• Visit the University of Nebraska–Lincoln
  • Apply to the University of Nebraska–Lincoln
  • Give to the University of Nebraska–Lincoln

Search Form

Overview of research process.

Research Process arrow example 1

The Research Process

Anything you write involves organization and a logical flow of ideas, so understanding the logic of the research process before beginning to write is essential. Simply put, you need to put your writing in the larger context—see the forest before you even attempt to see the trees.

In this brief introductory module, we’ll review the major steps in the research process, conceptualized here as a series of steps within a circle, with each step dependent on the previous one. The circle best depicts the recursive nature of the process; that is, once the process has been completed, the researcher may begin again by refining or expanding on the initial approach, or even pioneering a completely new approach to solving the problem.

Identify a Research Problem

You identify a research problem by first selecting a general topic that’s interesting to you and to the interests and specialties of your research advisor. Once identified, you’ll need to narrow it. For example, if teenage pregnancy is your general topic area, your specific topic could be a comparison of how teenage pregnancy affects young fathers and mothers differently.

Review the Literature

Find out what’s being asked or what’s already been done in the area by doing some exploratory reading. Discuss the topic with your advisor to gain additional insights, explore novel approaches, and begin to develop your research question, purpose statement, and hypothesis(es), if applicable.

Determine Research Question

A good research question is a question worth asking; one that poses a problem worth solving. A good question should:

  • Be clear . It must be understandable to you and to others.
  • Be researchable . It should be capable of developing into a manageable research design, so data may be collected in relation to it. Extremely abstract terms are unlikely to be suitable.
  • Connect with established theory and research . There should be a literature on which you can draw to illuminate how your research question(s) should be approached.
  • Be neither too broad nor too narrow. See Appendix A for a brief explanation of the narrowing process and how your research question, purpose statement, and hypothesis(es) are interconnected.

Appendix A Research Questions, Purpose Statement, Hypothesis(es)

Develop Research Methods

Once you’ve finalized your research question, purpose statement, and hypothesis(es), you’ll need to write your research proposal—a detailed management plan for your research project. The proposal is as essential to successful research as an architect’s plans are to the construction of a building.

See Appendix B to view the basic components of a research proposal.

Appendix B Components of a Research Proposal

Collect & Analyze Data

In Practical Research–Planning and Design (2005, 8th Edition), Leedy and Ormrod provide excellent advice for what the researcher does at this stage in the research process. The researcher now

  • collects data that potentially relate to the problem,
  • arranges the data into a logical organizational structure,
  • analyzes and interprets the data to determine their meaning, 
  • determines if the data resolve the research problem or not, and
  • determines if the data support the hypothesis or not.

Document the Work

Because research reports differ by discipline, the most effective way for you to understand formatting and citations is to examine reports from others in your department or field. The library’s electronic databases provide a wealth of examples illustrating how others in your field document their research.

Communicate Your Research

Talk with your advisor about potential local, regional, or national venues to present your findings. And don’t sell yourself short: Consider publishing your research in related books or journals.

Refine/Expand, Pioneer

Earlier, we emphasized the fact that the research process, rather than being linear, is recursive—the reason we conceptualized the process as a series of steps within a circle. At this stage, you may need to revisit your research problem in the context of your findings. You might also investigate the implications of your work and identify new problems or refine your previous approach.

The process then begins anew . . . and you’ll once again move through the series of steps in the circle.

Continue to Module Two

Appendix C - Key Research Terms

  • U.S. Department of Health & Human Services

National Institutes of Health (NIH) - Turning Discovery into Health

  • Virtual Tour
  • Staff Directory
  • En Español

You are here

Science, health, and public trust.

September 8, 2021

Explaining How Research Works

Understanding Research infographic

We’ve heard “follow the science” a lot during the pandemic. But it seems science has taken us on a long and winding road filled with twists and turns, even changing directions at times. That’s led some people to feel they can’t trust science. But when what we know changes, it often means science is working.

Expaling How Research Works Infographic en español

Explaining the scientific process may be one way that science communicators can help maintain public trust in science. Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle.

Questions about how the world works are often investigated on many different levels. For example, scientists can look at the different atoms in a molecule, cells in a tissue, or how different tissues or systems affect each other. Researchers often must choose one or a finite number of ways to investigate a question. It can take many different studies using different approaches to start piecing the whole picture together.

Sometimes it might seem like research results contradict each other. But often, studies are just looking at different aspects of the same problem. Researchers can also investigate a question using different techniques or timeframes. That may lead them to arrive at different conclusions from the same data.

Using the data available at the time of their study, scientists develop different explanations, or models. New information may mean that a novel model needs to be developed to account for it. The models that prevail are those that can withstand the test of time and incorporate new information. Science is a constantly evolving and self-correcting process.

Scientists gain more confidence about a model through the scientific process. They replicate each other’s work. They present at conferences. And papers undergo peer review, in which experts in the field review the work before it can be published in scientific journals. This helps ensure that the study is up to current scientific standards and maintains a level of integrity. Peer reviewers may find problems with the experiments or think different experiments are needed to justify the conclusions. They might even offer new ways to interpret the data.

It’s important for science communicators to consider which stage a study is at in the scientific process when deciding whether to cover it. Some studies are posted on preprint servers for other scientists to start weighing in on and haven’t yet been fully vetted. Results that haven't yet been subjected to scientific scrutiny should be reported on with care and context to avoid confusion or frustration from readers.

We’ve developed a one-page guide, "How Research Works: Understanding the Process of Science" to help communicators put the process of science into perspective. We hope it can serve as a useful resource to help explain why science changes—and why it’s important to expect that change. Please take a look and share your thoughts with us by sending an email to  [email protected].

Below are some additional resources:

  • Discoveries in Basic Science: A Perfectly Imperfect Process
  • When Clinical Research Is in the News
  • What is Basic Science and Why is it Important?
  • ​ What is a Research Organism?
  • What Are Clinical Trials and Studies?
  • Basic Research – Digital Media Kit
  • Decoding Science: How Does Science Know What It Knows? (NAS)
  • Can Science Help People Make Decisions ? (NAS)

Connect with Us

  • More Social Media from NIH

Book cover

Doing Research: A New Researcher’s Guide pp 1–15 Cite as

What Is Research, and Why Do People Do It?

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  
  • Open Access
  • First Online: 03 December 2022

16k Accesses

Part of the book series: Research in Mathematics Education ((RME))

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Cite this chapter.

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • U.S. Locations
  • UMGC Europe
  • Learn Online
  • Find Answers
  • 855-655-8682
  • Current Students

Online Guide to Writing and Research

The research process, explore more of umgc.

  • Online Guide to Writing

Structuring the Research Paper

Formal research structure.

These are the primary purposes for formal research:

enter the discourse, or conversation, of other writers and scholars in your field

learn how others in your field use primary and secondary resources

find and understand raw data and information

Top view of textured wooden desk prepared for work and exploration - wooden pegs, domino, cubes and puzzles with blank notepads,  paper and colourful pencils lying on it.

For the formal academic research assignment, consider an organizational pattern typically used for primary academic research.  The pattern includes the following: introduction, methods, results, discussion, and conclusions/recommendations.

Usually, research papers flow from the general to the specific and back to the general in their organization. The introduction uses a general-to-specific movement in its organization, establishing the thesis and setting the context for the conversation. The methods and results sections are more detailed and specific, providing support for the generalizations made in the introduction. The discussion section moves toward an increasingly more general discussion of the subject, leading to the conclusions and recommendations, which then generalize the conversation again.

Sections of a Formal Structure

The introduction section.

Many students will find that writing a structured  introduction  gets them started and gives them the focus needed to significantly improve their entire paper. 

