• Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

Ohio State nav bar

The Ohio State University

  • BuckeyeLink
  • Find People
  • Search Ohio State

Research Questions & Hypotheses

Generally, in quantitative studies, reviewers expect hypotheses rather than research questions. However, both research questions and hypotheses serve different purposes and can be beneficial when used together.

Research Questions

Clarify the research’s aim (farrugia et al., 2010).

  • Research often begins with an interest in a topic, but a deep understanding of the subject is crucial to formulate an appropriate research question.
  • Descriptive: “What factors most influence the academic achievement of senior high school students?”
  • Comparative: “What is the performance difference between teaching methods A and B?”
  • Relationship-based: “What is the relationship between self-efficacy and academic achievement?”
  • Increasing knowledge about a subject can be achieved through systematic literature reviews, in-depth interviews with patients (and proxies), focus groups, and consultations with field experts.
  • Some funding bodies, like the Canadian Institute for Health Research, recommend conducting a systematic review or a pilot study before seeking grants for full trials.
  • The presence of multiple research questions in a study can complicate the design, statistical analysis, and feasibility.
  • It’s advisable to focus on a single primary research question for the study.
  • The primary question, clearly stated at the end of a grant proposal’s introduction, usually specifies the study population, intervention, and other relevant factors.
  • The FINER criteria underscore aspects that can enhance the chances of a successful research project, including specifying the population of interest, aligning with scientific and public interest, clinical relevance, and contribution to the field, while complying with ethical and national research standards.
  • The P ICOT approach is crucial in developing the study’s framework and protocol, influencing inclusion and exclusion criteria and identifying patient groups for inclusion.
  • Defining the specific population, intervention, comparator, and outcome helps in selecting the right outcome measurement tool.
  • The more precise the population definition and stricter the inclusion and exclusion criteria, the more significant the impact on the interpretation, applicability, and generalizability of the research findings.
  • A restricted study population enhances internal validity but may limit the study’s external validity and generalizability to clinical practice.
  • A broadly defined study population may better reflect clinical practice but could increase bias and reduce internal validity.
  • An inadequately formulated research question can negatively impact study design, potentially leading to ineffective outcomes and affecting publication prospects.

Checklist: Good research questions for social science projects (Panke, 2018)

hypothesis in research example slideshare

Research Hypotheses

Present the researcher’s predictions based on specific statements.

  • These statements define the research problem or issue and indicate the direction of the researcher’s predictions.
  • Formulating the research question and hypothesis from existing data (e.g., a database) can lead to multiple statistical comparisons and potentially spurious findings due to chance.
  • The research or clinical hypothesis, derived from the research question, shapes the study’s key elements: sampling strategy, intervention, comparison, and outcome variables.
  • Hypotheses can express a single outcome or multiple outcomes.
  • After statistical testing, the null hypothesis is either rejected or not rejected based on whether the study’s findings are statistically significant.
  • Hypothesis testing helps determine if observed findings are due to true differences and not chance.
  • Hypotheses can be 1-sided (specific direction of difference) or 2-sided (presence of a difference without specifying direction).
  • 2-sided hypotheses are generally preferred unless there’s a strong justification for a 1-sided hypothesis.
  • A solid research hypothesis, informed by a good research question, influences the research design and paves the way for defining clear research objectives.

