solutions.

NEC Corporation: NEC Corporation is a Japanese multinational information technology and electronics corporation headquartered in Minato, Tokyo. ZTE also started their research on 5G, and they introduced a new business concept. NEC’s main aim is to develop 5G NR for the global mobile system and create secure and intelligent technologies to realize 5G services.

Cisco: Cisco is a USA networking hardware company that also sleeves up for 5G network. Cisco’s primary focus is to support 5G in three ways: Service—enable 5G services faster so all service providers can increase their business. Infrastructure—build 5G-oriented infrastructure to implement 5G more quickly. Automation—make a more scalable, flexible, and reliable 5G network. The companies know the importance of 5G, and they want to connect more than 30 billion devices in the next couple of years. Cisco intends to work on network hardening as it is a vital part of 5G network. Cisco used AI with deep learning to develop a 5G Security Architecture, enabling Secure Network Transformation.

3.3. 5G Research Groups

Many research groups from all over the world are working on a 5G wireless mobile network [ 38 ]. These groups are continuously working on various aspects of 5G. The list of those research groups are presented as follows: 5GNOW (5th Generation Non-Orthogonal Waveform for Asynchronous Signaling), NEWCOM (Network of Excellence in Wireless Communication), 5GIC (5G Innovation Center), NYU (New York University) Wireless, 5GPPP (5G Infrastructure Public-Private Partnership), EMPHATIC (Enhanced Multi-carrier Technology for Professional Adhoc and Cell-Based Communication), ETRI(Electronics and Telecommunication Research Institute), METIS (Mobile and wireless communication Enablers for the Twenty-twenty Information Society) [ 39 ]. The various research groups along with the research area are presented in Table 4 .

Research groups working on 5G mobile networks.

3.4. 5G Applications

5G is faster than 4G and offers remote-controlled operation over a reliable network with zero delays. It provides down-link maximum throughput of up to 20 Gbps. In addition, 5G also supports 4G WWWW (4th Generation World Wide Wireless Web) [ 5 ] and is based on Internet protocol version 6 (IPv6) protocol. 5G provides unlimited internet connection at your convenience, anytime, anywhere with extremely high speed, high throughput, low-latency, higher reliability, greater scalablility, and energy-efficient mobile communication technology [ 6 ].

There are lots of applications of 5G mobile network are as follows:

  • High-speed mobile network: 5G is an advancement on all the previous mobile network technologies, which offers very high speed downloading speeds 0 of up to 10 to 20 Gbps. The 5G wireless network works as a fiber optic internet connection. 5G is different from all the conventional mobile transmission technologies, and it offers both voice and high-speed data connectivity efficiently. 5G offers very low latency communication of less than a millisecond, useful for autonomous driving and mission-critical applications. 5G will use millimeter waves for data transmission, providing higher bandwidth and a massive data rate than lower LTE bands. As 5 Gis a fast mobile network technology, it will enable virtual access to high processing power and secure and safe access to cloud services and enterprise applications. Small cell is one of the best features of 5G, which brings lots of advantages like high coverage, high-speed data transfer, power saving, easy and fast cloud access, etc. [ 40 ].
  • Entertainment and multimedia: In one analysis in 2015, it was found that more than 50 percent of mobile internet traffic was used for video downloading. This trend will surely increase in the future, which will make video streaming more common. 5G will offer High-speed streaming of 4K videos with crystal clear audio, and it will make a high definition virtual world on your mobile. 5G will benefit the entertainment industry as it offers 120 frames per second with high resolution and higher dynamic range video streaming, and HD TV channels can also be accessed on mobile devices without any interruptions. 5G provides low latency high definition communication so augmented reality (AR), and virtual reality (VR) will be very easily implemented in the future. Virtual reality games are trendy these days, and many companies are investing in HD virtual reality games. The 5G network will offer high-speed internet connectivity with a better gaming experience [ 41 ].
  • Smart homes : smart home appliances and products are in demand these days. The 5G network makes smart homes more real as it offers high-speed connectivity and monitoring of smart appliances. Smart home appliances are easily accessed and configured from remote locations using the 5G network as it offers very high-speed low latency communication.
  • Smart cities: 5G wireless network also helps develop smart cities applications such as automatic traffic management, weather update, local area broadcasting, energy-saving, efficient power supply, smart lighting system, water resource management, crowd management, emergency control, etc.
  • Industrial IoT: 5G wireless technology will provide lots of features for future industries such as safety, process tracking, smart packing, shipping, energy efficiency, automation of equipment, predictive maintenance, and logistics. 5G smart sensor technology also offers smarter, safer, cost-effective, and energy-saving industrial IoT operations.
  • Smart Farming: 5G technology will play a crucial role in agriculture and smart farming. 5G sensors and GPS technology will help farmers track live attacks on crops and manage them quickly. These smart sensors can also be used for irrigation, pest, insect, and electricity control.
  • Autonomous Driving: The 5G wireless network offers very low latency high-speed communication, significant for autonomous driving. It means self-driving cars will come to real life soon with 5G wireless networks. Using 5G autonomous cars can easily communicate with smart traffic signs, objects, and other vehicles running on the road. 5G’s low latency feature makes self-driving more real as every millisecond is essential for autonomous vehicles, decision-making is done in microseconds to avoid accidents.
  • Healthcare and mission-critical applications: 5G technology will bring modernization in medicine where doctors and practitioners can perform advanced medical procedures. The 5G network will provide connectivity between all classrooms, so attending seminars and lectures will be easier. Through 5G technology, patients can connect with doctors and take their advice. Scientists are building smart medical devices which can help people with chronic medical conditions. The 5G network will boost the healthcare industry with smart devices, the internet of medical things, smart sensors, HD medical imaging technologies, and smart analytics systems. 5G will help access cloud storage, so accessing healthcare data will be very easy from any location worldwide. Doctors and medical practitioners can easily store and share large files like MRI reports within seconds using the 5G network.
  • Satellite Internet: In many remote areas, ground base stations are not available, so 5G will play a crucial role in providing connectivity in such areas. The 5G network will provide connectivity using satellite systems, and the satellite system uses a constellation of multiple small satellites to provide connectivity in urban and rural areas across the world.

4. 5G Technologies

This section describes recent advances of 5G Massive MIMO, 5G NOMA, 5G millimeter wave, 5G IOT, 5G with machine learning, and 5G optimization-based approaches. In addition, the summary is also presented in each subsection that paves the researchers for the future research direction.

4.1. 5G Massive MIMO

Multiple-input-multiple-out (MIMO) is a very important technology for wireless systems. It is used for sending and receiving multiple signals simultaneously over the same radio channel. MIMO plays a very big role in WI-FI, 3G, 4G, and 4G LTE-A networks. MIMO is mainly used to achieve high spectral efficiency and energy efficiency but it was not up to the mark MIMO provides low throughput and very low reliable connectivity. To resolve this, lots of MIMO technology like single user MIMO (SU-MIMO), multiuser MIMO (MU-MIMO) and network MIMO were used. However, these new MIMO also did not still fulfill the demand of end users. Massive MIMO is an advancement of MIMO technology used in the 5G network in which hundreds and thousands of antennas are attached with base stations to increase throughput and spectral efficiency. Multiple transmit and receive antennas are used in massive MIMO to increase the transmission rate and spectral efficiency. When multiple UEs generate downlink traffic simultaneously, massive MIMO gains higher capacity. Massive MIMO uses extra antennas to move energy into smaller regions of space to increase spectral efficiency and throughput [ 43 ]. In traditional systems data collection from smart sensors is a complex task as it increases latency, reduced data rate and reduced reliability. While massive MIMO with beamforming and huge multiplexing techniques can sense data from different sensors with low latency, high data rate and higher reliability. Massive MIMO will help in transmitting the data in real-time collected from different sensors to central monitoring locations for smart sensor applications like self-driving cars, healthcare centers, smart grids, smart cities, smart highways, smart homes, and smart enterprises [ 44 ].

Highlights of 5G Massive MIMO technology are as follows:

  • Data rate: Massive MIMO is advised as the one of the dominant technologies to provide wireless high speed and high data rate in the gigabits per seconds.
  • The relationship between wave frequency and antenna size: Both are inversely proportional to each other. It means lower frequency signals need a bigger antenna and vise versa.

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g002.jpg

Pictorial representation of multi-input and multi-output (MIMO).

  • MIMO role in 5G: Massive MIMO will play a crucial role in the deployment of future 5G mobile communication as greater spectral and energy efficiency could be enabled.

State-of-the-Art Approaches

Plenty of approaches were proposed to resolve the issues of conventional MIMO [ 7 ].

The MIMO multirate, feed-forward controller is suggested by Mae et al. [ 46 ]. In the simulation, the proposed model generates the smooth control input, unlike the conventional MIMO, which generates oscillated control inputs. It also outperformed concerning the error rate. However, a combination of multirate and single rate can be used for better results.

The performance of stand-alone MIMO, distributed MIMO with and without corporation MIMO, was investigated by Panzner et al. [ 47 ]. In addition, an idea about the integration of large scale in the 5G technology was also presented. In the experimental analysis, different MIMO configurations are considered. The variation in the ratio of overall transmit antennas to spatial is deemed step-wise from equality to ten.

The simulation of massive MIMO noncooperative and cooperative systems for down-link behavior was performed by He et al. [ 48 ]. It depends on present LTE systems, which deal with various antennas in the base station set-up. It was observed that collaboration in different BS improves the system behaviors, whereas throughput is reduced slightly in this approach. However, a new method can be developed which can enhance both system behavior and throughput.