Introductions usually have three parts:

presentation of the problem statement, the topic, or the research inquiry

purpose and focus of your paper

summary or overview of the writer’s position or arguments

In the first part of the introduction—the presentation of the problem or the research inquiry—state the problem or express it so that the question is implied. Then, sketch the background on the problem and review the literature on it to give your readers a context that shows them how your research inquiry fits into the conversation currently ongoing in your subject area. 

In the second part of the introduction, state your purpose and focus. Here, you may even present your actual thesis. Sometimes your purpose statement can take the place of the thesis by letting your reader know your intentions. 

The third part of the introduction, the summary or overview of the paper, briefly leads readers through the discussion, forecasting the main ideas and giving readers a blueprint for the paper. 

The following example provides a blueprint for a well-organized introduction.

Example of an Introduction

Entrepreneurial Marketing: The Critical Difference

In an article in the Harvard Business Review, John A. Welsh and Jerry F. White remind us that “a small business is not a little big business.” An entrepreneur is not a multinational conglomerate but a profit-seeking individual. To survive, he must have a different outlook and must apply different principles to his endeavors than does the president of a large or even medium-sized corporation. Not only does the scale of small and big businesses differ, but small businesses also suffer from what the Harvard Business Review article calls “resource poverty.” This is a problem and opportunity that requires an entirely different approach to marketing. Where large ad budgets are not necessary or feasible, where expensive ad production squanders limited capital, where every marketing dollar must do the work of two dollars, if not five dollars or even ten, where a person’s company, capital, and material well-being are all on the line—that is, where guerrilla marketing can save the day and secure the bottom line (Levinson, 1984, p. 9).

By reviewing the introductions to research articles in the discipline in which you are writing your research paper, you can get an idea of what is considered the norm for that discipline. Study several of these before you begin your paper so that you know what may be expected. If you are unsure of the kind of introduction your paper needs, ask your professor for more information.  The introduction is normally written in present tense.

THE METHODS SECTION

The methods section of your research paper should describe in detail what methodology and special materials if any, you used to think through or perform your research. You should include any materials you used or designed for yourself, such as questionnaires or interview questions, to generate data or information for your research paper. You want to include any methodologies that are specific to your particular field of study, such as lab procedures for a lab experiment or data-gathering instruments for field research. The methods section is usually written in the past tense.

THE RESULTS SECTION

How you present the results of your research depends on what kind of research you did, your subject matter, and your readers’ expectations. 

Quantitative information —data that can be measured—can be presented systematically and economically in tables, charts, and graphs. Quantitative information includes quantities and comparisons of sets of data. 

Qualitative information , which includes brief descriptions, explanations, or instructions, can also be presented in prose tables. This kind of descriptive or explanatory information, however, is often presented in essay-like prose or even lists.

There are specific conventions for creating tables, charts, and graphs and organizing the information they contain. In general, you should use them only when you are sure they will enlighten your readers rather than confuse them. In the accompanying explanation and discussion, always refer to the graphic by number and explain specifically what you are referring to; you can also provide a caption for the graphic. The rule of thumb for presenting a graphic is first to introduce it by name, show it, and then interpret it. The results section is usually written in the past tense.

THE DISCUSSION SECTION

Your discussion section should generalize what you have learned from your research. One way to generalize is to explain the consequences or meaning of your results and then make your points that support and refer back to the statements you made in your introduction. Your discussion should be organized so that it relates directly to your thesis. You want to avoid introducing new ideas here or discussing tangential issues not directly related to the exploration and discovery of your thesis. The discussion section, along with the introduction, is usually written in the present tense.

THE CONCLUSIONS AND RECOMMENDATIONS SECTION

Your conclusion ties your research to your thesis, binding together all the main ideas in your thinking and writing. By presenting the logical outcome of your research and thinking, your conclusion answers your research inquiry for your reader. Your conclusions should relate directly to the ideas presented in your introduction section and should not present any new ideas.

You may be asked to present your recommendations separately in your research assignment. If so, you will want to add some elements to your conclusion section. For example, you may be asked to recommend a course of action, make a prediction, propose a solution to a problem, offer a judgment, or speculate on the implications and consequences of your ideas. The conclusions and recommendations section is usually written in the present tense.

Key Takeaways

  • For the formal academic research assignment, consider an organizational pattern typically used for primary academic research. 
  •  The pattern includes the following: introduction, methods, results, discussion, and conclusions/recommendations.

Mailing Address: 3501 University Blvd. East, Adelphi, MD 20783 This work is licensed under a  Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License . © 2022 UMGC. All links to external sites were verified at the time of publication. UMGC is not responsible for the validity or integrity of information located at external sites.

Table of Contents: Online Guide to Writing

Chapter 1: College Writing

How Does College Writing Differ from Workplace Writing?

What Is College Writing?

Why So Much Emphasis on Writing?

Chapter 2: The Writing Process

Doing Exploratory Research

Getting from Notes to Your Draft

Introduction

Prewriting - Techniques to Get Started - Mining Your Intuition

Prewriting: Targeting Your Audience

Prewriting: Techniques to Get Started

Prewriting: Understanding Your Assignment

Rewriting: Being Your Own Critic

Rewriting: Creating a Revision Strategy

Rewriting: Getting Feedback

Rewriting: The Final Draft

Techniques to Get Started - Outlining

Techniques to Get Started - Using Systematic Techniques

Thesis Statement and Controlling Idea

Writing: Getting from Notes to Your Draft - Freewriting

Writing: Getting from Notes to Your Draft - Summarizing Your Ideas

Writing: Outlining What You Will Write

Chapter 3: Thinking Strategies

A Word About Style, Voice, and Tone

A Word About Style, Voice, and Tone: Style Through Vocabulary and Diction

Critical Strategies and Writing

Critical Strategies and Writing: Analysis

Critical Strategies and Writing: Evaluation

Critical Strategies and Writing: Persuasion

Critical Strategies and Writing: Synthesis

Developing a Paper Using Strategies

Kinds of Assignments You Will Write

Patterns for Presenting Information

Patterns for Presenting Information: Critiques

Patterns for Presenting Information: Discussing Raw Data

Patterns for Presenting Information: General-to-Specific Pattern

Patterns for Presenting Information: Problem-Cause-Solution Pattern

Patterns for Presenting Information: Specific-to-General Pattern

Patterns for Presenting Information: Summaries and Abstracts

Supporting with Research and Examples

Writing Essay Examinations

Writing Essay Examinations: Make Your Answer Relevant and Complete

Writing Essay Examinations: Organize Thinking Before Writing

Writing Essay Examinations: Read and Understand the Question

Chapter 4: The Research Process

Planning and Writing a Research Paper

Planning and Writing a Research Paper: Ask a Research Question

Planning and Writing a Research Paper: Cite Sources

Planning and Writing a Research Paper: Collect Evidence

Planning and Writing a Research Paper: Decide Your Point of View, or Role, for Your Research

Planning and Writing a Research Paper: Draw Conclusions

Planning and Writing a Research Paper: Find a Topic and Get an Overview

Planning and Writing a Research Paper: Manage Your Resources

Planning and Writing a Research Paper: Outline

Planning and Writing a Research Paper: Survey the Literature

Planning and Writing a Research Paper: Work Your Sources into Your Research Writing

Research Resources: Where Are Research Resources Found? - Human Resources

Research Resources: What Are Research Resources?

Research Resources: Where Are Research Resources Found?

Research Resources: Where Are Research Resources Found? - Electronic Resources

Research Resources: Where Are Research Resources Found? - Print Resources

Structuring the Research Paper: Formal Research Structure

Structuring the Research Paper: Informal Research Structure

The Nature of Research

The Research Assignment: How Should Research Sources Be Evaluated?

The Research Assignment: When Is Research Needed?

The Research Assignment: Why Perform Research?