Types of Research Hypothesis

  • In a Y-centered research design, the focus is on the dependent variable (DV) which is specified in the research question. Theories are then used to identify independent variables (IV) and explain their causal relationship with the DV.
  • Example: “An increase in teacher-led instructional time (IV) is likely to improve student reading comprehension scores (DV), because extensive guided practice under expert supervision enhances learning retention and skill mastery.”
  • Hypothesis Explanation: The dependent variable (student reading comprehension scores) is the focus, and the hypothesis explores how changes in the independent variable (teacher-led instructional time) affect it.
  • In X-centered research designs, the independent variable is specified in the research question. Theories are used to determine potential dependent variables and the causal mechanisms at play.
  • Example: “Implementing technology-based learning tools (IV) is likely to enhance student engagement in the classroom (DV), because interactive and multimedia content increases student interest and participation.”
  • Hypothesis Explanation: The independent variable (technology-based learning tools) is the focus, with the hypothesis exploring its impact on a potential dependent variable (student engagement).
  • Probabilistic hypotheses suggest that changes in the independent variable are likely to lead to changes in the dependent variable in a predictable manner, but not with absolute certainty.
  • Example: “The more teachers engage in professional development programs (IV), the more their teaching effectiveness (DV) is likely to improve, because continuous training updates pedagogical skills and knowledge.”
  • Hypothesis Explanation: This hypothesis implies a probable relationship between the extent of professional development (IV) and teaching effectiveness (DV).
  • Deterministic hypotheses state that a specific change in the independent variable will lead to a specific change in the dependent variable, implying a more direct and certain relationship.
  • Example: “If the school curriculum changes from traditional lecture-based methods to project-based learning (IV), then student collaboration skills (DV) are expected to improve because project-based learning inherently requires teamwork and peer interaction.”
  • Hypothesis Explanation: This hypothesis presumes a direct and definite outcome (improvement in collaboration skills) resulting from a specific change in the teaching method.
  • Example : “Students who identify as visual learners will score higher on tests that are presented in a visually rich format compared to tests presented in a text-only format.”
  • Explanation : This hypothesis aims to describe the potential difference in test scores between visual learners taking visually rich tests and text-only tests, without implying a direct cause-and-effect relationship.
  • Example : “Teaching method A will improve student performance more than method B.”
  • Explanation : This hypothesis compares the effectiveness of two different teaching methods, suggesting that one will lead to better student performance than the other. It implies a direct comparison but does not necessarily establish a causal mechanism.
  • Example : “Students with higher self-efficacy will show higher levels of academic achievement.”
  • Explanation : This hypothesis predicts a relationship between the variable of self-efficacy and academic achievement. Unlike a causal hypothesis, it does not necessarily suggest that one variable causes changes in the other, but rather that they are related in some way.

Tips for developing research questions and hypotheses for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues, and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Ensure that the research question and objectives are answerable, feasible, and clinically relevant.

If your research hypotheses are derived from your research questions, particularly when multiple hypotheses address a single question, it’s recommended to use both research questions and hypotheses. However, if this isn’t the case, using hypotheses over research questions is advised. It’s important to note these are general guidelines, not strict rules. If you opt not to use hypotheses, consult with your supervisor for the best approach.

Farrugia, P., Petrisor, B. A., Farrokhyar, F., & Bhandari, M. (2010). Practical tips for surgical research: Research questions, hypotheses and objectives.  Canadian journal of surgery. Journal canadien de chirurgie ,  53 (4), 278–281.

Hulley, S. B., Cummings, S. R., Browner, W. S., Grady, D., & Newman, T. B. (2007). Designing clinical research. Philadelphia.

Panke, D. (2018). Research design & method selection: Making good choices in the social sciences.  Research Design & Method Selection , 1-368.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

2.3: Propositions and Hypotheses

  • Last updated
  • Save as PDF
  • Page ID 26213

  • Anol Bhattacherjee
  • University of South Florida via Global Text Project

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Figure 2.2 shows how theoretical constructs such as intelligence, effort, academic achievement, and earning potential are related to each other in a nomological network. Each of these relationships is called a proposition. In seeking explanations to a given phenomenon or behavior, it is not adequate just to identify key concepts and constructs underlying the target phenomenon or behavior. We must also identify and state patterns of relationships between these constructs. Such patterns of relationships are called propositions. A proposition is a tentative and conjectural relationship between constructs that is stated in a declarative form. An example of a proposition is: “An increase in student intelligence causes an increase in their academic achievement.” This declarative statement does not have to be true, but must be empirically testable using data, so that we can judge whether it is true or false. Propositions are generally derived based on logic (deduction) or empirical observations (induction).