In [ 8 ], different approaches that increased the energy efficiency benefits provided by massive MIMO were presented. They analyzed the massive MIMO technology and described the detailed design of the energy consumption model for massive MIMO systems. This article has explored several techniques to enhance massive MIMO systems’ energy efficiency (EE) gains. This paper reviews standard EE-maximization approaches for the conventional massive MIMO systems, namely, scaling number of antennas, real-time implementing low-complexity operations at the base station (BS), power amplifier losses minimization, and radio frequency (RF) chain minimization requirements. In addition, open research direction is also identified.

In [ 49 ], various existing approaches based on different antenna selection and scheduling, user selection and scheduling, and joint antenna and user scheduling methods adopted in massive MIMO systems are presented in this paper. The objective of this survey article was to make awareness about the current research and future research direction in MIMO for systems. They analyzed that complete utilization of resources and bandwidth was the most crucial factor which enhances the sum rate.

In [ 50 ], authors discussed the development of various techniques for pilot contamination. To calculate the impact of pilot contamination in time division duplex (TDD) massive MIMO system, TDD and frequency division duplexing FDD patterns in massive MIMO techniques are used. They discussed different issues in pilot contamination in TDD massive MIMO systems with all the possible future directions of research. They also classified various techniques to generate the channel information for both pilot-based and subspace-based approaches.

In [ 19 ], the authors defined the uplink and downlink services for a massive MIMO system. In addition, it maintains a performance matrix that measures the impact of pilot contamination on different performances. They also examined the various application of massive MIMO such as small cells, orthogonal frequency-division multiplexing (OFDM) schemes, massive MIMO IEEE 802, 3rd generation partnership project (3GPP) specifications, and higher frequency bands. They considered their research work crucial for cutting edge massive MIMO and covered many issues like system throughput performance and channel state acquisition at higher frequencies.

In [ 13 ], various approaches were suggested for MIMO future generation wireless communication. They made a comparative study based on performance indicators such as peak data rate, energy efficiency, latency, throughput, etc. The key findings of this survey are as follows: (1) spatial multiplexing improves the energy efficiency; (2) design of MIMO play a vital role in the enhancement of throughput; (3) enhancement of mMIMO focusing on energy & spectral performance; (4) discussed the future challenges to improve the system design.

In [ 51 ], the study of large-scale MIMO systems for an energy-efficient system sharing method was presented. For the resource allocation, circuit energy and transmit energy expenditures were taken into consideration. In addition, the optimization techniques were applied for an energy-efficient resource sharing system to enlarge the energy efficiency for individual QoS and energy constraints. The author also examined the BS configuration, which includes homogeneous and heterogeneous UEs. While simulating, they discussed that the total number of transmit antennas plays a vital role in boosting energy efficiency. They highlighted that the highest energy efficiency was obtained when the BS was set up with 100 antennas that serve 20 UEs.

This section includes various works done on 5G MIMO technology by different author’s. Table 5 shows how different author’s worked on improvement of various parameters such as throughput, latency, energy efficiency, and spectral efficiency with 5G MIMO technology.

Summary of massive MIMO-based approaches in 5G technology.

4.2. 5G Non-Orthogonal Multiple Access (NOMA)

NOMA is a very important radio access technology used in next generation wireless communication. Compared to previous orthogonal multiple access techniques, NOMA offers lots of benefits like high spectrum efficiency, low latency with high reliability and high speed massive connectivity. NOMA mainly works on a baseline to serve multiple users with the same resources in terms of time, space and frequency. NOMA is mainly divided into two main categories one is code domain NOMA and another is power domain NOMA. Code-domain NOMA can improve the spectral efficiency of mMIMO, which improves the connectivity in 5G wireless communication. Code-domain NOMA was divided into some more multiple access techniques like sparse code multiple access, lattice-partition multiple access, multi-user shared access and pattern-division multiple access [ 52 ]. Power-domain NOMA is widely used in 5G wireless networks as it performs well with various wireless communication techniques such as MIMO, beamforming, space-time coding, network coding, full-duplex and cooperative communication etc. [ 53 ]. The conventional orthogonal frequency-division multiple access (OFDMA) used by 3GPP in 4G LTE network provides very low spectral efficiency when bandwidth resources are allocated to users with low channel state information (CSI). NOMA resolved this issue as it enables users to access all the subcarrier channels so bandwidth resources allocated to the users with low CSI can still be accessed by the users with strong CSI which increases the spectral efficiency. The 5G network will support heterogeneous architecture in which small cell and macro base stations work for spectrum sharing. NOMA is a key technology of the 5G wireless system which is very helpful for heterogeneous networks as multiple users can share their data in a small cell using the NOMA principle.The NOMA is helpful in various applications like ultra-dense networks (UDN), machine to machine (M2M) communication and massive machine type communication (mMTC). As NOMA provides lots of features it has some challenges too such as NOMA needs huge computational power for a large number of users at high data rates to run the SIC algorithms. Second, when users are moving from the networks, to manage power allocation optimization is a challenging task for NOMA [ 54 ]. Hybrid NOMA (HNOMA) is a combination of power-domain and code-domain NOMA. HNOMA uses both power differences and orthogonal resources for transmission among multiple users. As HNOMA is using both power-domain NOMA and code-domain NOMA it can achieve higher spectral efficiency than Power-domain NOMA and code-domain NOMA. In HNOMA multiple groups can simultaneously transmit signals at the same time. It uses a message passing algorithm (MPA) and successive interference cancellation (SIC)-based detection at the base station for these groups [ 55 ].

Highlights of 5G NOMA technology as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g003.jpg

Pictorial representation of orthogonal and Non-Orthogonal Multiple Access (NOMA).

  • NOMA provides higher data rates and resolves all the loop holes of OMA that makes 5G mobile network more scalable and reliable.
  • As multiple users use same frequency band simultaneously it increases the performance of whole network.
  • To setup intracell and intercell interference NOMA provides nonorthogonal transmission on the transmitter end.
  • The primary fundamental of NOMA is to improve the spectrum efficiency by strengthening the ramification of receiver.

State-of-the-Art of Approaches

A plenty of approaches were developed to address the various issues in NOMA.

A novel approach to address the multiple receiving signals at the same frequency is proposed in [ 22 ]. In NOMA, multiple users use the same sub-carrier, which improves the fairness and throughput of the system. As a nonorthogonal method is used among multiple users, at the time of retrieving the user’s signal at the receiver’s end, joint processing is required. They proposed solutions to optimize the receiver and the radio resource allocation of uplink NOMA. Firstly, the authors proposed an iterative MUDD which utilizes the information produced by the channel decoder to improve the performance of the multiuser detector. After that, the author suggested a power allocation and novel subcarrier that enhances the users’ weighted sum rate for the NOMA scheme. Their proposed model showed that NOMA performed well as compared to OFDM in terms of fairness and efficiency.

In [ 53 ], the author’s reviewed a power-domain NOMA that uses superposition coding (SC) and successive interference cancellation (SIC) at the transmitter and the receiver end. Lots of analyses were held that described that NOMA effectively satisfies user data rate demands and network-level of 5G technologies. The paper presented a complete review of recent advances in the 5G NOMA system. It showed the comparative analysis regarding allocation procedures, user fairness, state-of-the-art efficiency evaluation, user pairing pattern, etc. The study also analyzes NOMA’s behavior when working with other wireless communication techniques, namely, beamforming, MIMO, cooperative connections, network, space-time coding, etc.

In [ 9 ], the authors proposed NOMA with MEC, which improves the QoS as well as reduces the latency of the 5G wireless network. This model increases the uplink NOMA by decreasing the user’s uplink energy consumption. They formulated an optimized NOMA framework that reduces the energy consumption of MEC by using computing and communication resource allocation, user clustering, and transmit powers.

In [ 10 ], the authors proposed a model which investigates outage probability under average channel state information CSI and data rate in full CSI to resolve the problem of optimal power allocation, which increase the NOMA downlink system among users. They developed simple low-complexity algorithms to provide the optimal solution. The obtained simulation results showed NOMA’s efficiency, achieving higher performance fairness compared to the TDMA configurations. It was observed from the results that NOMA, through the appropriate power amplifiers (PA), ensures the high-performance fairness requirement for the future 5G wireless communication networks.

In [ 56 ], researchers discussed that the NOMA technology and waveform modulation techniques had been used in the 5G mobile network. Therefore, this research gave a detailed survey of non-orthogonal waveform modulation techniques and NOMA schemes for next-generation mobile networks. By analyzing and comparing multiple access technologies, they considered the future evolution of these technologies for 5G mobile communication.

In [ 57 ], the authors surveyed non-orthogonal multiple access (NOMA) from the development phase to the recent developments. They have also compared NOMA techniques with traditional OMA techniques concerning information theory. The author discussed the NOMA schemes categorically as power and code domain, including the design principles, operating principles, and features. Comparison is based upon the system’s performance, spectral efficiency, and the receiver’s complexity. Also discussed are the future challenges, open issues, and their expectations of NOMA and how it will support the key requirements of 5G mobile communication systems with massive connectivity and low latency.

In [ 17 ], authors present the first review of an elementary NOMA model with two users, which clarify its central precepts. After that, a general design with multicarrier supports with a random number of users on each sub-carrier is analyzed. In performance evaluation with the existing approaches, resource sharing and multiple-input multiple-output NOMA are examined. Furthermore, they took the key elements of NOMA and its potential research demands. Finally, they reviewed the two-user SC-NOMA design and a multi-user MC-NOMA design to highlight NOMA’s basic approaches and conventions. They also present the research study about the performance examination, resource assignment, and MIMO in NOMA.

In this section, various works by different authors done on 5G NOMA technology is covered. Table 6 shows how other authors worked on the improvement of various parameters such as spectral efficiency, fairness, and computing capacity with 5G NOMA technology.

Summary of NOMA-based approaches in 5G technology.