Chapter 5: Academic Integrity

Academic Integrity

Giving Credit to Sources

Giving Credit to Sources: Copyright Laws

Giving Credit to Sources: Documentation

Giving Credit to Sources: Style Guides

Integrating Sources

Practicing Academic Integrity

Practicing Academic Integrity: Keeping Accurate Records

Practicing Academic Integrity: Managing Source Material

Practicing Academic Integrity: Managing Source Material - Paraphrasing Your Source

Practicing Academic Integrity: Managing Source Material - Quoting Your Source

Practicing Academic Integrity: Managing Source Material - Summarizing Your Sources

Types of Documentation

Types of Documentation: Bibliographies and Source Lists

Types of Documentation: Citing World Wide Web Sources

Types of Documentation: In-Text or Parenthetical Citations

Types of Documentation: In-Text or Parenthetical Citations - APA Style

Types of Documentation: In-Text or Parenthetical Citations - CSE/CBE Style

Types of Documentation: In-Text or Parenthetical Citations - Chicago Style

Types of Documentation: In-Text or Parenthetical Citations - MLA Style

Types of Documentation: Note Citations

Chapter 6: Using Library Resources

Finding Library Resources

Chapter 7: Assessing Your Writing

How Is Writing Graded?

How Is Writing Graded?: A General Assessment Tool

The Draft Stage

The Draft Stage: The First Draft

The Draft Stage: The Revision Process and the Final Draft

The Draft Stage: Using Feedback

The Research Stage

Using Assessment to Improve Your Writing

Chapter 8: Other Frequently Assigned Papers

Reviews and Reaction Papers: Article and Book Reviews

Reviews and Reaction Papers: Reaction Papers

Writing Arguments

Writing Arguments: Adapting the Argument Structure

Writing Arguments: Purposes of Argument

Writing Arguments: References to Consult for Writing Arguments

Writing Arguments: Steps to Writing an Argument - Anticipate Active Opposition

Writing Arguments: Steps to Writing an Argument - Determine Your Organization

Writing Arguments: Steps to Writing an Argument - Develop Your Argument

Writing Arguments: Steps to Writing an Argument - Introduce Your Argument

Writing Arguments: Steps to Writing an Argument - State Your Thesis or Proposition

Writing Arguments: Steps to Writing an Argument - Write Your Conclusion

Writing Arguments: Types of Argument

Appendix A: Books to Help Improve Your Writing

Dictionaries

General Style Manuals

Researching on the Internet

Special Style Manuals

Writing Handbooks

Appendix B: Collaborative Writing and Peer Reviewing

Collaborative Writing: Assignments to Accompany the Group Project

Collaborative Writing: Informal Progress Report

Collaborative Writing: Issues to Resolve

Collaborative Writing: Methodology

Collaborative Writing: Peer Evaluation

Collaborative Writing: Tasks of Collaborative Writing Group Members

Collaborative Writing: Writing Plan

General Introduction

Peer Reviewing

Appendix C: Developing an Improvement Plan

Working with Your Instructor’s Comments and Grades

Appendix D: Writing Plan and Project Schedule

Devising a Writing Project Plan and Schedule

Reviewing Your Plan with Others

By using our website you agree to our use of cookies. Learn more about how we use cookies by reading our  Privacy Policy .

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research work about the

Home Market Research

What is Research: Definition, Methods, Types & Examples

What is Research

The search for knowledge is closely linked to the object of study; that is, to the reconstruction of the facts that will provide an explanation to an observed event and that at first sight can be considered as a problem. It is very human to seek answers and satisfy our curiosity. Let’s talk about research.

Content Index

What is Research?

What are the characteristics of research.

  • Comparative analysis chart

Qualitative methods

Quantitative methods, 8 tips for conducting accurate research.

Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, “research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.”

Inductive methods analyze an observed event, while deductive methods verify the observed event. Inductive approaches are associated with qualitative research , and deductive methods are more commonly associated with quantitative analysis .

Research is conducted with a purpose to:

  • Identify potential and new customers
  • Understand existing customers
  • Set pragmatic goals
  • Develop productive market strategies
  • Address business challenges
  • Put together a business expansion plan
  • Identify new business opportunities
  • Good research follows a systematic approach to capture accurate data. Researchers need to practice ethics and a code of conduct while making observations or drawing conclusions.
  • The analysis is based on logical reasoning and involves both inductive and deductive methods.
  • Real-time data and knowledge is derived from actual observations in natural settings.
  • There is an in-depth analysis of all data collected so that there are no anomalies associated with it.
  • It creates a path for generating new questions. Existing data helps create more research opportunities.
  • It is analytical and uses all the available data so that there is no ambiguity in inference.
  • Accuracy is one of the most critical aspects of research. The information must be accurate and correct. For example, laboratories provide a controlled environment to collect data. Accuracy is measured in the instruments used, the calibrations of instruments or tools, and the experiment’s final result.

What is the purpose of research?

There are three main purposes:

  • Exploratory: As the name suggests, researchers conduct exploratory studies to explore a group of questions. The answers and analytics may not offer a conclusion to the perceived problem. It is undertaken to handle new problem areas that haven’t been explored before. This exploratory data analysis process lays the foundation for more conclusive data collection and analysis.

LEARN ABOUT: Descriptive Analysis

  • Descriptive: It focuses on expanding knowledge on current issues through a process of data collection. Descriptive research describe the behavior of a sample population. Only one variable is required to conduct the study. The three primary purposes of descriptive studies are describing, explaining, and validating the findings. For example, a study conducted to know if top-level management leaders in the 21st century possess the moral right to receive a considerable sum of money from the company profit.

LEARN ABOUT: Best Data Collection Tools

  • Explanatory: Causal research or explanatory research is conducted to understand the impact of specific changes in existing standard procedures. Running experiments is the most popular form. For example, a study that is conducted to understand the effect of rebranding on customer loyalty.

Here is a comparative analysis chart for a better understanding:

It begins by asking the right questions and choosing an appropriate method to investigate the problem. After collecting answers to your questions, you can analyze the findings or observations to draw reasonable conclusions.

When it comes to customers and market studies, the more thorough your questions, the better the analysis. You get essential insights into brand perception and product needs by thoroughly collecting customer data through surveys and questionnaires . You can use this data to make smart decisions about your marketing strategies to position your business effectively.

To make sense of your study and get insights faster, it helps to use a research repository as a single source of truth in your organization and manage your research data in one centralized data repository .

Types of research methods and Examples

what is research

Research methods are broadly classified as Qualitative and Quantitative .

Both methods have distinctive properties and data collection methods .

Qualitative research is a method that collects data using conversational methods, usually open-ended questions . The responses collected are essentially non-numerical. This method helps a researcher understand what participants think and why they think in a particular way.

Types of qualitative methods include:

  • One-to-one Interview
  • Focus Groups
  • Ethnographic studies
  • Text Analysis

Quantitative methods deal with numbers and measurable forms . It uses a systematic way of investigating events or data. It answers questions to justify relationships with measurable variables to either explain, predict, or control a phenomenon.

Types of quantitative methods include:

  • Survey research
  • Descriptive research
  • Correlational research

LEARN MORE: Descriptive Research vs Correlational Research

Remember, it is only valuable and useful when it is valid, accurate, and reliable. Incorrect results can lead to customer churn and a decrease in sales.

It is essential to ensure that your data is:

  • Valid – founded, logical, rigorous, and impartial.
  • Accurate – free of errors and including required details.
  • Reliable – other people who investigate in the same way can produce similar results.
  • Timely – current and collected within an appropriate time frame.
  • Complete – includes all the data you need to support your business decisions.

Gather insights

What is a research - tips

  • Identify the main trends and issues, opportunities, and problems you observe. Write a sentence describing each one.
  • Keep track of the frequency with which each of the main findings appears.
  • Make a list of your findings from the most common to the least common.
  • Evaluate a list of the strengths, weaknesses, opportunities, and threats identified in a SWOT analysis .
  • Prepare conclusions and recommendations about your study.
  • Act on your strategies
  • Look for gaps in the information, and consider doing additional inquiry if necessary
  • Plan to review the results and consider efficient methods to analyze and interpret results.