Because propositions are associations between abstract constructs, they cannot be tested directly. Instead, they are tested indirectly by examining the relationship between corresponding measures (variables) of those constructs. The empirical formulation of propositions, stated as relationships between variables, is called hypotheses (see Figure 2.1). Since IQ scores and grade point average are operational measures of intelligence and academic achievement respectively, the above proposition can be specified in form of the hypothesis: “An increase in students’ IQ score causes an increase in their grade point average.” Propositions are specified in the theoretical plane, while hypotheses are specified in the empirical plane. Hence, hypotheses are empirically testable using observed data, and may be rejected if not supported by empirical observations. Of course, the goal of hypothesis testing is to infer whether the corresponding proposition is valid.

Hypotheses can be strong or weak. “Students’ IQ scores are related to their academic achievement” is an example of a weak hypothesis, since it indicates neither the directionality of the hypothesis (i.e., whether the relationship is positive or negative), nor its causality (i.e., whether intelligence causes academic achievement or academic achievement causes intelligence). A stronger hypothesis is “students’ IQ scores are positively related to their academic achievement”, which indicates the directionality but not the causality. A still better hypothesis is “students’ IQ scores have positive effects on their academic achievement”, which specifies both the directionality and the causality (i.e., intelligence causes academic achievement, and not the reverse). The signs in Figure 2.2 indicate the directionality of the respective hypotheses.

Also note that scientific hypotheses should clearly specify independent and dependent variables. In the hypothesis, “students’ IQ scores have positive effects on their academic achievement,” it is clear that intelligence is the independent variable (the “cause”) and academic achievement is the dependent variable (the “effect”). Further, it is also clear that this hypothesis can be evaluated as either true (if higher intelligence leads to higher academic achievement) or false (if higher intelligence has no effect on or leads to lower academic achievement). Later on in this book, we will examine how to empirically test such cause-effect relationships. Statements such as “students are generally intelligent” or “all students can achieve academic success” are not scientific hypotheses because they do not specify independent and dependent variables, nor do they specify a directional relationship that can be evaluated as true or false.

chapter 7 hypothesis testing

Chapter 7 Hypothesis Testing

Aug 14, 2012

860 likes | 1.95k Views

7-1 Basics of Hypothesis Testing 7-2 Testing a Claim about a Mean: Large Samples 7-3 Testing a Claim about a Mean: Small Samples 7-4 Testing a Claim about a Proportion 7- 5 Testing a Claim about a Standard     Deviation (will cover with chap 8). Chapter 7 Hypothesis Testing. 7-1.

Share Presentation

  • standard deviation s
  • exam questions
  • significance level
  • large samples

sven

Presentation Transcript

7-1 Basics of Hypothesis Testing 7-2 Testing a Claim about a Mean: Large Samples 7-3 Testing a Claim about a Mean: Small Samples 7-4 Testing a Claim about a Proportion 7- 5 Testing a Claim about a Standard     Deviation (will cover with chap 8) Chapter 7Hypothesis Testing

7-1 Basics of Hypothesis Testing

Hypothesis in statistics, is a statement regarding a characteristic of one or more populations Definition

Statement is made about the population Evidence in collected to test the statement Data is analyzed to assess the plausibility of the statement Steps in Hypothesis Testing

Components of aFormal Hypothesis Test

Form Hypothesis Calculate Test Statistic Choose Significance Level Find Critical Value(s) Conclusion Components of a Hypothesis Test

A hypothesis set up to be nullified or refuted in order to support an alternate hypothesis. When used, the null hypothesis is presumed true until statistical evidence in the form of a hypothesis test indicates otherwise. Null Hypothesis: H0

Statement about value of population parameter like m, p or s Must contain condition of equality =, , or Test the Null Hypothesis directly RejectH0 or fail to rejectH0 Null Hypothesis: H0