4.3. 5G Millimeter Wave (mmWave)

Millimeter wave is an extremely high frequency band, which is very useful for 5G wireless networks. MmWave uses 30 GHz to 300 GHz spectrum band for transmission. The frequency band between 30 GHz to 300 GHz is known as mmWave because these waves have wavelengths between 1 to 10 mm. Till now radar systems and satellites are only using mmWave as these are very fast frequency bands which provide very high speed wireless communication. Many mobile network providers also started mmWave for transmitting data between base stations. Using two ways the speed of data transmission can be improved one is by increasing spectrum utilization and second is by increasing spectrum bandwidth. Out of these two approaches increasing bandwidth is quite easy and better. The frequency band below 5 GHz is very crowded as many technologies are using it so to boost up the data transmission rate 5G wireless network uses mmWave technology which instead of increasing spectrum utilization, increases the spectrum bandwidth [ 58 ]. To maximize the signal bandwidth in wireless communication the carrier frequency should also be increased by 5% because the signal bandwidth is directly proportional to carrier frequencies. The frequency band between 28 GHz to 60 GHz is very useful for 5G wireless communication as 28 GHz frequency band offers up to 1 GHz spectrum bandwidth and 60 GHz frequency band offers 2 GHz spectrum bandwidth. 4G LTE provides 2 GHz carrier frequency which offers only 100 MHz spectrum bandwidth. However, the use of mmWave increases the spectrum bandwidth 10 times, which leads to better transmission speeds [ 59 , 60 ].

Highlights of 5G mmWave are as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g004.jpg

Pictorial representation of millimeter wave.

  • The 5G mmWave offer three advantages: (1) MmWave is very less used new Band, (2) MmWave signals carry more data than lower frequency wave, and (3) MmWave can be incorporated with MIMO antenna with the potential to offer a higher magnitude capacity compared to current communication systems.

In [ 11 ], the authors presented the survey of mmWave communications for 5G. The advantage of mmWave communications is adaptability, i.e., it supports the architectures and protocols up-gradation, which consists of integrated circuits, systems, etc. The authors over-viewed the present solutions and examined them concerning effectiveness, performance, and complexity. They also discussed the open research issues of mmWave communications in 5G concerning the software-defined network (SDN) architecture, network state information, efficient regulation techniques, and the heterogeneous system.

In [ 61 ], the authors present the recent work done by investigators in 5G; they discussed the design issues and demands of mmWave 5G antennas for cellular handsets. After that, they designed a small size and low-profile 60 GHz array of antenna units that contain 3D planer mesh-grid antenna elements. For the future prospect, a framework is designed in which antenna components are used to operate cellular handsets on mmWave 5G smartphones. In addition, they cross-checked the mesh-grid array of antennas with the polarized beam for upcoming hardware challenges.

In [ 12 ], the authors considered the suitability of the mmWave band for 5G cellular systems. They suggested a resource allocation system for concurrent D2D communications in mmWave 5G cellular systems, and it improves network efficiency and maintains network connectivity. This research article can serve as guidance for simulating D2D communications in mmWave 5G cellular systems. Massive mmWave BS may be set up to obtain a high delivery rate and aggregate efficiency. Therefore, many wireless users can hand off frequently between the mmWave base terminals, and it emerges the demand to search the neighbor having better network connectivity.

In [ 62 ], the authors provided a brief description of the cellular spectrum which ranges from 1 GHz to 3 GHz and is very crowed. In addition, they presented various noteworthy factors to set up mmWave communications in 5G, namely, channel characteristics regarding mmWave signal attenuation due to free space propagation, atmospheric gaseous, and rain. In addition, hybrid beamforming architecture in the mmWave technique is analyzed. They also suggested methods for the blockage effect in mmWave communications due to penetration damage. Finally, the authors have studied designing the mmWave transmission with small beams in nonorthogonal device-to-device communication.

This section covered various works done on 5G mmWave technology. The Table 7 shows how different author’s worked on the improvement of various parameters i.e., transmission rate, coverage, and cost, with 5G mmWave technology.

Summary of existing mmWave-based approaches in 5G technology.

4.4. 5G IoT Based Approaches

The 5G mobile network plays a big role in developing the Internet of Things (IoT). IoT will connect lots of things with the internet like appliances, sensors, devices, objects, and applications. These applications will collect lots of data from different devices and sensors. 5G will provide very high speed internet connectivity for data collection, transmission, control, and processing. 5G is a flexible network with unused spectrum availability and it offers very low cost deployment that is why it is the most efficient technology for IoT [ 63 ]. In many areas, 5G provides benefits to IoT, and below are some examples:

Smart homes: smart home appliances and products are in demand these days. The 5G network makes smart homes more real as it offers high speed connectivity and monitoring of smart appliances. Smart home appliances are easily accessed and configured from remote locations using the 5G network, as it offers very high speed low latency communication.

Smart cities: 5G wireless network also helps in developing smart cities applications such as automatic traffic management, weather update, local area broadcasting, energy saving, efficient power supply, smart lighting system, water resource management, crowd management, emergency control, etc.

Industrial IoT: 5G wireless technology will provide lots of features for future industries such as safety, process tracking, smart packing, shipping, energy efficiency, automation of equipment, predictive maintenance and logistics. 5G smart sensor technology also offers smarter, safer, cost effective, and energy-saving industrial operation for industrial IoT.

Smart Farming: 5G technology will play a crucial role for agriculture and smart farming. 5G sensors and GPS technology will help farmers to track live attacks on crops and manage them quickly. These smart sensors can also be used for irrigation control, pest control, insect control, and electricity control.

Autonomous Driving: 5G wireless network offers very low latency high speed communication which is very significant for autonomous driving. It means self-driving cars will come to real life soon with 5G wireless networks. Using 5G autonomous cars can easily communicate with smart traffic signs, objects and other vehicles running on the road. 5G’s low latency feature makes self-driving more real as every millisecond is important for autonomous vehicles, decision taking is performed in microseconds to avoid accidents [ 64 ].

Highlights of 5G IoT are as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g005.jpg

Pictorial representation of IoT with 5G.

  • 5G with IoT is a new feature of next-generation mobile communication, which provides a high-speed internet connection between moderated devices. 5G IoT also offers smart homes, smart devices, sensors, smart transportation systems, smart industries, etc., for end-users to make them smarter.
  • IoT deals with moderate devices which connect through the internet. The approach of the IoT has made the consideration of the research associated with the outcome of providing wearable, smart-phones, sensors, smart transportation systems, smart devices, washing machines, tablets, etc., and these diverse systems are associated to a common interface with the intelligence to connect.
  • Significant IoT applications include private healthcare systems, traffic management, industrial management, and tactile internet, etc.

Plenty of approaches is devised to address the issues of IoT [ 14 , 65 , 66 ].

In [ 65 ], the paper focuses on 5G mobile systems due to the emerging trends and developing technologies, which results in the exponential traffic growth in IoT. The author surveyed the challenges and demands during deployment of the massive IoT applications with the main focus on mobile networking. The author reviewed the features of standard IoT infrastructure, along with the cellular-based, low-power wide-area technologies (LPWA) such as eMTC, extended coverage (EC)-GSM-IoT, as well as noncellular, low-power wide-area (LPWA) technologies such as SigFox, LoRa etc.

In [ 14 ], the authors presented how 5G technology copes with the various issues of IoT today. It provides a brief review of existing and forming 5G architectures. The survey indicates the role of 5G in the foundation of the IoT ecosystem. IoT and 5G can easily combine with improved wireless technologies to set up the same ecosystem that can fulfill the current requirement for IoT devices. 5G can alter nature and will help to expand the development of IoT devices. As the process of 5G unfolds, global associations will find essentials for setting up a cross-industry engagement in determining and enlarging the 5G system.

In [ 66 ], the author introduced an IoT authentication scheme in a 5G network, with more excellent reliability and dynamic. The scheme proposed a privacy-protected procedure for selecting slices; it provided an additional fog node for proper data transmission and service types of the subscribers, along with service-oriented authentication and key understanding to maintain the secrecy, precision of users, and confidentiality of service factors. Users anonymously identify the IoT servers and develop a vital channel for service accessibility and data cached on local fog nodes and remote IoT servers. The author performed a simulation to manifest the security and privacy preservation of the user over the network.

This section covered various works done on 5G IoT by multiple authors. Table 8 shows how different author’s worked on the improvement of numerous parameters, i.e., data rate, security requirement, and performance with 5G IoT.

Summary of IoT-based approaches in 5G technology.

4.5. Machine Learning Techniques for 5G

Various machine learning (ML) techniques were applied in 5G networks and mobile communication. It provides a solution to multiple complex problems, which requires a lot of hand-tuning. ML techniques can be broadly classified as supervised, unsupervised, and reinforcement learning. Let’s discuss each learning technique separately and where it impacts the 5G network.

Supervised Learning, where user works with labeled data; some 5G network problems can be further categorized as classification and regression problems. Some regression problems such as scheduling nodes in 5G and energy availability can be predicted using Linear Regression (LR) algorithm. To accurately predict the bandwidth and frequency allocation Statistical Logistic Regression (SLR) is applied. Some supervised classifiers are applied to predict the network demand and allocate network resources based on the connectivity performance; it signifies the topology setup and bit rates. Support Vector Machine (SVM) and NN-based approximation algorithms are used for channel learning based on observable channel state information. Deep Neural Network (DNN) is also employed to extract solutions for predicting beamforming vectors at the BS’s by taking mapping functions and uplink pilot signals into considerations.

In unsupervised Learning, where the user works with unlabeled data, various clustering techniques are applied to enhance network performance and connectivity without interruptions. K-means clustering reduces the data travel by storing data centers content into clusters. It optimizes the handover estimation based on mobility pattern and selection of relay nodes in the V2V network. Hierarchical clustering reduces network failure by detecting the intrusion in the mobile wireless network; unsupervised soft clustering helps in reducing latency by clustering fog nodes. The nonparametric Bayesian unsupervised learning technique reduces traffic in the network by actively serving the user’s requests and demands. Other unsupervised learning techniques such as Adversarial Auto Encoders (AAE) and Affinity Propagation Clustering techniques detect irregular behavior in the wireless spectrum and manage resources for ultradense small cells, respectively.