Review your goals before making any conclusions about your study. Remember how the process you have completed and the data you have gathered help answer your questions. Ask yourself if what your analysis revealed facilitates the identification of your conclusions and recommendations.

LEARN MORE ABOUT OUR SOFTWARE         FREE TRIAL

MORE LIKE THIS

customer communication tool

Customer Communication Tool: Types, Methods, Uses, & Tools

Apr 23, 2024

sentiment analysis tools

Top 12 Sentiment Analysis Tools for Understanding Emotions

QuestionPro BI: From Research Data to Actionable Dashboards

QuestionPro BI: From Research Data to Actionable Dashboards

Apr 22, 2024

customer experience management software

21 Best Customer Experience Management Software in 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Turk J Anaesthesiol Reanim
  • v.44(4); 2016 Aug

Logo of tjar

What is Scientific Research and How Can it be Done?

Scientific researches are studies that should be systematically planned before performing them. In this review, classification and description of scientific studies, planning stage randomisation and bias are explained.

Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new information is revealed with respect to diagnosis, treatment and reliability of applications. The purpose of this review is to provide information about the definition, classification and methodology of scientific research.

Before beginning the scientific research, the researcher should determine the subject, do planning and specify the methodology. In the Declaration of Helsinki, it is stated that ‘the primary purpose of medical researches on volunteers is to understand the reasons, development and effects of diseases and develop protective, diagnostic and therapeutic interventions (method, operation and therapies). Even the best proven interventions should be evaluated continuously by investigations with regard to reliability, effectiveness, efficiency, accessibility and quality’ ( 1 ).

The questions, methods of response to questions and difficulties in scientific research may vary, but the design and structure are generally the same ( 2 ).

Classification of Scientific Research

Scientific research can be classified in several ways. Classification can be made according to the data collection techniques based on causality, relationship with time and the medium through which they are applied.

  • Observational
  • Experimental
  • Descriptive
  • Retrospective
  • Prospective
  • Cross-sectional
  • Social descriptive research ( 3 )

Another method is to classify the research according to its descriptive or analytical features. This review is written according to this classification method.

I. Descriptive research

  • Case series
  • Surveillance studies

II. Analytical research

  • Observational studies: cohort, case control and cross- sectional research
  • Interventional research: quasi-experimental and clinical research
  • Case Report: it is the most common type of descriptive study. It is the examination of a single case having a different quality in the society, e.g. conducting general anaesthesia in a pregnant patient with mucopolysaccharidosis.
  • Case Series: it is the description of repetitive cases having common features. For instance; case series involving interscapular pain related to neuraxial labour analgesia. Interestingly, malignant hyperthermia cases are not accepted as case series since they are rarely seen during historical development.
  • Surveillance Studies: these are the results obtained from the databases that follow and record a health problem for a certain time, e.g. the surveillance of cross-infections during anaesthesia in the intensive care unit.

Moreover, some studies may be experimental. After the researcher intervenes, the researcher waits for the result, observes and obtains data. Experimental studies are, more often, in the form of clinical trials or laboratory animal trials ( 2 ).

Analytical observational research can be classified as cohort, case-control and cross-sectional studies.

Firstly, the participants are controlled with regard to the disease under investigation. Patients are excluded from the study. Healthy participants are evaluated with regard to the exposure to the effect. Then, the group (cohort) is followed-up for a sufficient period of time with respect to the occurrence of disease, and the progress of disease is studied. The risk of the healthy participants getting sick is considered an incident. In cohort studies, the risk of disease between the groups exposed and not exposed to the effect is calculated and rated. This rate is called relative risk. Relative risk indicates the strength of exposure to the effect on the disease.

Cohort research may be observational and experimental. The follow-up of patients prospectively is called a prospective cohort study . The results are obtained after the research starts. The researcher’s following-up of cohort subjects from a certain point towards the past is called a retrospective cohort study . Prospective cohort studies are more valuable than retrospective cohort studies: this is because in the former, the researcher observes and records the data. The researcher plans the study before the research and determines what data will be used. On the other hand, in retrospective studies, the research is made on recorded data: no new data can be added.

In fact, retrospective and prospective studies are not observational. They determine the relationship between the date on which the researcher has begun the study and the disease development period. The most critical disadvantage of this type of research is that if the follow-up period is long, participants may leave the study at their own behest or due to physical conditions. Cohort studies that begin after exposure and before disease development are called ambidirectional studies . Public healthcare studies generally fall within this group, e.g. lung cancer development in smokers.

  • Case-Control Studies: these studies are retrospective cohort studies. They examine the cause and effect relationship from the effect to the cause. The detection or determination of data depends on the information recorded in the past. The researcher has no control over the data ( 2 ).

Cross-sectional studies are advantageous since they can be concluded relatively quickly. It may be difficult to obtain a reliable result from such studies for rare diseases ( 2 ).

Cross-sectional studies are characterised by timing. In such studies, the exposure and result are simultaneously evaluated. While cross-sectional studies are restrictedly used in studies involving anaesthesia (since the process of exposure is limited), they can be used in studies conducted in intensive care units.

  • Quasi-Experimental Research: they are conducted in cases in which a quick result is requested and the participants or research areas cannot be randomised, e.g. giving hand-wash training and comparing the frequency of nosocomial infections before and after hand wash.
  • Clinical Research: they are prospective studies carried out with a control group for the purpose of comparing the effect and value of an intervention in a clinical case. Clinical study and research have the same meaning. Drugs, invasive interventions, medical devices and operations, diets, physical therapy and diagnostic tools are relevant in this context ( 6 ).

Clinical studies are conducted by a responsible researcher, generally a physician. In the research team, there may be other healthcare staff besides physicians. Clinical studies may be financed by healthcare institutes, drug companies, academic medical centres, volunteer groups, physicians, healthcare service providers and other individuals. They may be conducted in several places including hospitals, universities, physicians’ offices and community clinics based on the researcher’s requirements. The participants are made aware of the duration of the study before their inclusion. Clinical studies should include the evaluation of recommendations (drug, device and surgical) for the treatment of a disease, syndrome or a comparison of one or more applications; finding different ways for recognition of a disease or case and prevention of their recurrence ( 7 ).

Clinical Research

In this review, clinical research is explained in more detail since it is the most valuable study in scientific research.

Clinical research starts with forming a hypothesis. A hypothesis can be defined as a claim put forward about the value of a population parameter based on sampling. There are two types of hypotheses in statistics.

  • H 0 hypothesis is called a control or null hypothesis. It is the hypothesis put forward in research, which implies that there is no difference between the groups under consideration. If this hypothesis is rejected at the end of the study, it indicates that a difference exists between the two treatments under consideration.
  • H 1 hypothesis is called an alternative hypothesis. It is hypothesised against a null hypothesis, which implies that a difference exists between the groups under consideration. For example, consider the following hypothesis: drug A has an analgesic effect. Control or null hypothesis (H 0 ): there is no difference between drug A and placebo with regard to the analgesic effect. The alternative hypothesis (H 1 ) is applicable if a difference exists between drug A and placebo with regard to the analgesic effect.

The planning phase comes after the determination of a hypothesis. A clinical research plan is called a protocol . In a protocol, the reasons for research, number and qualities of participants, tests to be applied, study duration and what information to be gathered from the participants should be found and conformity criteria should be developed.

The selection of participant groups to be included in the study is important. Inclusion and exclusion criteria of the study for the participants should be determined. Inclusion criteria should be defined in the form of demographic characteristics (age, gender, etc.) of the participant group and the exclusion criteria as the diseases that may influence the study, age ranges, cases involving pregnancy and lactation, continuously used drugs and participants’ cooperation.