Must be true if H0 is false , <, > ‘opposite’ of Null sometimes used instead of Alternative Hypothesis: H1 H1 Ha

If you are conducting a study and want to use a hypothesis test to support your claim, the claim must be worded so that it becomes the alternative hypothesis. The null hypothesis must contain the condition of equality Note about Forming Your Own Claims (Hypotheses)

Set up the null and alternative hypothesis The packaging on a lightbulb states that the bulb will last 500 hours. A consumer advocate would like to know if the mean lifetime of a bulb is different than 500 hours. A drug to lower blood pressure advertises that it drops blood pressure by 20%. A doctor that prescribes this medication believes that it is less. Set up the null and alternative hypothesis. (see hw # 1) Examples

a value computed from the sample data that is used in making the decision about the rejection of the null hypothesis Testing claims about the population proportion Test Statistic x - µ σ Z*= n

Critical Region - Set of all values of the test statistic that would cause a rejection of the null hypothesis Critical Value - Value or values that separate the critical region from the values of the test statistics that do not lead to a rejection of the null hypothesis

One Tailed Test Critical Region and Critical Value Critical Region Critical Value ( z score )

Two Tailed Test Critical Region and Critical Value Critical Regions Critical Value ( z score ) Critical Value ( z score )

Denoted by  The probability that the test statistic will fall in the critical region when the null hypothesis is actually true. Common choices are 0.05, 0.01, and 0.10 Significance Level

Two-tailed,Right-tailed,Left-tailed Tests The tails in a distribution are the extreme regions bounded by critical values.

H0: µ = 100 H1: µ  100 Two-tailed Test  is divided equally between the two tails of the critical region Means less than or greater than Reject H0 Fail to reject H0 Reject H0 100 Values that differ significantly from 100

H0: µ  100 H1: µ > 100 Fail to reject H0 Reject H0 Right-tailed Test Points Right Values that differ significantly from 100 100

H0: µ  100 H1: µ < 100 Left-tailed Test Points Left Reject H0 Fail to reject H0 Values that differ significantly from 100 100

Traditional Method Reject H0if the test statistic falls in the critical region Fail to reject H0if the test statistic does not fall in the critical region P-Value Method Reject H0if the P-value is less than or equal  Fail to reject H0if the P-value is greater than the  Conclusions in Hypothesis Testing

Finds the probability (P-value) of getting a result and rejects the null hypothesis if that probability is very low Uses test statistic to find the probability. Method used by most computer programs and calculators. Will prefer that you use the traditional method on HW and Tests P-Value Methodof Testing Hypotheses

Two tailed test p(z>a) + p(z<-a) One tailed test (right) p(z>a) One tailed test (left) p(z<-a) Finding P-values Where “a” is the value of the calculated test statistic Used for HW # 3 – 5 – see example on next two slides

Determine P-value Sample data: x = 105 or z* = 2.66 Reject H0: µ = 100 Fail to Reject H0: µ = 100 * µ = 73.4 or z = 0 z = 1.96 z* = 2.66 Just find p(z > 2.66)

Determine P-value Sample data: x = 105 or z* = 2.66 Reject H0: µ = 100 Reject H0: µ = 100 Fail to Reject H0: µ = 100 * z = - 1.96 µ = 73.4 or z = 0 z = 1.96 z* = 2.66 Just find p(z > 2.66) + p(z < -2.66)

Always test the null hypothesis Choose one of two possible conclusions 1. Reject the H0 2. Fail to reject the H0 Conclusions in Hypothesis Testing

Never “accept the null hypothesis, we will fail to reject it. Will discuss this in more detail in a moment We are not proving the null hypothesis Sample evidence is not strong enough to warrant rejection (such as not enough evidence to convict a suspect – guilty vs. not guilty) Accept versus Fail to Reject

Accept versus Fail to Reject

Need to formulate correct wording of finalconclusion Conclusions in Hypothesis Testing