In case of an uncertain environment in the 5G wireless network, reinforcement learning (RL) techniques are employed to solve some problems. Actor-critic reinforcement learning is used for user scheduling and resource allocation in the network. Markov decision process (MDP) and Partially Observable MDP (POMDP) is used for Quality of Experience (QoE)-based handover decision-making for Hetnets. Controls packet call admission in HetNets and channel access process for secondary users in a Cognitive Radio Network (CRN). Deep RL is applied to decide the communication channel and mobility and speeds up the secondary user’s learning rate using an antijamming strategy. Deep RL is employed in various 5G network application parameters such as resource allocation and security [ 67 ]. Table 9 shows the state-of-the-art ML-based solution for 5G network.

The state-of-the-art ML-based solution for 5G network.

Highlights of machine learning techniques for 5G are as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g006.jpg

Pictorial representation of machine learning (ML) in 5G.

  • In ML, a model will be defined which fulfills the desired requirements through which desired results are obtained. In the later stage, it examines accuracy from obtained results.
  • ML plays a vital role in 5G network analysis for threat detection, network load prediction, final arrangement, and network formation. Searching for a better balance between power, length of antennas, area, and network thickness crossed with the spontaneous use of services in the universe of individual users and types of devices.

In [ 79 ], author’s firstly describes the demands for the traditional authentication procedures and benefits of intelligent authentication. The intelligent authentication method was established to improve security practice in 5G-and-beyond wireless communication systems. Thereafter, the machine learning paradigms for intelligent authentication were organized into parametric and non-parametric research methods, as well as supervised, unsupervised, and reinforcement learning approaches. As a outcome, machine learning techniques provide a new paradigm into authentication under diverse network conditions and unstable dynamics. In addition, prompt intelligence to the security management to obtain cost-effective, better reliable, model-free, continuous, and situation-aware authentication.

In [ 68 ], the authors proposed a machine learning-based model to predict the traffic load at a particular location. They used a mobile network traffic dataset to train a model that can calculate the total number of user requests at a time. To launch access and mobility management function (AMF) instances according to the requirement as there were no predictions of user request the performance automatically degrade as AMF does not handle these requests at a time. Earlier threshold-based techniques were used to predict the traffic load, but that approach took too much time; therefore, the authors proposed RNN algorithm-based ML to predict the traffic load, which gives efficient results.

In [ 15 ], authors discussed the issue of network slice admission, resource allocation among subscribers, and how to maximize the profit of infrastructure providers. The author proposed a network slice admission control algorithm based on SMDP (decision-making process) that guarantees the subscribers’ best acceptance policies and satisfiability (tenants). They also suggested novel N3AC, a neural network-based algorithm that optimizes performance under various configurations, significantly outperforms practical and straightforward approaches.

This section includes various works done on 5G ML by different authors. Table 10 shows the state-of-the-art work on the improvement of various parameters such as energy efficiency, Quality of Services (QoS), and latency with 5G ML.

The state-of-the-art ML-based approaches in 5G technology.

4.6. Optimization Techniques for 5G

Optimization techniques may be applied to capture NP-Complete or NP-Hard problems in 5G technology. This section briefly describes various research works suggested for 5G technology based on optimization techniques.

In [ 80 ], Massive MIMO technology is used in 5G mobile network to make it more flexible and scalable. The MIMO implementation in 5G needs a significant number of radio frequencies is required in the RF circuit that increases the cost and energy consumption of the 5G network. This paper provides a solution that increases the cost efficiency and energy efficiency with many radio frequency chains for a 5G wireless communication network. They give an optimized energy efficient technique for MIMO antenna and mmWave technologies based 5G mobile communication network. The proposed Energy Efficient Hybrid Precoding (EEHP) algorithm to increase the energy efficiency for the 5G wireless network. This algorithm minimizes the cost of an RF circuit with a large number of RF chains.

In [ 16 ], authors have discussed the growing demand for energy efficiency in the next-generation networks. In the last decade, they have figured out the things in wireless transmissions, which proved a change towards pursuing green communication for the next generation system. The importance of adopting the correct EE metric was also reviewed. Further, they worked through the different approaches that can be applied in the future for increasing the network’s energy and posed a summary of the work that was completed previously to enhance the energy productivity of the network using these capabilities. A system design for EE development using relay selection was also characterized, along with an observation of distinct algorithms applied for EE in relay-based ecosystems.

In [ 81 ], authors presented how AI-based approach is used to the setup of Self Organizing Network (SON) functionalities for radio access network (RAN) design and optimization. They used a machine learning approach to predict the results for 5G SON functionalities. Firstly, the input was taken from various sources; then, prediction and clustering-based machine learning models were applied to produce the results. Multiple AI-based devices were used to extract the knowledge analysis to execute SON functionalities smoothly. Based on results, they tested how self-optimization, self-testing, and self-designing are done for SON. The author also describes how the proposed mechanism classifies in different orders.

In [ 82 ], investigators examined the working of OFDM in various channel environments. They also figured out the changes in frame duration of the 5G TDD frame design. Subcarrier spacing is beneficial to obtain a small frame length with control overhead. They provided various techniques to reduce the growing guard period (GP) and cyclic prefix (CP) like complete utilization of multiple subcarrier spacing, management and data parts of frame at receiver end, various uses of timing advance (TA) or total control of flexible CP size.

This section includes various works that were done on 5G optimization by different authors. Table 11 shows how other authors worked on the improvement of multiple parameters such as energy efficiency, power optimization, and latency with 5G optimization.

Summary of Optimization Based Approaches in 5G Technology.

5. Description of Novel 5G Features over 4G

This section presents descriptions of various novel features of 5G, namely, the concept of small cell, beamforming, and MEC.

5.1. Small Cell

Small cells are low-powered cellular radio access nodes which work in the range of 10 meters to a few kilometers. Small cells play a very important role in implementation of the 5G wireless network. Small cells are low power base stations which cover small areas. Small cells are quite similar with all the previous cells used in various wireless networks. However, these cells have some advantages like they can work with low power and they are also capable of working with high data rates. Small cells help in rollout of 5G network with ultra high speed and low latency communication. Small cells in the 5G network use some new technologies like MIMO, beamforming, and mmWave for high speed data transmission. The design of small cells hardware is very simple so its implementation is quite easier and faster. There are three types of small cell tower available in the market. Femtocells, picocells, and microcells [ 83 ]. As shown in the Table 12 .

Types of Small cells.

MmWave is a very high band spectrum between 30 to 300 GHz. As it is a significantly less used spectrum, it provides very high-speed wireless communication. MmWave offers ultra-wide bandwidth for next-generation mobile networks. MmWave has lots of advantages, but it has some disadvantages, too, such as mmWave signals are very high-frequency signals, so they have more collision with obstacles in the air which cause the signals loses energy quickly. Buildings and trees also block MmWave signals, so these signals cover a shorter distance. To resolve these issues, multiple small cell stations are installed to cover the gap between end-user and base station [ 18 ]. Small cell covers a very shorter range, so the installation of a small cell depends on the population of a particular area. Generally, in a populated place, the distance between each small cell varies from 10 to 90 meters. In the survey [ 20 ], various authors implemented small cells with massive MIMO simultaneously. They also reviewed multiple technologies used in 5G like beamforming, small cell, massive MIMO, NOMA, device to device (D2D) communication. Various problems like interference management, spectral efficiency, resource management, energy efficiency, and backhauling are discussed. The author also gave a detailed presentation of all the issues occurring while implementing small cells with various 5G technologies. As shown in the Figure 7 , mmWave has a higher range, so it can be easily blocked by the obstacles as shown in Figure 7 a. This is one of the key concerns of millimeter-wave signal transmission. To solve this issue, the small cell can be placed at a short distance to transmit the signals easily, as shown in Figure 7 b.

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g007.jpg

Pictorial representation of communication with and without small cells.

5.2. Beamforming

Beamforming is a key technology of wireless networks which transmits the signals in a directional manner. 5G beamforming making a strong wireless connection toward a receiving end. In conventional systems when small cells are not using beamforming, moving signals to particular areas is quite difficult. Beamforming counter this issue using beamforming small cells are able to transmit the signals in particular direction towards a device like mobile phone, laptops, autonomous vehicle and IoT devices. Beamforming is improving the efficiency and saves the energy of the 5G network. Beamforming is broadly divided into three categories: Digital beamforming, analog beamforming and hybrid beamforming. Digital beamforming: multiuser MIMO is equal to digital beamforming which is mainly used in LTE Advanced Pro and in 5G NR. In digital beamforming the same frequency or time resources can be used to transmit the data to multiple users at the same time which improves the cell capacity of wireless networks. Analog Beamforming: In mmWave frequency range 5G NR analog beamforming is a very important approach which improves the coverage. In digital beamforming there are chances of high pathloss in mmWave as only one beam per set of antenna is formed. While the analog beamforming saves high pathloss in mmWave. Hybrid beamforming: hybrid beamforming is a combination of both analog beamforming and digital beamforming. In the implementation of MmWave in 5G network hybrid beamforming will be used [ 84 ].