The next stage is methodology. Methodology can be grouped under subheadings, namely, the calculation of number of subjects, blinding (masking), randomisation, selection of operation to be applied, use of placebo and criteria for stopping and changing the treatment.

I. Calculation of the Number of Subjects

The entire source from which the data are obtained is called a universe or population . A small group selected from a certain universe based on certain rules and which is accepted to highly represent the universe from which it is selected is called a sample and the characteristics of the population from which the data are collected are called variables. If data is collected from the entire population, such an instance is called a parameter . Conducting a study on the sample rather than the entire population is easier and less costly. Many factors influence the determination of the sample size. Firstly, the type of variable should be determined. Variables are classified as categorical (qualitative, non-numerical) or numerical (quantitative). Individuals in categorical variables are classified according to their characteristics. Categorical variables are indicated as nominal and ordinal (ordered). In nominal variables, the application of a category depends on the researcher’s preference. For instance, a female participant can be considered first and then the male participant, or vice versa. An ordinal (ordered) variable is ordered from small to large or vice versa (e.g. ordering obese patients based on their weights-from the lightest to the heaviest or vice versa). A categorical variable may have more than one characteristic: such variables are called binary or dichotomous (e.g. a participant may be both female and obese).

If the variable has numerical (quantitative) characteristics and these characteristics cannot be categorised, then it is called a numerical variable. Numerical variables are either discrete or continuous. For example, the number of operations with spinal anaesthesia represents a discrete variable. The haemoglobin value or height represents a continuous variable.

Statistical analyses that need to be employed depend on the type of variable. The determination of variables is necessary for selecting the statistical method as well as software in SPSS. While categorical variables are presented as numbers and percentages, numerical variables are represented using measures such as mean and standard deviation. It may be necessary to use mean in categorising some cases such as the following: even though the variable is categorical (qualitative, non-numerical) when Visual Analogue Scale (VAS) is used (since a numerical value is obtained), it is classified as a numerical variable: such variables are averaged.

Clinical research is carried out on the sample and generalised to the population. Accordingly, the number of samples should be correctly determined. Different sample size formulas are used on the basis of the statistical method to be used. When the sample size increases, error probability decreases. The sample size is calculated based on the primary hypothesis. The determination of a sample size before beginning the research specifies the power of the study. Power analysis enables the acquisition of realistic results in the research, and it is used for comparing two or more clinical research methods.

Because of the difference in the formulas used in calculating power analysis and number of samples for clinical research, it facilitates the use of computer programs for making calculations.

It is necessary to know certain parameters in order to calculate the number of samples by power analysis.

  • Type-I (α) and type-II (β) error levels
  • Difference between groups (d-difference) and effect size (ES)
  • Distribution ratio of groups
  • Direction of research hypothesis (H1)

a. Type-I (α) and Type-II (β) Error (β) Levels

Two types of errors can be made while accepting or rejecting H 0 hypothesis in a hypothesis test. Type-I error (α) level is the probability of finding a difference at the end of the research when there is no difference between the two applications. In other words, it is the rejection of the hypothesis when H 0 is actually correct and it is known as α error or p value. For instance, when the size is determined, type-I error level is accepted as 0.05 or 0.01.

Another error that can be made during a hypothesis test is a type-II error. It is the acceptance of a wrongly hypothesised H 0 hypothesis. In fact, it is the probability of failing to find a difference when there is a difference between the two applications. The power of a test is the ability of that test to find a difference that actually exists. Therefore, it is related to the type-II error level.

Since the type-II error risk is expressed as β, the power of the test is defined as 1–β. When a type-II error is 0.20, the power of the test is 0.80. Type-I (α) and type-II (β) errors can be intentional. The reason to intentionally make such an error is the necessity to look at the events from the opposite perspective.

b. Difference between Groups and ES

ES is defined as the state in which statistical difference also has clinically significance: ES≥0.5 is desirable. The difference between groups is the absolute difference between the groups compared in clinical research.

c. Allocation Ratio of Groups

The allocation ratio of groups is effective in determining the number of samples. If the number of samples is desired to be determined at the lowest level, the rate should be kept as 1/1.

d. Direction of Hypothesis (H1)

The direction of hypothesis in clinical research may be one-sided or two-sided. While one-sided hypotheses hypothesis test differences in the direction of size, two-sided hypotheses hypothesis test differences without direction. The power of the test in two-sided hypotheses is lower than one-sided hypotheses.

After these four variables are determined, they are entered in the appropriate computer program and the number of samples is calculated. Statistical packaged software programs such as Statistica, NCSS and G-Power may be used for power analysis and calculating the number of samples. When the samples size is calculated, if there is a decrease in α, difference between groups, ES and number of samples, then the standard deviation increases and power decreases. The power in two-sided hypothesis is lower. It is ethically appropriate to consider the determination of sample size, particularly in animal experiments, at the beginning of the study. The phase of the study is also important in the determination of number of subjects to be included in drug studies. Usually, phase-I studies are used to determine the safety profile of a drug or product, and they are generally conducted on a few healthy volunteers. If no unacceptable toxicity is detected during phase-I studies, phase-II studies may be carried out. Phase-II studies are proof-of-concept studies conducted on a larger number (100–500) of volunteer patients. When the effectiveness of the drug or product is evident in phase-II studies, phase-III studies can be initiated. These are randomised, double-blinded, placebo or standard treatment-controlled studies. Volunteer patients are periodically followed-up with respect to the effectiveness and side effects of the drug. It can generally last 1–4 years and is valuable during licensing and releasing the drug to the general market. Then, phase-IV studies begin in which long-term safety is investigated (indication, dose, mode of application, safety, effectiveness, etc.) on thousands of volunteer patients.

II. Blinding (Masking) and Randomisation Methods

When the methodology of clinical research is prepared, precautions should be taken to prevent taking sides. For this reason, techniques such as randomisation and blinding (masking) are used. Comparative studies are the most ideal ones in clinical research.

Blinding Method

A case in which the treatments applied to participants of clinical research should be kept unknown is called the blinding method . If the participant does not know what it receives, it is called a single-blind study; if even the researcher does not know, it is called a double-blind study. When there is a probability of knowing which drug is given in the order of application, when uninformed staff administers the drug, it is called in-house blinding. In case the study drug is known in its pharmaceutical form, a double-dummy blinding test is conducted. Intravenous drug is given to one group and a placebo tablet is given to the comparison group; then, the placebo tablet is given to the group that received the intravenous drug and intravenous drug in addition to placebo tablet is given to the comparison group. In this manner, each group receives both the intravenous and tablet forms of the drug. In case a third party interested in the study is involved and it also does not know about the drug (along with the statistician), it is called third-party blinding.

Randomisation Method

The selection of patients for the study groups should be random. Randomisation methods are used for such selection, which prevent conscious or unconscious manipulations in the selection of patients ( 8 ).

No factor pertaining to the patient should provide preference of one treatment to the other during randomisation. This characteristic is the most important difference separating randomised clinical studies from prospective and synchronous studies with experimental groups. Randomisation strengthens the study design and enables the determination of reliable scientific knowledge ( 2 ).

The easiest method is simple randomisation, e.g. determination of the type of anaesthesia to be administered to a patient by tossing a coin. In this method, when the number of samples is kept high, a balanced distribution is created. When the number of samples is low, there will be an imbalance between the groups. In this case, stratification and blocking have to be added to randomisation. Stratification is the classification of patients one or more times according to prognostic features determined by the researcher and blocking is the selection of a certain number of patients for each stratification process. The number of stratification processes should be determined at the beginning of the study.

As the number of stratification processes increases, performing the study and balancing the groups become difficult. For this reason, stratification characteristics and limitations should be effectively determined at the beginning of the study. It is not mandatory for the stratifications to have equal intervals. Despite all the precautions, an imbalance might occur between the groups before beginning the research. In such circumstances, post-stratification or restandardisation may be conducted according to the prognostic factors.