Wording of final conclusion 1. Reject the H0 Conclusion: There is sufficient evidence to conclude………………………(what ever H1 says) 2. Fail to reject the H0 Conclusion: There is not sufficient evidence to conclude ……………………(what ever H1 says) Conclusions in Hypothesis Testing

State a conclusion The proportion of college graduates how smoke is less than 27%. Reject Ho: The mean weights of men at FLC is different from 180 lbs. Fail to Reject Ho: Example Used for #6 on HW

The mistake of rejecting the null hypothesis when it is true. (alpha) is used to represent the probability of a type I error Example: Rejecting a claim that the mean body temperature is 98.6 degrees when the mean really does equal 98.6 (test question) Type I Error

the mistake of failing to reject the null hypothesis when it is false. ß (beta) is used to represent the probability of a type II error Example: Failing to reject the claim that the mean body temperature is 98.6 degrees when the mean is really different from 98.6 (test question) Type II Error

Type I and Type II Errors True State of Nature H0 True H0 False Reject H0 Correct decision Type I error  Decision Fail to Reject H0 Type II error  Correct decision In this class we will focus on controlling a Type I error. However, you will have one question on the exam asking you to differentiate between the two.

a = p(rejecting a true null hypothesis) b = p(failing to reject a false null hypothesis) n, a and b are all related Type I and Type II Errors

Identify the type I and type II error. The mean IQ of statistics teachers is greater than 120. Type I: We reject the mean IQ of statistics teachers is 120 when it really is 120. Type II: We fail to reject the mean IQ of statistics teachers is 120 when it really isn’t 120. Example

For any fixed sample size n, as  decreases,  increases and conversely. To decrease both  and , increase the sample size. Controlling Type I and Type II Errors

Power of a Hypothesis Test is the probability (1 - ) of rejecting a false null hypothesis. Note: No exam questions on this. Usually covered in a more advanced class in statistics. Definition

7-2 Testing a claim about the mean (large samples)

Goal Identify a sample result that is significantly different from the claimed value By Comparing the test statistic to the critical value Traditional (or Classical) Method of Testing Hypotheses

Determine H0 and H1. (and if necessary) Determine the correct test statistic and calculate. Determine the critical values, the critical region and sketch a graph. Determine Reject H0 or Fail to reject H0 State your conclusion in simple non technical terms. Traditional (or Classical) Method of Testing Hypotheses (MAKE SURE THIS IS IN YOUR NOTES)

Test Statistic for Testing a Claim about a Proportion Can Use Traditional method Or P-value method

1) Traditional method 2) P-value method 3) Confidence intervals Three Methods Discussed

for testing claims about population means 1) The sample is a random sample. 2) The sample is large (n > 30). a) Central limit theorem applies b) Can use normal distribution 3) If  is unknown, we can use sample standard deviation s as estimate for . Assumptions

Test Statistic for Claims about µ when n > 30 x - µx Z*=  n

Reject the null hypothesis if the test statistic is in the critical region Fail to reject the null hypothesis if the test statistic is not in the critical region Decision Criterion

Claim:  = 69.5 years H0 :  = 69.5 H1 :  69.5 Example:A newspaper article noted that the mean life span for 35 male symphony conductors was 73.4 years, in contrast to the mean of 69.5 years for males in the general population. Test the claim that there is a difference. Assume a standard deviation of 8.7 years. Choose your own significance level. Step 1: Set up Claim, H0, H1 Select if necessary level:  = 0.05

Step 2: Identify the test statistic and calculate x - µ 73.4 – 69.5 z*=== 2.65  8.7 n 35

Step 3: Determine critical region(s) and critical value(s) & Sketch = 0.05 /2= 0.025 (two tailed test) 0.4750 0.4750 0.025 0.025 z = - 1.96 1.96 Critical Values - Calculator

  • More by User

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing. 8.2 Basics of Hypothesis Testing 8.3 Testing about a Proportion p 8.4 Testing about a Mean µ ( σ known ) 8.5 Testing about a Mean µ ( σ unknown ) 8.6 Testing about a Standard Deviation σ. Section 8.2 Basics of Hypothesis Testing. Objective

1.18k views • 65 slides

Chapter 9 Hypothesis Testing

Chapter 9 Hypothesis Testing

Chapter 9 Hypothesis Testing. 9.1 The Language of Hypothesis Testing. Example: Illustrating Hypothesis Testing.