Wireless signals in the 4G network are spreading in large areas, and nature is not Omnidirectional. Thus, energy depletes rapidly, and users who are accessing these signals also face interference problems. The beamforming technique is used in the 5G network to resolve this issue. In beamforming signals are directional. They move like a laser beam from the base station to the user, so signals seem to be traveling in an invisible cable. Beamforming helps achieve a faster data rate; as the signals are directional, it leads to less energy consumption and less interference. In [ 21 ], investigators evolve some techniques which reduce interference and increase system efficiency of the 5G mobile network. In this survey article, the authors covered various challenges faced while designing an optimized beamforming algorithm. Mainly focused on different design parameters such as performance evaluation and power consumption. In addition, they also described various issues related to beamforming like CSI, computation complexity, and antenna correlation. They also covered various research to cover how beamforming helps implement MIMO in next-generation mobile networks [ 85 ]. Figure 8 shows the pictorial representation of communication with and without using beamforming.

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g008.jpg

Pictorial Representation of communication with and without using beamforming.

5.3. Mobile Edge Computing

Mobile Edge Computing (MEC) [ 24 ]: MEC is an extended version of cloud computing that brings cloud resources closer to the end-user. When we talk about computing, the very first thing that comes to our mind is cloud computing. Cloud computing is a very famous technology that offers many services to end-user. Still, cloud computing has many drawbacks. The services available in the cloud are too far from end-users that create latency, and cloud user needs to download the complete application before use, which also increases the burden to the device [ 86 ]. MEC creates an edge between the end-user and cloud server, bringing cloud computing closer to the end-user. Now, all the services, namely, video conferencing, virtual software, etc., are offered by this edge that improves cloud computing performance. Another essential feature of MEC is that the application is split into two parts, which, first one is available at cloud server, and the second is at the user’s device. Therefore, the user need not download the complete application on his device that increases the performance of the end user’s device. Furthermore, MEC provides cloud services at very low latency and less bandwidth. In [ 23 , 87 ], the author’s investigation proved that successful deployment of MEC in 5G network increases the overall performance of 5G architecture. Graphical differentiation between cloud computing and mobile edge computing is presented in Figure 9 .

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g009.jpg

Pictorial representation of cloud computing vs. mobile edge computing.

6. 5G Security

Security is the key feature in the telecommunication network industry, which is necessary at various layers, to handle 5G network security in applications such as IoT, Digital forensics, IDS and many more [ 88 , 89 ]. The authors [ 90 ], discussed the background of 5G and its security concerns, challenges and future directions. The author also introduced the blockchain technology that can be incorporated with the IoT to overcome the challenges in IoT. The paper aims to create a security framework which can be incorporated with the LTE advanced network, and effective in terms of cost, deployment and QoS. In [ 91 ], author surveyed various form of attacks, the security challenges, security solutions with respect to the affected technology such as SDN, Network function virtualization (NFV), Mobile Clouds and MEC, and security standardizations of 5G, i.e., 3GPP, 5GPPP, Internet Engineering Task Force (IETF), Next Generation Mobile Networks (NGMN), European Telecommunications Standards Institute (ETSI). In [ 92 ], author elaborated various technological aspects, security issues and their existing solutions and also mentioned the new emerging technological paradigms for 5G security such as blockchain, quantum cryptography, AI, SDN, CPS, MEC, D2D. The author aims to create new security frameworks for 5G for further use of this technology in development of smart cities, transportation and healthcare. In [ 93 ], author analyzed the threats and dark threat, security aspects concerned with SDN and NFV, also their Commercial & Industrial Security Corporation (CISCO) 5G vision and new security innovations with respect to the new evolving architectures of 5G [ 94 ].

AuthenticationThe identification of the user in any network is made with the help of authentication. The different mobile network generations from 1G to 5G have used multiple techniques for user authentication. 5G utilizes the 5G Authentication and Key Agreement (AKA) authentication method, which shares a cryptographic key between user equipment (UE) and its home network and establishes a mutual authentication process between the both [ 95 ].

Access Control To restrict the accessibility in the network, 5G supports access control mechanisms to provide a secure and safe environment to the users and is controlled by network providers. 5G uses simple public key infrastructure (PKI) certificates for authenticating access in the 5G network. PKI put forward a secure and dynamic environment for the 5G network. The simple PKI technique provides flexibility to the 5G network; it can scale up and scale down as per the user traffic in the network [ 96 , 97 ].

Communication Security 5G deals to provide high data bandwidth, low latency, and better signal coverage. Therefore secure communication is the key concern in the 5G network. UE, mobile operators, core network, and access networks are the main focal point for the attackers in 5G communication. Some of the common attacks in communication at various segments are Botnet, message insertion, micro-cell, distributed denial of service (DDoS), and transport layer security (TLS)/secure sockets layer (SSL) attacks [ 98 , 99 ].

Encryption The confidentiality of the user and the network is done using encryption techniques. As 5G offers multiple services, end-to-end (E2E) encryption is the most suitable technique applied over various segments in the 5G network. Encryption forbids unauthorized access to the network and maintains the data privacy of the user. To encrypt the radio traffic at Packet Data Convergence Protocol (PDCP) layer, three 128-bits keys are applied at the user plane, nonaccess stratum (NAS), and access stratum (AS) [ 100 ].

7. Summary of 5G Technology Based on Above-Stated Challenges

In this section, various issues addressed by investigators in 5G technologies are presented in Table 13 . In addition, different parameters are considered, such as throughput, latency, energy efficiency, data rate, spectral efficiency, fairness & computing capacity, transmission rate, coverage, cost, security requirement, performance, QoS, power optimization, etc., indexed from R1 to R14.

Summary of 5G Technology above stated challenges (R1:Throughput, R2:Latency, R3:Energy Efficiency, R4:Data Rate, R5:Spectral efficiency, R6:Fairness & Computing Capacity, R7:Transmission Rate, R8:Coverage, R9:Cost, R10:Security requirement, R11:Performance, R12:Quality of Services (QoS), R13:Power Optimization).

8. Conclusions

This survey article illustrates the emergence of 5G, its evolution from 1G to 5G mobile network, applications, different research groups, their work, and the key features of 5G. It is not just a mobile broadband network, different from all the previous mobile network generations; it offers services like IoT, V2X, and Industry 4.0. This paper covers a detailed survey from multiple authors on different technologies in 5G, such as massive MIMO, Non-Orthogonal Multiple Access (NOMA), millimeter wave, small cell, MEC (Mobile Edge Computing), beamforming, optimization, and machine learning in 5G. After each section, a tabular comparison covers all the state-of-the-research held in these technologies. This survey also shows the importance of these newly added technologies and building a flexible, scalable, and reliable 5G network.

9. Future Findings

This article covers a detailed survey on the 5G mobile network and its features. These features make 5G more reliable, scalable, efficient at affordable rates. As discussed in the above sections, numerous technical challenges originate while implementing those features or providing services over a 5G mobile network. So, for future research directions, the research community can overcome these challenges while implementing these technologies (MIMO, NOMA, small cell, mmWave, beam-forming, MEC) over a 5G network. 5G communication will bring new improvements over the existing systems. Still, the current solutions cannot fulfill the autonomous system and future intelligence engineering requirements after a decade. There is no matter of discussion that 5G will provide better QoS and new features than 4G. But there is always room for improvement as the considerable growth of centralized data and autonomous industry 5G wireless networks will not be capable of fulfilling their demands in the future. So, we need to move on new wireless network technology that is named 6G. 6G wireless network will bring new heights in mobile generations, as it includes (i) massive human-to-machine communication, (ii) ubiquitous connectivity between the local device and cloud server, (iii) creation of data fusion technology for various mixed reality experiences and multiverps maps. (iv) Focus on sensing and actuation to control the network of the entire world. The 6G mobile network will offer new services with some other technologies; these services are 3D mapping, reality devices, smart homes, smart wearable, autonomous vehicles, artificial intelligence, and sense. It is expected that 6G will provide ultra-long-range communication with a very low latency of 1 ms. The per-user bit rate in a 6G wireless network will be approximately 1 Tbps, and it will also provide wireless communication, which is 1000 times faster than 5G networks.

Acknowledgments

Author contributions.

Conceptualization: R.D., I.Y., G.C., P.L. data gathering: R.D., G.C., P.L, I.Y. funding acquisition: I.Y. investigation: I.Y., G.C., G.P. methodology: R.D., I.Y., G.C., P.L., G.P., survey: I.Y., G.C., P.L, G.P., R.D. supervision: G.C., I.Y., G.P. validation: I.Y., G.P. visualization: R.D., I.Y., G.C., P.L. writing, original draft: R.D., I.Y., G.C., P.L., G.P. writing, review, and editing: I.Y., G.C., G.P. All authors have read and agreed to the published version of the manuscript.

This paper was supported by Soonchunhyang University.

Institutional Review Board Statement

Informed consent statement, data availability statement, conflicts of interest.

The authors declare no conflict of interest.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Frontiers in Energy Research
  • Sustainable Energy Systems
  • Research Topics

Emerging Technologies for the Construction of Renewable Energy-Dominated Power System

Total Downloads

Total Views and Downloads

About this Research Topic

Over the past decade, significant breakthroughs have been achieved in renewable energy generation, operation, and control technology, greatly enhancing the safe operation and efficient utilization of renewable energy. However, as the penetration ratio of the renewable energy continues to grow, the ...

Keywords : grid forming, fractional frequency transmission system (FFTS), high voltage direct current (HVDC) transmission, power converter & network topology, power system stability and reliability, advanced control strategies, renewable energy

Important Note : All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Topic coordinators, recent articles, submission deadlines, participating journals.

Manuscripts can be submitted to this Research Topic via the following journals:

total views

  • Demographics

No records found

total views article views downloads topic views

Top countries

Top referring sites, about frontiers research topics.

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Center for Security and Emerging Technology

In the news, digesting the 2023 world radiocommunication conference’s outcomes and implications for us-china 5g competition.

Atlantic Council

CSET's Senior Research Fellow, Ngor Luong shared her expert analysis in a strategic insights memo published by the Atlantic Council. The memo discusses the outcomes and implications of the 2023 World Radiocommunication Conference (WRC) on US-China competition in 5G technology.