The main characteristic of applying blinding (masking) and randomisation is the prevention of bias. Therefore, it is worthwhile to comprehensively examine bias at this stage.

Bias and Chicanery

While conducting clinical research, errors can be introduced voluntarily or involuntarily at a number of stages, such as design, population selection, calculating the number of samples, non-compliance with study protocol, data entry and selection of statistical method. Bias is taking sides of individuals in line with their own decisions, views and ideological preferences ( 9 ). In order for an error to lead to bias, it has to be a systematic error. Systematic errors in controlled studies generally cause the results of one group to move in a different direction as compared to the other. It has to be understood that scientific research is generally prone to errors. However, random errors (or, in other words, ‘the luck factor’-in which bias is unintended-do not lead to bias ( 10 ).

Another issue, which is different from bias, is chicanery. It is defined as voluntarily changing the interventions, results and data of patients in an unethical manner or copying data from other studies. Comparatively, bias may not be done consciously.

In case unexpected results or outliers are found while the study is analysed, if possible, such data should be re-included into the study since the complete exclusion of data from a study endangers its reliability. In such a case, evaluation needs to be made with and without outliers. It is insignificant if no difference is found. However, if there is a difference, the results with outliers are re-evaluated. If there is no error, then the outlier is included in the study (as the outlier may be a result). It should be noted that re-evaluation of data in anaesthesiology is not possible.

Statistical evaluation methods should be determined at the design stage so as not to encounter unexpected results in clinical research. The data should be evaluated before the end of the study and without entering into details in research that are time-consuming and involve several samples. This is called an interim analysis . The date of interim analysis should be determined at the beginning of the study. The purpose of making interim analysis is to prevent unnecessary cost and effort since it may be necessary to conclude the research after the interim analysis, e.g. studies in which there is no possibility to validate the hypothesis at the end or the occurrence of different side effects of the drug to be used. The accuracy of the hypothesis and number of samples are compared. Statistical significance levels in interim analysis are very important. If the data level is significant, the hypothesis is validated even if the result turns out to be insignificant after the date of the analysis.

Another important point to be considered is the necessity to conclude the participants’ treatment within the period specified in the study protocol. When the result of the study is achieved earlier and unexpected situations develop, the treatment is concluded earlier. Moreover, the participant may quit the study at its own behest, may die or unpredictable situations (e.g. pregnancy) may develop. The participant can also quit the study whenever it wants, even if the study has not ended ( 7 ).

In case the results of a study are contrary to already known or expected results, the expected quality level of the study suggesting the contradiction may be higher than the studies supporting what is known in that subject. This type of bias is called confirmation bias. The presence of well-known mechanisms and logical inference from them may create problems in the evaluation of data. This is called plausibility bias.

Another type of bias is expectation bias. If a result different from the known results has been achieved and it is against the editor’s will, it can be challenged. Bias may be introduced during the publication of studies, such as publishing only positive results, selection of study results in a way to support a view or prevention of their publication. Some editors may only publish research that extols only the positive results or results that they desire.

Bias may be introduced for advertisement or economic reasons. Economic pressure may be applied on the editor, particularly in the cases of studies involving drugs and new medical devices. This is called commercial bias.

In recent years, before beginning a study, it has been recommended to record it on the Web site www.clinicaltrials.gov for the purpose of facilitating systematic interpretation and analysis in scientific research, informing other researchers, preventing bias, provision of writing in a standard format, enhancing contribution of research results to the general literature and enabling early intervention of an institution for support. This Web site is a service of the US National Institutes of Health.

The last stage in the methodology of clinical studies is the selection of intervention to be conducted. Placebo use assumes an important place in interventions. In Latin, placebo means ‘I will be fine’. In medical literature, it refers to substances that are not curative, do not have active ingredients and have various pharmaceutical forms. Although placebos do not have active drug characteristic, they have shown effective analgesic characteristics, particularly in algology applications; further, its use prevents bias in comparative studies. If a placebo has a positive impact on a participant, it is called the placebo effect ; on the contrary, if it has a negative impact, it is called the nocebo effect . Another type of therapy that can be used in clinical research is sham application. Although a researcher does not cure the patient, the researcher may compare those who receive therapy and undergo sham. It has been seen that sham therapies also exhibit a placebo effect. In particular, sham therapies are used in acupuncture applications ( 11 ). While placebo is a substance, sham is a type of clinical application.

Ethically, the patient has to receive appropriate therapy. For this reason, if its use prevents effective treatment, it causes great problem with regard to patient health and legalities.

Before medical research is conducted with human subjects, predictable risks, drawbacks and benefits must be evaluated for individuals or groups participating in the study. Precautions must be taken for reducing the risk to a minimum level. The risks during the study should be followed, evaluated and recorded by the researcher ( 1 ).

After the methodology for a clinical study is determined, dealing with the ‘Ethics Committee’ forms the next stage. The purpose of the ethics committee is to protect the rights, safety and well-being of volunteers taking part in the clinical research, considering the scientific method and concerns of society. The ethics committee examines the studies presented in time, comprehensively and independently, with regard to ethics and science; in line with the Declaration of Helsinki and following national and international standards concerning ‘Good Clinical Practice’. The method to be followed in the formation of the ethics committee should be developed without any kind of prejudice and to examine the applications with regard to ethics and science within the framework of the ethics committee, Regulation on Clinical Trials and Good Clinical Practice ( www.iku.com ). The necessary documents to be presented to the ethics committee are research protocol, volunteer consent form, budget contract, Declaration of Helsinki, curriculum vitae of researchers, similar or explanatory literature samples, supporting institution approval certificate and patient follow-up form.

Only one sister/brother, mother, father, son/daughter and wife/husband can take charge in the same ethics committee. A rector, vice rector, dean, deputy dean, provincial healthcare director and chief physician cannot be members of the ethics committee.

Members of the ethics committee can work as researchers or coordinators in clinical research. However, during research meetings in which members of the ethics committee are researchers or coordinators, they must leave the session and they cannot sign-off on decisions. If the number of members in the ethics committee for a particular research is so high that it is impossible to take a decision, the clinical research is presented to another ethics committee in the same province. If there is no ethics committee in the same province, an ethics committee in the closest settlement is found.

Thereafter, researchers need to inform the participants using an informed consent form. This form should explain the content of clinical study, potential benefits of the study, alternatives and risks (if any). It should be easy, comprehensible, conforming to spelling rules and written in plain language understandable by the participant.

This form assists the participants in taking a decision regarding participation in the study. It should aim to protect the participants. The participant should be included in the study only after it signs the informed consent form; the participant can quit the study whenever required, even when the study has not ended ( 7 ).

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - C.Ö.Ç., A.D.; Design - C.Ö.Ç.; Supervision - A.D.; Resource - C.Ö.Ç., A.D.; Materials - C.Ö.Ç., A.D.; Analysis and/or Interpretation - C.Ö.Ç., A.D.; Literature Search - C.Ö.Ç.; Writing Manuscript - C.Ö.Ç.; Critical Review - A.D.; Other - C.Ö.Ç., A.D.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game New
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications

How to Do Research

Last Updated: March 13, 2023 References

This article was co-authored by Matthew Snipp, PhD and by wikiHow staff writer, Jennifer Mueller, JD . C. Matthew Snipp is the Burnet C. and Mildred Finley Wohlford Professor of Humanities and Sciences in the Department of Sociology at Stanford University. He is also the Director for the Institute for Research in the Social Science’s Secure Data Center. He has been a Research Fellow at the U.S. Bureau of the Census and a Fellow at the Center for Advanced Study in the Behavioral Sciences. He has published 3 books and over 70 articles and book chapters on demography, economic development, poverty and unemployment. He is also currently serving on the National Institute of Child Health and Development’s Population Science Subcommittee. He holds a Ph.D. in Sociology from the University of Wisconsin—Madison. This article has been viewed 226,598 times.