935 views • 32 slides

Chapter 9 Hypothesis Testing

Chapter 9 Hypothesis Testing. 9.1 The Language of Hypothesis Testing. Steps in Hypothesis Testing 1. A claim is made. Steps in Hypothesis Testing 1. A claim is made. 2. Evidence (sample data) is collected in order to test the claim. Steps in Hypothesis Testing 1. A claim is made.

674 views • 30 slides

Chapter 9 Hypothesis Testing

Chapter 9 Hypothesis Testing. Developing Null and Alternative Hypotheses Type I and Type II Errors One-Tailed Tests About a Population Mean: Large-Sample Case Two-Tailed Tests About a Population Mean: Large-Sample Case Tests About a Population Mean: Small-Sample Case

658 views • 43 slides

Chapter 9 Hypothesis Testing

Chapter 9 Hypothesis Testing. Testing Hypothesis about µ, when the s.t of population is known. THREE WAYS TO STRUCTURE THE HYPOTHESIS TEST:.

526 views • 36 slides

Chapter 10: Hypothesis Testing

Chapter 10: Hypothesis Testing

Chapter 10: Hypothesis Testing. Outline (Topics from 10.2 and 10.4). Hypothesis Testing Definitions The p value Examples and summary of steps Significance levels. Z-test for means and proportions. Tests of significance. How do we determine how good our estimate of s parameter is?

1.22k views • 36 slides

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing. Definitions 1 Sample Mean Z-test 1 Sample Mean T-test 1 Proportion Z-test 2 Independent Samples T-test 2 Related Samples Paired Data Type of Errors. Definition. Hypotheses Test Statistic P-value Decision and Conclusion. Definition.

682 views • 34 slides

Chapter 9 Hypothesis Testing

Chapter 9 Hypothesis Testing. Developing Null and Alternative Hypotheses. Type I and Type II Errors. Population Mean: s Known. Population Mean: s Unknown. Developing Null and Alternative Hypotheses. Hypothesis testing can be used to determine whether

486 views • 21 slides

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing. 8-1 Review and Preview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim about a Proportion 8-4 Testing a Claim About a Mean: Known 8-5 Testing a Claim About a Mean: Not Known 8-6 Testing a Claim About a Standard Deviation or Variance.

2.12k views • 103 slides

Chapter 6 Hypothesis Testing

Chapter 6 Hypothesis Testing

Chapter 6 Hypothesis Testing. Standard Deviation. Regression. Dependent variable. Independent variable (x). Regression is the attempt to explain the variation in a dependent variable using the variation in independent variables. Regression is thus an explanation of causation.

826 views • 65 slides

Chapter 7: Hypothesis Testing

Chapter 7: Hypothesis Testing

Chapter 7: Hypothesis Testing. A hypothesis is a conjecture about a population. Typically, these hypotheses will be stated in terms of a parameter. A test of hypothesis is a statistical procedure used to make a decision about the conjectured value of a parameter.

1.03k views • 31 slides

Chapter 10 – Hypothesis Testing

Chapter 10 – Hypothesis Testing

Chapter 10 – Hypothesis Testing. What is a hypothesis? A statement about a population that may or may not be true. What is hypothesis testing? A statistical test to prove or disprove a hypothesis. At the end of the test, either the hypothesis is rejected or not rejected.