CSET Senior Research Analyst, Ngor Luong shared her expert analysis in a strategic insights memo published by the Atlantic Council. The memo discusses the outcomes and implications of the 2023 World Radiocommunication Conference (WRC) on US-China competition in 5G technology. It highlights the strategic importance of 5G networks for economic and military purposes, emphasizing the need for spectrum allocation to support these networks.

To read the full memo, visit the Atlantic Council .

This website uses cookies.

Privacy overview.

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

8 charts on technology use around the world

Women work on laptops in the Bibinagar village outskirts of Hyderabad, India, in 2013. (Noah Seelam/AFP via Getty Images)

While internet use is nearly ubiquitous in many countries, not everyone is online. Divides still exist on technology usage between people in some advanced economies and those in some emerging economies, according to Pew Research Center data from 27 countries in 2022 and 2023.

Smartphone ownership and social media use also vary around the world. While most adults in the countries surveyed own smartphones and use social media, there are still pockets where many do not.

In addition, there are divides within countries on internet use, smartphone ownership and social media use based on demographic factors such as age, education and income. Almost universally, younger people and those with more education and income are more likely to be online, own a smartphone and use social media.

Related: Americans’ Use of Mobile Technology and Home Broadband

This analysis explores internet, social media and mobile phone use in 27 countries. It uses data from multiple Pew Research Center surveys:

  • 2022 Global Attitudes Survey of 20,944 respondents across 18 advanced economies from Feb. 14 to June 3, 2022
  • 2023 Global Attitudes Survey of 10,235 respondents across eight emerging and developing economies (Argentina, Brazil, India, Indonesia, Kenya, Mexico, Nigeria, South Africa) from Feb. 25 to May 22, 2023
  • 2023 National Public Opinion Reference Survey (NPORS) of 5,733 U.S. respondents from May 19 to Sept. 5, 2023

The data was collected using various methods, including online, face-to-face and telephone interviews.

Data from Australia is not included in analyses of internet use or phone ownership.

NPORS asked Americans about specific websites or apps used, but the data is not comparable to the question on social media in other countries. For more on technology use in the United States, including specific social media site usage, read “Americans’ Use of Mobile Technology and Home Broadband” and “Q&A: How – and why – we’re changing the way we study tech adoption.”

Technology use can influence how surveys are conducted. For example, our surveys in Malaysia, Singapore and South Korea are only conducted on mobile phones because the prevalence of mobile phone ownership is so high. A 2023 study by the  Korea Information Society Development Institute  found that 98.3% of all people in Korea, not just adults, own a mobile phone.

In addition, people who take our survey over the phone may be more likely to use technology than those who take the survey in person. In 2019, we conducted  simultaneous telephone and in-person surveys  in Italy. Both samples were representative of the Italian population with respect to age, gender, education and region. Respondents who took part in the telephone survey had somewhat higher rates of internet use, smartphone ownership and social media use. We moved from in-person interviews to telephone interviews in Italy in 2020 and Greece in 2021, and we do not make direct comparisons to survey results prior to the mode change.

Respondents in each country were provided with a list of smartphone and social media types; refer to  this country-specific table  for more information.

To compare educational groups across countries, we standardize education levels based on the UN’s International Standard Classification of Education (ISCED).

  • In India, Indonesia, Kenya, Nigeria, South Africa and Brazil, the lower education category is below secondary education and the higher category is secondary or above.
  • The lower education category is secondary education or below and the higher category is postsecondary or above in Belgium, Canada, France, Germany, Greece, Hungary, Italy, Netherlands, Poland, Spain, Sweden, the UK, Australia, Japan, Malaysia, Singapore, South Korea, Israel, Argentina and Mexico.
  • The lower education category is some college or below and the higher category is a college degree or more in the U.S.

Here are  the questions used  for this report, along with responses, and its  methodology . U.S. smartphone  and  internet  data was drawn from a separate list of questions.

This is the first post in a series about internet use worldwide. The next post will focus on social media’s perceived influence on democracy . Data for this series was collected over two years using various methods, including online, face-to-face and telephone interviews.

Here are eight charts about technology use around the world.

A majority of adults in all countries surveyed use the internet. Internet users are defined as people who say they use the internet at least occasionally or have access to the internet via a smartphone.

In most countries surveyed, around nine-in-ten or more adults are online. At the upper bound, 99% of South Koreans are online.

Comparatively fewer adults are online in India (56%), Nigeria (57%) and Kenya (66%). Still, internet use in these countries continues to grow as economic outcomes improve and technology becomes more widespread.

Within countries, however, internet use remains highly dependent on demographic factors such as age, education and income.

A bar chart showing that internet use is exceedingly common worldwide, but not everyone is online.

In every country surveyed, adults ages 18 to 39 are significantly more likely than those 40 and older to use the internet. These gaps are especially large in several of the middle-income countries surveyed in 2023.

For example, 73% of adults in India who are younger than 40 say they use the internet, compared with 36% of Indians 40 and older. Similar gaps exist in Hungary, Indonesia, Mexico and Poland.

Differences by age in advanced economies are relatively small. In just over half of these countries, internet use among 18- to 39-year-olds is universal, at 100%.

A dot plot showing that younger adults are more likely than their elders to use the internet.

In all countries surveyed, adults with more education are more likely than those with less to use the internet. As with age, the education gap on internet use is most pronounced among people in emerging economies, such as India and Nigeria. In these countries, those with more education are about twice as likely as those with less education to use the internet.

Large gaps by educational attainment also exist in Indonesia, Kenya, Poland and South Africa. (Because education systems differ by country, the levels of education for “more education” and “less education” also vary. Read the “How we did this” section for more information.)

Similarly, adults with higher incomes are much more likely than those with lower incomes to use the internet.

A dot plot showing that adults with more education are more likely to use the internet.

Majorities of adults in nearly every country surveyed say they own a smartphone. Rates of smartphone ownership are highest in South Korea, where 98% report owning a smartphone, and lowest in India and Nigeria, where fewer than 50% do. (Refer to the appendix for types of smartphones given as examples in each country.)

Around three-quarters or more of adults in advanced economies in North America, Europe and Asia say they have smartphones.

However, two-in-ten or more in India, Kenya and South Africa say they own a mobile phone that is not a smartphone. In Nigeria, 42% say this.

And in India, three-in-ten say they do not own a mobile phone at all – the highest share of any country surveyed.

A bar chart showing that majorities own a smartphone in most countries surveyed.

Smartphone ownership tends to be higher in countries with higher per-capita gross domestic product. Similar patterns also appear within countries: In nearly every country surveyed, people with incomes above the national median are more likely than those with lower incomes to report owning a smartphone.

These differences are largest in Hungary, Israel and Poland, where people with higher incomes are around 30 percentage points more likely than those with lower incomes to have a smartphone.

A chart showing that smartphone ownership is high among wealthy nations.

Adults with more education and older adults are more likely than their counterparts to own a smartphone in every country surveyed. In India, around three-quarters of those with at least a secondary school education own a smartphone, compared with around one-third of people with less education.

Large gaps also exist in Mexico (36 percentage points), Kenya (34 points), South Africa (32 points) and Nigeria (30 points).

In addition, adults ages 18 to 39 are more likely than their elders to own smartphones in nearly every country surveyed. For example, 98% of younger adults in Hungary say they own a smartphone, compared with 65% of adults 40 and older.

A dot plot showing that those with more education are more likely to own a smartphone in nearly every country surveyed.

Roughly half or more of adults in 26 countries say they use social media sites. Social media use is most common in Argentina, Brazil and Malaysia, where over eight-in-ten report using social media sites such as Facebook, Twitter (now known as X) and Instagram. (Refer to the appendix for the list of sites people in each country were given as examples of social media.)

But social media use is widespread across most surveyed countries. Majorities in all but two countries report using social media.

In Europe, Germany (51%) is the only country where fewer than six-in-ten adults say they use social media. And in the Asia-Pacific region, India (47%) is the only country where fewer than seven-in-ten say this.

A map showing that social media usage is highest in Latin America and most of Asia-Pacific.

Adults under age 40 are more likely than their elders to use social media. In every country surveyed, the difference between younger and older adults is greater than 10 percentage points.

A dot plot showing that younger people are more likely to use social media in most countries surveyed.

The gap is biggest in Poland, where 98% of adults under age 40 use social media sites. Only about half (48%) of their older counterparts say the same. In Germany, Hungary, India and Indonesia, there are also differences of 40 points or more.

The gap is smallest in Israel, where 72% of those 40 and older report using social media, compared with 85% of younger adults.

A 2022 Center report found that the age gap in social media use has narrowed over time across 19 advanced economies. That is because older adults’ rate of using social media has increased more quickly than that of younger adults in a number of countries.

In some countries, those on the political left are also more likely than those on the right to use social media. For example, eight-in-ten Hungarians who place themselves on the ideological left report using social media sites, while about six-in-ten of those on the right say the same.

Note: Here are  the questions used  for this report, along with responses, and its  methodology .

CORRECTION (Feb. 7, 2024): Previous versions of the first six charts in this post misstated the survey mode used in the U.S. survey. 

  • International Technology
  • Internet & Technology
  • Platforms & Services
  • Technology Adoption

Comparing Views of the U.S. and China in 24 Countries

How the political typology groups compare, bhutanese in the u.s. fact sheet, protests in lebanon highlight ubiquity of whatsapp, dissatisfaction with government, misinformation and fears about its impact are pervasive in 11 emerging economies, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

U.S. flag

An official website of the United States government, Department of Justice.

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Comparative Assessment of Emerging Technologies for Body Fluid Identification

This research paper provides an assessment of new technologies used for body fluid identification.