The idea of doing research may seem daunting, but as long as you keep yourself organized and focus on the question you want to answer, you'll be fine. If you're curious and interested in the topic, you might even find it fun! We here at wikiHow have gathered answers to all your most common questions about how to do research, from finding a good topic to identifying the best sources and writing your final paper.

How do I find a topic to research?

Preliminary research in your field of study helps you find a topic.

  • For example, if you're researching in the political science field, you might be interested in determining what leads people to believe that the 2020 US presidential election was illegitimate.

Matthew Snipp, PhD

How do I get started on my research?

Look for overview articles to gain a better understanding of your topic.

  • For example, if you're researching the 2020 election, you might find that "absentee ballots" and "voting by mail" come up frequently. Those are issues you could look into further to figure out how they impacted the final election results.
  • You don't necessarily have to use the overview articles you look at as resources in your actual paper. Even Wikipedia articles can be a good way to learn more about a topic and you can check the references for more reputable sources that might work for your paper.

What's the best way to keep track of my sources?

Use index cards to take notes and record citation information for each source.

  • Research papers typically discuss 2 or 3 separate things that work together to answer the research question. You might also want to make a note on the front of which thing that source relates to. That'll make it easier for you to organize your sources later.
  • For example, if you're researching the 2020 election, you might have a section of your paper discussing voting by mail. For the sources that directly address that issue, write "voting by mail" in the corner.

What kind of notes should I be taking as I research?

Try to put ideas in your own words rather than copying from the source.

  • If you find something that you think would make a good quote, copy it out exactly with quote marks around it, then add the page number where it appears so you can correctly cite it in your paper without having to go back and hunt for it again.

How do I evaluate the quality of a source?

Check into the background of the author and the publication.

  • Does the article discuss or reference another article? (If so, use that article instead.)
  • What expertise or authority does the author have?
  • When was the material written? (Is it the most up-to-date reference you could use?)
  • Why was the article published? (Is it trying to sell you something or persuade you to adopt a certain viewpoint?)
  • Are the research methods used consistent and reliable? (Appropriate research methods depend on what was studied.)

What if I'm having a hard time finding good sources?

If there aren't enough sources, broaden your topic.

  • For example, if you're writing about the 2020 election, you might find tons of stories online, but very little that is reputable enough for you to use in your paper. Because the election happened so recently, it might be too soon for there to be a lot of solid academic research on it. Instead, you might focus on the 2016 election.
  • You can also ask for help. Your instructor might be able to point you toward good sources. Research librarians are also happy to help you.

How do I organize my research for my paper?

Start making a rough outline of your paper while you're researching.

  • For example, if you're researching the effect of the COVID-19 pandemic on the 2020 election, you might have sections on social distancing and cleaning at in-person voting locations, the accessibility of mail-in ballots, and early voting.

What's the best way to start writing my paper?

Start writing the middle, or body, of your paper.

  • Include an in-text citation for everything that needs one, even in your initial rough draft. That'll help you make sure that you don't inadvertently misattribute or fail to cite something as you work your way through substantive drafts.
  • Write your introduction and conclusion only after you're satisfied that the body of your paper is essentially what you want to turn in. Then, you can polish everything up for the final draft.

How can I make sure I'm not plagiarizing?

Include a citation for every idea that isn't your original thought.

  • If you have any doubt over whether you should cite something, go ahead and do it. You're better off to err on the side of over-citing than to look like you're taking credit for an idea that isn't yours.
  • ↑ https://www.nhcc.edu/student-resources/library/doinglibraryresearch/basic-steps-in-the-research-process
  • ↑ Matthew Snipp, PhD. Sociology Professor, Stanford University. Expert Interview. 26 March 2020.
  • ↑ https://library.taylor.edu/eng-212/research-paper
  • ↑ http://www.butte.edu/departments/cas/tipsheets/research/research_paper.html
  • ↑ https://www.potsdam.edu/sites/default/files/documents/support/tutoring/cwc/6-Simple-Steps-for-Writing-a-Research-Paper.pdf
  • ↑ https://www.umgc.edu/current-students/learning-resources/writing-center/online-guide-to-writing/tutorial/chapter4/ch4-05.html

Expert Q&A

You might also like.

Do Internet Research

About This Article

Matthew Snipp, PhD

If you need to do research on a particular topic, start by searching the internet for any information you can find on the subject. In particular, look for sites that are sourced by universities, scientists, academic journals, and government agencies. Next, visit your local library and use the electric card catalog to research which books, magazines, and journals will have information on your topic. Take notes as you read, and write down all of the information you’ll need to cite your sources in your final project. To learn how interviewing a first-hand source can help you during your research, read on! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Shenuka Ranawaka

Shenuka Ranawaka

Sep 16, 2016

Did this article help you?

Shenuka Ranawaka

Ismail El Omari

Mar 3, 2022

Am I a Narcissist or an Empath Quiz

Featured Articles

Relive the 1970s (for Kids)

Trending Articles

How to Celebrate Passover: Rules, Rituals, Foods, & More

Watch Articles

Fold Boxer Briefs

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Don’t miss out! Sign up for

wikiHow’s newsletter

Grad Coach

1000+ FREE Research Topics & Title Ideas

If you’re at the start of your research journey and are trying to figure out which research topic you want to focus on, you’ve come to the right place. Select your area of interest below to view a comprehensive collection of potential research ideas.

Research topic idea mega list

Research Topic FAQs

What (exactly) is a research topic.

A research topic is the subject of a research project or study – for example, a dissertation or thesis. A research topic typically takes the form of a problem to be solved, or a question to be answered.

A good research topic should be specific enough to allow for focused research and analysis. For example, if you are interested in studying the effects of climate change on agriculture, your research topic could focus on how rising temperatures have impacted crop yields in certain regions over time.

To learn more about the basics of developing a research topic, consider our free research topic ideation webinar.

What constitutes a good research topic?

A strong research topic comprises three important qualities : originality, value and feasibility.

  • Originality – a good topic explores an original area or takes a novel angle on an existing area of study.
  • Value – a strong research topic provides value and makes a contribution, either academically or practically.
  • Feasibility – a good research topic needs to be practical and manageable, given the resource constraints you face.

To learn more about what makes for a high-quality research topic, check out this post .

What's the difference between a research topic and research problem?

A research topic and a research problem are two distinct concepts that are often confused. A research topic is a broader label that indicates the focus of the study , while a research problem is an issue or gap in knowledge within the broader field that needs to be addressed.

To illustrate this distinction, consider a student who has chosen “teenage pregnancy in the United Kingdom” as their research topic. This research topic could encompass any number of issues related to teenage pregnancy such as causes, prevention strategies, health outcomes for mothers and babies, etc.

Within this broad category (the research topic) lies potential areas of inquiry that can be explored further – these become the research problems . For example:

  • What factors contribute to higher rates of teenage pregnancy in certain communities?
  • How do different types of parenting styles affect teen pregnancy rates?
  • What interventions have been successful in reducing teenage pregnancies?

Simply put, a key difference between a research topic and a research problem is scope ; the research topic provides an umbrella under which multiple questions can be asked, while the research problem focuses on one specific question or set of questions within that larger context.

How can I find potential research topics for my project?

There are many steps involved in the process of finding and choosing a high-quality research topic for a dissertation or thesis. We cover these steps in detail in this video (also accessible below).

How can I find quality sources for my research topic?

Finding quality sources is an essential step in the topic ideation process. To do this, you should start by researching scholarly journals, books, and other academic publications related to your topic. These sources can provide reliable information on a wide range of topics. Additionally, they may contain data or statistics that can help support your argument or conclusions.