655 views • 31 slides

Chapter 9 Hypothesis Testing

Chapter 9 Hypothesis Testing. Introduction to Statistical Tests Testing the Mean µ Testing a Proportion p Tests Involving Paired Differences Testing µ1-µ2 and p1-p2. 9.1 Introduction to Statistical Tests. We can draw inference on a population parameter in two ways: Estimation (Chapter 8)

984 views • 78 slides

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing. 8-1 Review and Preview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim about a Proportion 8-4 Testing a Claim About a Mean: σ Known 8-5 Testing a Claim About a Mean: σ Not Known 8-6 Testing a Claim About a Standard Deviation or Variance.

1.97k views • 144 slides

Chapter 9 -Hypothesis Testing

Chapter 9 -Hypothesis Testing

Chapter 9 -Hypothesis Testing. Hypothesis testing can be used to determine whether a statement about the value of a population parameter should or should not be rejected. The null hypothesis , denoted by H 0 , is a tentative assumption about a population parameter.

556 views • 40 slides

Chapter 7 Hypothesis Testing

1.22k views • 71 slides

chapter-7 hypothesis testing  for quantitative variable

chapter-7 hypothesis testing for quantitative variable

chapter-7 hypothesis testing for quantitative variable. contents. introduction Hypothesis testing 2.1 One sample t test 2.2 two independent-samples t test 2.3 Paired-samples t test. Hypothesis testing.

824 views • 82 slides

Chapter 6 Hypothesis Testing

Chapter 6 Hypothesis Testing. What is Hypothesis Testing?. … the use of statistical procedures to answer research questions Typical research question (generic): For hypothesis testing, research questions are statements: This is the null hypothesis (assumption of “no difference”)

578 views • 57 slides

Chapter 9 Hypothesis Testing

Chapter 9 Hypothesis Testing. Chapter Outline. Developing Null and Alternative Hypothesis Type I and Type II Errors Population Mean: Known Population Mean: Unknown Population Proportion. Hypothesis Testing.

639 views • 46 slides

Chapter 9 :  Hypothesis Testing

Chapter 9 : Hypothesis Testing

Chapter 9 : Hypothesis Testing. Section 7 : Testing Differences of Two Means or Two Proportions (Independent Samples). Large Samples (Independent). Test Statistic. Test Statistic. , as stated in the null hypothesis

123 views • 9 slides

Chapter Seventeen HYPOTHESIS TESTING

Chapter Seventeen HYPOTHESIS TESTING

Chapter Seventeen HYPOTHESIS TESTING. Approaches to Hypothesis Testing. Classical Statistics vs. Bayesian Approach Classical Statistics sampling-theory approach Making inference about a population based on sample evidence objective view of probability

149 views • 14 slides

IMAGES

  1. PPT

    hypothesis in research example slideshare

  2. 15 Hypothesis Examples (2024)

    hypothesis in research example slideshare

  3. Hypothesis

    hypothesis in research example slideshare

  4. what is hypothesis in research methodology slideshare

    hypothesis in research example slideshare

  5. Research hypothesis....ppt

    hypothesis in research example slideshare

  6. How to Write a Hypothesis

    hypothesis in research example slideshare

VIDEO

  1. hypothesis research

  2. Inferential Statistics: Hypothesis Testing

  3. Hypothesis

  4. Research Hypothesis and its Types with examples /urdu/hindi

  5. 3. Research Design and Hypothesis || Research Methodology

  6. What is a Directional Hypothesis #directionalhypothesis #hypothesis #mimtechnovate

COMMENTS

  1. Research hypothesis....ppt

    Following are the steps that are involved in the scientific method: • Formation of question • Doing background research • Creation of hypothesis • Designing an experiment • CDIFFERENCE BETWEEN RESEARCH QUESTION AND HYPOTHESIS 1.A research question and a hypothesis are both key of the research process, but they serve different ...