The goal of this study is to perform a comparative assessment of these emerging “omic” based technologies for body fluid identification (epigenome, transcriptome, proteome). The work will entail a thorough evaluation of error rates, sensitivity, and specificity of several approaches: epigenetics, mRNA profiling, and proteomics, as compared to conventional workflows using immunochromatographic assays. The data from this study represents a snapshot in time for the development of these “omic” methods. Extensive research and validation still remain for these procedures; however, the technology has been widely heralded and applied in medical diagnostics and its implementation in forensics is long overdue. Operational laboratories require distinct and detailed guidelines for these technologies to be effectively transferred. The comparative assessment of the strategies discussed in this study provides valuable information to the forensic community which can aid in the development of new research as well as to facilitate technology transfer. Biological fluid detection and identification provides important contextual information to a forensic investigation. While genetic testing can help establish from whom DNA may have come from, only serological testing can provide an indication of the body fluid or tissue from which a DNA profile may have originated. Given the limitations, current serological techniques lack sufficient sensitivity and specificity. As a result, several novel approaches to identifying biological fluids have been explored in recent years. These include the use of epigenetic modifications (DNA methylation), messenger ribonucleic acid (mRNA) markers, and proteomic identification of protein biomarkers.

Additional Details

Related topics, similar publications.

  • Relations Between Perceptions of Parental Messages Supporting Fighting and Nonviolence and Adolescents' Physical Aggression: Beliefs as Mediators
  • Best Practices for Optimizing Law Enforcement Job Descriptions to Recruit Diverse Candidates
  • Expert Algorithm for Substance Identification (EASI)
  • MyU : For Students, Faculty, and Staff

Fall 2024 CSCI Special Topics Courses

Cloud computing.

Meeting Time: 09:45 AM‑11:00 AM TTh  Instructor: Ali Anwar Course Description: Cloud computing serves many large-scale applications ranging from search engines like Google to social networking websites like Facebook to online stores like Amazon. More recently, cloud computing has emerged as an essential technology to enable emerging fields such as Artificial Intelligence (AI), the Internet of Things (IoT), and Machine Learning. The exponential growth of data availability and demands for security and speed has made the cloud computing paradigm necessary for reliable, financially economical, and scalable computation. The dynamicity and flexibility of Cloud computing have opened up many new forms of deploying applications on infrastructure that cloud service providers offer, such as renting of computation resources and serverless computing.    This course will cover the fundamentals of cloud services management and cloud software development, including but not limited to design patterns, application programming interfaces, and underlying middleware technologies. More specifically, we will cover the topics of cloud computing service models, data centers resource management, task scheduling, resource virtualization, SLAs, cloud security, software defined networks and storage, cloud storage, and programming models. We will also discuss data center design and management strategies, which enable the economic and technological benefits of cloud computing. Lastly, we will study cloud storage concepts like data distribution, durability, consistency, and redundancy. Registration Prerequisites: CS upper div, CompE upper div., EE upper div., EE grad, ITI upper div., Univ. honors student, or dept. permission; no cr for grads in CSci. Complete the following Google form to request a permission number from the instructor ( https://forms.gle/6BvbUwEkBK41tPJ17 ).

CSCI 5980/8980 

Machine learning for healthcare: concepts and applications.

Meeting Time: 11:15 AM‑12:30 PM TTh  Instructor: Yogatheesan Varatharajah Course Description: Machine Learning is transforming healthcare. This course will introduce students to a range of healthcare problems that can be tackled using machine learning, different health data modalities, relevant machine learning paradigms, and the unique challenges presented by healthcare applications. Applications we will cover include risk stratification, disease progression modeling, precision medicine, diagnosis, prognosis, subtype discovery, and improving clinical workflows. We will also cover research topics such as explainability, causality, trust, robustness, and fairness.

Registration Prerequisites: CSCI 5521 or equivalent. Complete the following Google form to request a permission number from the instructor ( https://forms.gle/z8X9pVZfCWMpQQ6o6  ).

Visualization with AI

Meeting Time: 04:00 PM‑05:15 PM TTh  Instructor: Qianwen Wang Course Description: This course aims to investigate how visualization techniques and AI technologies work together to enhance understanding, insights, or outcomes.

This is a seminar style course consisting of lectures, paper presentation, and interactive discussion of the selected papers. Students will also work on a group project where they propose a research idea, survey related studies, and present initial results.

This course will cover the application of visualization to better understand AI models and data, and the use of AI to improve visualization processes. Readings for the course cover papers from the top venues of AI, Visualization, and HCI, topics including AI explainability, reliability, and Human-AI collaboration.    This course is designed for PhD students, Masters students, and advanced undergraduates who want to dig into research.

Registration Prerequisites: Complete the following Google form to request a permission number from the instructor ( https://forms.gle/YTF5EZFUbQRJhHBYA  ). Although the class is primarily intended for PhD students, motivated juniors/seniors and MS students who are interested in this topic are welcome to apply, ensuring they detail their qualifications for the course.

Visualizations for Intelligent AR Systems

Meeting Time: 04:00 PM‑05:15 PM MW  Instructor: Zhu-Tian Chen Course Description: This course aims to explore the role of Data Visualization as a pivotal interface for enhancing human-data and human-AI interactions within Augmented Reality (AR) systems, thereby transforming a broad spectrum of activities in both professional and daily contexts. Structured as a seminar, the course consists of two main components: the theoretical and conceptual foundations delivered through lectures, paper readings, and discussions; and the hands-on experience gained through small assignments and group projects. This class is designed to be highly interactive, and AR devices will be provided to facilitate hands-on learning.    Participants will have the opportunity to experience AR systems, develop cutting-edge AR interfaces, explore AI integration, and apply human-centric design principles. The course is designed to advance students' technical skills in AR and AI, as well as their understanding of how these technologies can be leveraged to enrich human experiences across various domains. Students will be encouraged to create innovative projects with the potential for submission to research conferences.

Registration Prerequisites: Complete the following Google form to request a permission number from the instructor ( https://forms.gle/Y81FGaJivoqMQYtq5 ). Students are expected to have a solid foundation in either data visualization, computer graphics, computer vision, or HCI. Having expertise in all would be perfect! However, a robust interest and eagerness to delve into these subjects can be equally valuable, even though it means you need to learn some basic concepts independently.

Sustainable Computing: A Systems View

Meeting Time: 09:45 AM‑11:00 AM  Instructor: Abhishek Chandra Course Description: In recent years, there has been a dramatic increase in the pervasiveness, scale, and distribution of computing infrastructure: ranging from cloud, HPC systems, and data centers to edge computing and pervasive computing in the form of micro-data centers, mobile phones, sensors, and IoT devices embedded in the environment around us. The growing amount of computing, storage, and networking demand leads to increased energy usage, carbon emissions, and natural resource consumption. To reduce their environmental impact, there is a growing need to make computing systems sustainable. In this course, we will examine sustainable computing from a systems perspective. We will examine a number of questions:   • How can we design and build sustainable computing systems?   • How can we manage resources efficiently?   • What system software and algorithms can reduce computational needs?    Topics of interest would include:   • Sustainable system design and architectures   • Sustainability-aware systems software and management   • Sustainability in large-scale distributed computing (clouds, data centers, HPC)   • Sustainability in dispersed computing (edge, mobile computing, sensors/IoT)

Registration Prerequisites: This course is targeted towards students with a strong interest in computer systems (Operating Systems, Distributed Systems, Networking, Databases, etc.). Background in Operating Systems (Equivalent of CSCI 5103) and basic understanding of Computer Networking (Equivalent of CSCI 4211) is required.

  • Future undergraduate students
  • Future transfer students
  • Future graduate students
  • Future international students
  • Diversity and Inclusion Opportunities
  • Learn abroad
  • Living Learning Communities
  • Mentor programs
  • Programs for women
  • Student groups
  • Visit, Apply & Next Steps
  • Information for current students
  • Departments and majors overview
  • Departments
  • Undergraduate majors
  • Graduate programs
  • Integrated Degree Programs
  • Additional degree-granting programs
  • Online learning
  • Academic Advising overview
  • Academic Advising FAQ
  • Academic Advising Blog
  • Appointments and drop-ins
  • Academic support
  • Commencement
  • Four-year plans
  • Honors advising
  • Policies, procedures, and forms
  • Career Services overview
  • Resumes and cover letters
  • Jobs and internships
  • Interviews and job offers
  • CSE Career Fair
  • Major and career exploration
  • Graduate school
  • Collegiate Life overview
  • Scholarships
  • Diversity & Inclusivity Alliance
  • Anderson Student Innovation Labs
  • Information for alumni
  • Get engaged with CSE
  • Upcoming events
  • CSE Alumni Society Board
  • Alumni volunteer interest form
  • Golden Medallion Society Reunion
  • 50-Year Reunion
  • Alumni honors and awards
  • Outstanding Achievement
  • Alumni Service
  • Distinguished Leadership
  • Honorary Doctorate Degrees
  • Nobel Laureates
  • Alumni resources
  • Alumni career resources
  • Alumni news outlets
  • CSE branded clothing
  • International alumni resources
  • Inventing Tomorrow magazine
  • Update your info
  • CSE giving overview
  • Why give to CSE?
  • College priorities
  • Give online now
  • External relations
  • Giving priorities
  • Donor stories
  • Impact of giving
  • Ways to give to CSE
  • Matching gifts
  • CSE directories
  • Invest in your company and the future
  • Recruit our students
  • Connect with researchers
  • K-12 initiatives
  • Diversity initiatives
  • Research news
  • Give to CSE
  • CSE priorities
  • Corporate relations
  • Information for faculty and staff
  • Administrative offices overview
  • Office of the Dean
  • Academic affairs
  • Finance and Operations
  • Communications
  • Human resources
  • Undergraduate programs and student services
  • CSE Committees
  • CSE policies overview
  • Academic policies
  • Faculty hiring and tenure policies
  • Finance policies and information
  • Graduate education policies
  • Human resources policies
  • Research policies
  • Research overview
  • Research centers and facilities
  • Research proposal submission process
  • Research safety
  • Award-winning CSE faculty
  • National academies
  • University awards
  • Honorary professorships
  • Collegiate awards
  • Other CSE honors and awards
  • Staff awards
  • Performance Management Process
  • Work. With Flexibility in CSE
  • K-12 outreach overview
  • Summer camps
  • Outreach events
  • Enrichment programs
  • Field trips and tours
  • CSE K-12 Virtual Classroom Resources
  • Educator development
  • Sponsor an event