  2. RESEARCH HYPOTHESIS

    Nov 7, 2018 • Download as PPTX, PDF •. 98 likes • 70,386 views. MAHESWARI JAIKUMAR. Follow. RESEARCH HYPOTHESIS. Health & Medicine. 1 of 58. Download now. RESEARCH HYPOTHESIS - Download as a PDF or view online for free.

  3. PPT Research Questions, Hypotheses, and Variables

    Another way of looking it: If p is less than or equal to alpha, reject the null hypothesis. Phase IV: Decision/Interpretation 1. For each research hypothesis, consider the decisions regarding the statistical null hypotheses. 2. For each research hypothesis, consider qualitative contextual information relating potential plausibility. 3.

  4. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  5. PPT "Knowing" & Research Hypotheses

    Properties of a Useful Research Hypothesis ... The target population and how you will sample it The setting in which the data will be collected The task the participants will complete to yield data How/when you will treat participants differently from each other (called "manipulations") How/when you will collect the data Data Collection ...

  6. Research Hypothesis: Definition, Types, Examples and Quick Tips

    3. Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  7. PPTX The Research Hypotheses

    A research or scientific hypothesis is a. specific. clear. , and. testable. assumption, or. predictive statement. about the possible outcome of a scientific research study (for example, a dissertation or thesis), based on a particular property of a population.

  8. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  9. PDF Hypothesis Testing

    Review: steps in hypothesis testing about the mean 1.Hypothesis a value ( 0) and set up H 0 and H 1 2.Take a random sample of size n and calculate summary statistics (e.g., sample mean and sample variance) 3.Determine whether it is likely or unlikely that the sample, or one even more extreme, came from a population with mean

  10. PDF Nursing Research Series Essentials of Science: Methods, Appraisal and

    1. Understand the general purpose of a nursing research topic. 2. Be familiar with terms used in published studies, including research aims and hypotheses. 3. Determine the significance of a study problem or purpose. 4. Evaluate the feasibility of a published study. Research Aims, Purpose, and Hypotheses.

  11. Null & Alternative Hypotheses

    A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation ("x affects y because …"). A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses.

  12. Research Questions & Hypotheses

    The primary research question should originate from the hypothesis, not the data, and be established before starting the study. Formulating the research question and hypothesis from existing data (e.g., a database) can lead to multiple statistical comparisons and potentially spurious findings due to chance.

  13. Hypothesis writing.ppt

    'Writing a Good Hypothesis" Just 'plug and chug' in your variables! ...

  14. 2.3: Propositions and Hypotheses

    Propositions are specified in the theoretical plane, while hypotheses are specified in the empirical plane. Hence, hypotheses are empirically testable using observed data, and may be rejected if not supported by empirical observations. Of course, the goal of hypothesis testing is to infer whether the corresponding proposition is valid.

  15. Hypothesis Testing

    The hypothesis testing framework. Start with two hypotheses about the population: the null hypothesis and the alternative hypothesis. Choose a sample, collect data, and analyze the data. Figure out how likely it is to see data like what we got/observed, IF the null hypothesis were true.

  16. Chapter 4 Research Problems, Research Questions, and Hypotheses

    Hypotheses and Research Questions. Definition:. A hypothesis is a tentative prediction about the nature of the relationship between two or more variables.A hypothesis represents an educated guess about what will happen in an experimentHypotheses are always held tentativelyA research question is simply a hypothesis stated in questi

  17. How to Write a Hypothesis

    It explains a cause and effect. A Hypothesis ... is written in the following way: "If the (independent variable) is (describe change), then the (dependent variable) will (describe measure).". IMPORTANT: You must always write a hypothesis as an "IF...THEN" statement. It shows how the independent and dependent variables are related. Now ...

  18. PPT

    introduction Hypothesis testing 2.1 One sample t test 2.2 two independent-samples t test 2.3 Paired-samples t test. Hypothesis testing. 824 views • 82 slides ... (generic): For hypothesis testing, research questions are statements: This is the null hypothesis (assumption of "no difference") 578 views • 57 slides. Chapter 9 Hypothesis ...