IMAGES

  1. Technology Topics 100 technology topics for research papers

    research paper topics emerging technologies

  2. (PDF) What Is an Emerging Technology?

    research paper topics emerging technologies

  3. 🌈 Easy paper topics. 162 Intriguing Science Research Paper Topics for

    research paper topics emerging technologies

  4. Impact Of Online Learning Research Paper

    research paper topics emerging technologies

  5. Information technology research paper Essay Example

    research paper topics emerging technologies

  6. artificial intelligence research paper 2019 pdf

    research paper topics emerging technologies

VIDEO

  1. Online Workshop on Research Paper Writing & Publishing Day 1

  2. Top 5 Emerging Technologies and their Use Cases in 2023: Discover the Future of Technology

  3. Online Workshop on Research Paper Writing & Publishing Day 2

  4. 20 Emerging Technologies That Will Change Our World

  5. Lung Cancer

  6. Weeks 9-10

COMMENTS

  1. 54 Most Interesting Technology Research Topics for 2023

    Artificial intelligence technology research topics. We started 2023 with M3GAN's box office success, and now we're fascinated (or horrified) with ChatGPT, voice cloning, and deepfakes. While people have discussed artificial intelligence for ages, recent advances have really pushed this topic to the front of our minds.

  2. Augmented reality and virtual reality displays: emerging technologies

    With rapid advances in high-speed communication and computation, augmented reality (AR) and virtual reality (VR) are emerging as next-generation display platforms for deeper human-digital ...

  3. Promising Emerging Technologies for Teaching and Learning: Recent

    Emerging T echnologies for education are such a hot topic that many papers and conference proceedings are published in journals. The education sector is incorporating

  4. Tracing the emergence of new technology: A comparative analysis of five

    1. Introduction. New technologies drive economic and societal change. Technological emergence is therefore a very active research topic demonstrated by the term 'emerging technology' being retrieved 53,165 times on the Web of Science (WOS) and 2.9 million times on Google Scholar in March 2016 (Carley et al., 2018).The term 'emerging technology' is conceptually broad, ranging from ...

  5. New communities in tech-driven science you'll want to be a part of

    This Research Topic introduces the concept of 3D printing technology in biomedical applications for the scientific and technological communities. The team in charge of the research aims to enhance 3D printing technology studies for the benefit of biomedical engineers and scientists. Manuscript submission deadline 06 March 2024. February 06, 2024.

  6. PDF Emerging Technologies for Research and Learning: Interviews with Experts

    Artificial Intelligence4 and Data-Intensive Science and Society. Two suites of emerging technologies and practices were consistently identified by interviewees as strategically critical for research and learning: data and its management technologies, and artificial intelligence (AI) applications powered by data.

  7. A Systematic Review of Literature on Emerging Technologies and ...

    Educational research on emerging technologies, particularly virtual reality and augmented reality, is expanding at the moment. The purpose of this contribution is to conduct a systematic review to understand the impact of emerging technologies in the educational and social-health fields. The PRISMA 2020 methodology was used to respond to the objective and research questions, ensuring the ...

  8. Internet of Things for the Future of Smart Agriculture: A Comprehensive

    This paper presents a comprehensive review of emerging technologies for the internet of things (IoT)-based smart agriculture. We begin by summarizing the existing surveys and describing emergent technologies for the agricultural IoT, such as unmanned aerial vehicles, wireless technologies, open-source IoT platforms, software defined networking (SDN), network function virtualization (NFV ...

  9. Digital transformation: a review, synthesis and opportunities for

    The paper systematically reviews 58 peer-reviewed studies published between 2001 and 2019, dealing with different aspects of digital transformation. Emerging from our review, we develop inductive thematic maps which identify technology and actor as the two aggregate dimensions of digital transformation.

  10. New and emerging forms of data and technologies: literature and

    With the increased digitalisation of our society, new and emerging forms of data present new values and opportunities for improved data driven multimedia services, or even new solutions for managing future global pandemics (i.e., Disease X). This article conducts a literature review and bibliometric analysis of existing research records on new and emerging forms of multimedia data. The ...

  11. Identifying emerging technologies using expert opinions on ...

    As technology rapidly advances with the Fourth Industrial Revolution, many emerging technologies have been developed in several technology sectors. These technologies can (1) provide breakthroughs and fast growth and (2) have a tremendous impact on social and technological development. Many previous studies have attempted to identify emerging technologies by constructing a deterministic ...

  12. Research addressing emerging technological ideas has greater scientific

    This study examines citation impacts of emerging technological ideas in papers. The study analyzes publications in three different research domains. Greater inclusion of emerging topics is linked to within-field citation impacts. Greater inclusion of emerging topics also leads to outside-field citation impacts.

  13. 199+ Technology Research Topics to Shape Your Future

    Researching topics related to the future of technology allows you to contribute to forward-thinking discussions. Collaborate with industry partners on projects or internships. This hands-on experience can provide insights into real-world challenges and inspire research topics that align with industry needs.

  14. How the top 10 emerging technologies of 2023 will affect us

    The World Economic Forum's newly-launched ' Top 10 Emerging Technologies of 2023 ' report lists this year's most impactful emerging technologies. The Top 10 list includes environmental innovations, such as sustainable aviation fuels and wearable plant sensors. Other emerging technologies range from innovations harnessing the power of AI to ...

  15. Electronics

    This paper gives a comprehensive review and representative studies of the emerging and current paradigms for GPU-based EI with the focus on the architecture, technologies and applications: (1) First, the overview and classifications of GPU-based EI research are presented to give the full spectrum in this area that also serves as a concise ...

  16. Impact of emerging technologies on digital ...

    The research is based on literature review which unfolds the advantages of emerging technologies and challenges to their adoption. The digital technologies discussed in this paper having revolutionary impact on industrial manufacturing are 3D printing, Robotics, Sensors, IoT, Big data analytics (BDA), AI, Nanotechnology and social technologies.

  17. A perspective on embracing emerging technologies research for

    First, the number of published papers on emerging technologies in top management journals has been increasing at a steady pace. Second, various theoretical perspectives at the micro- and macro- organizational level have been used so far for conducting technology-oriented research.,By conducting a scoping review of emerging technologies research ...

  18. PDF Emerging technologies. Analysis and current perspectives

    a. Emerging technologies in the area of education The idea of technology as the axiom of the world and the current society, as well as its importance in educational contexts, has been shown thanks to the appearance of many studies and researches where the main topics were ETs in education, especially during the last decade (Figure 1.).

  19. Study and Investigation on 5G Technology: A Systematic Review

    This paper covers the emerging applications and research groups working on 5G & different research areas in 5G wireless communication network with a descriptive taxonomy. This survey discusses the current vision of the 5G networks, advantages, applications, key technologies, and key features.

  20. (PDF) EMERGING TRENDS AND FUTURE COMPUTING TECHNOLOGIES ...

    This paper. highlights futur e computing t echnologies, emerging tr ends and industry buzz to ident ify most pro minent technol ogies in India. In the em erging. technologies, the market is ...

  21. Emerging Technologies for the Construction of Renewable Energy

    The topics of interest include, but are not limited to: 1) Grid-following and grid-forming type control of renewable energy system; 2) Emerging converter circuit topology and control strategy; 3) Novel transmission technologies, including the high voltage direct current (HVDC) transmission system and fractional frequency transmission system ...

  22. The Future of Cybercrime: AI and Emerging Technologies Are ...

    This paper reviews the impact of AI and emerging technologies on the future of cybercrime and the necessary strategies to combat it effectively. Society faces a pressing challenge as cybercrime proliferates through AI and emerging technologies. At the same time, law enforcement and regulators struggle to keep it up.

  23. (PDF) Current Trends In Information Technology: Which ...

    M. Kumar, "Management, Information Technology and Engineering," Emerging Trends in Information and Communication Technology,Volume 6, Issue 3 Saturday, 23rd July, 2016 Introduction to Cloud ...

  24. Digesting the 2023 World Radiocommunication Conference's outcomes and

    CSET Senior Research Analyst, Ngor Luong shared her expert analysis in a strategic insights memo published by the Atlantic Council. The memo discusses the outcomes and implications of the 2023 World Radiocommunication Conference (WRC) on US-China competition in 5G technology.

  25. 8 charts on technology use around the world

    While internet use is nearly ubiquitous in many countries, not everyone is online. Divides still exist on technology usage between people in some advanced economies and those in some emerging economies, according to Pew Research Center data from 27 countries in 2022 and 2023. Smartphone ownership and social media use also vary around the world.

  26. Comparative Assessment of Emerging Technologies for Body Fluid

    This research paper provides an assessment of new technologies used for body fluid identification. Abstract The goal of this study is to perform a comparative assessment of these emerging "omic" based technologies for body fluid identification (epigenome, transcriptome, proteome).

  27. Fall 2024 CSCI Special Topics Courses

    Visualization with AI. Meeting Time: 04:00 PM‑05:15 PM TTh. Instructor: Qianwen Wang. Course Description: This course aims to investigate how visualization techniques and AI technologies work together to enhance understanding, insights, or outcomes. This is a seminar style course consisting of lectures, paper presentation, and interactive ...