Identifying Relevant Sources

When searching for relevant sources, it’s important to look beyond just published material; try using online databases such as Google Scholar or JSTOR to find articles from reputable journals that have been peer-reviewed by experts in the field.

You can also use search engines like Google or Bing to locate websites with useful information about your topic. However, be sure to evaluate any website before citing it as a source—look for evidence of authorship (such as an “About Us” page) and make sure the content is up-to-date and accurate before relying on it.

Evaluating Sources

Once you’ve identified potential sources for your research project, take some time to evaluate them thoroughly before deciding which ones will best serve your purpose. Consider factors such as author credibility (are they an expert in their field?), publication date (is the source current?), objectivity (does the author present both sides of an issue?) and relevance (how closely does this source relate to my specific topic?).

By researching the current literature on your topic, you can identify potential sources that will help to provide quality information. Once you’ve identified these sources, it’s time to look for a gap in the research and determine what new knowledge could be gained from further study.

How can I find a good research gap?

Finding a strong gap in the literature is an essential step when looking for potential research topics. We explain what research gaps are and how to find them in this post.

How should I evaluate potential research topics/ideas?

When evaluating potential research topics, it is important to consider the factors that make for a strong topic (we discussed these earlier). Specifically:

  • Originality
  • Feasibility

So, when you have a list of potential topics or ideas, assess each of them in terms of these three criteria. A good topic should take a unique angle, provide value (either to academia or practitioners), and be practical enough for you to pull off, given your limited resources.

Finally, you should also assess whether this project could lead to potential career opportunities such as internships or job offers down the line. Make sure that you are researching something that is relevant enough so that it can benefit your professional development in some way. Additionally, consider how each research topic aligns with your career goals and interests; researching something that you are passionate about can help keep motivation high throughout the process.

How can I assess the feasibility of a research topic?

When evaluating the feasibility and practicality of a research topic, it is important to consider several factors.

First, you should assess whether or not the research topic is within your area of competence. Of course, when you start out, you are not expected to be the world’s leading expert, but do should at least have some foundational knowledge.

Time commitment

When considering a research topic, you should think about how much time will be required for completion. Depending on your field of study, some topics may require more time than others due to their complexity or scope.

Additionally, if you plan on collaborating with other researchers or institutions in order to complete your project, additional considerations must be taken into account such as coordinating schedules and ensuring that all parties involved have adequate resources available.

Resources needed

It’s also critically important to consider what type of resources are necessary in order to conduct the research successfully. This includes physical materials such as lab equipment and chemicals but can also include intangible items like access to certain databases or software programs which may be necessary depending on the nature of your work. Additionally, if there are costs associated with obtaining these materials then this must also be factored into your evaluation process.

Potential risks

It’s important to consider the inherent potential risks for each potential research topic. These can include ethical risks (challenges getting ethical approval), data risks (not being able to access the data you’ll need), technical risks relating to the equipment you’ll use and funding risks (not securing the necessary financial back to undertake the research).

If you’re looking for more information about how to find, evaluate and select research topics for your dissertation or thesis, check out our free webinar here . Alternatively, if you’d like 1:1 help with the topic ideation process, consider our private coaching services .

research work about the

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

research work about the

Princeton Correspondents on Undergraduate Research

How to Make a Successful Research Presentation

Turning a research paper into a visual presentation is difficult; there are pitfalls, and navigating the path to a brief, informative presentation takes time and practice. As a TA for  GEO/WRI 201: Methods in Data Analysis & Scientific Writing this past fall, I saw how this process works from an instructor’s standpoint. I’ve presented my own research before, but helping others present theirs taught me a bit more about the process. Here are some tips I learned that may help you with your next research presentation:

More is more

In general, your presentation will always benefit from more practice, more feedback, and more revision. By practicing in front of friends, you can get comfortable with presenting your work while receiving feedback. It is hard to know how to revise your presentation if you never practice. If you are presenting to a general audience, getting feedback from someone outside of your discipline is crucial. Terms and ideas that seem intuitive to you may be completely foreign to someone else, and your well-crafted presentation could fall flat.

Less is more

Limit the scope of your presentation, the number of slides, and the text on each slide. In my experience, text works well for organizing slides, orienting the audience to key terms, and annotating important figures–not for explaining complex ideas. Having fewer slides is usually better as well. In general, about one slide per minute of presentation is an appropriate budget. Too many slides is usually a sign that your topic is too broad.

research work about the

Limit the scope of your presentation

Don’t present your paper. Presentations are usually around 10 min long. You will not have time to explain all of the research you did in a semester (or a year!) in such a short span of time. Instead, focus on the highlight(s). Identify a single compelling research question which your work addressed, and craft a succinct but complete narrative around it.

You will not have time to explain all of the research you did. Instead, focus on the highlights. Identify a single compelling research question which your work addressed, and craft a succinct but complete narrative around it.

Craft a compelling research narrative

After identifying the focused research question, walk your audience through your research as if it were a story. Presentations with strong narrative arcs are clear, captivating, and compelling.

  • Introduction (exposition — rising action)

Orient the audience and draw them in by demonstrating the relevance and importance of your research story with strong global motive. Provide them with the necessary vocabulary and background knowledge to understand the plot of your story. Introduce the key studies (characters) relevant in your story and build tension and conflict with scholarly and data motive. By the end of your introduction, your audience should clearly understand your research question and be dying to know how you resolve the tension built through motive.

research work about the

  • Methods (rising action)

The methods section should transition smoothly and logically from the introduction. Beware of presenting your methods in a boring, arc-killing, ‘this is what I did.’ Focus on the details that set your story apart from the stories other people have already told. Keep the audience interested by clearly motivating your decisions based on your original research question or the tension built in your introduction.

  • Results (climax)

Less is usually more here. Only present results which are clearly related to the focused research question you are presenting. Make sure you explain the results clearly so that your audience understands what your research found. This is the peak of tension in your narrative arc, so don’t undercut it by quickly clicking through to your discussion.

  • Discussion (falling action)

By now your audience should be dying for a satisfying resolution. Here is where you contextualize your results and begin resolving the tension between past research. Be thorough. If you have too many conflicts left unresolved, or you don’t have enough time to present all of the resolutions, you probably need to further narrow the scope of your presentation.

  • Conclusion (denouement)

Return back to your initial research question and motive, resolving any final conflicts and tying up loose ends. Leave the audience with a clear resolution of your focus research question, and use unresolved tension to set up potential sequels (i.e. further research).

Use your medium to enhance the narrative

Visual presentations should be dominated by clear, intentional graphics. Subtle animation in key moments (usually during the results or discussion) can add drama to the narrative arc and make conflict resolutions more satisfying. You are narrating a story written in images, videos, cartoons, and graphs. While your paper is mostly text, with graphics to highlight crucial points, your slides should be the opposite. Adapting to the new medium may require you to create or acquire far more graphics than you included in your paper, but it is necessary to create an engaging presentation.

The most important thing you can do for your presentation is to practice and revise. Bother your friends, your roommates, TAs–anybody who will sit down and listen to your work. Beyond that, think about presentations you have found compelling and try to incorporate some of those elements into your own. Remember you want your work to be comprehensible; you aren’t creating experts in 10 minutes. Above all, try to stay passionate about what you did and why. You put the time in, so show your audience that it’s worth it.

For more insight into research presentations, check out these past PCUR posts written by Emma and Ellie .

— Alec Getraer, Natural Sciences Correspondent

Share this:

  • Share on Tumblr

research work about the

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • 15 April 2024
  • Correction 22 April 2024

Revealed: the ten research papers that policy documents cite most

  • Dalmeet Singh Chawla 0

Dalmeet Singh Chawla is a freelance science journalist based in London.

You can also search for this author in PubMed   Google Scholar

G7 leaders gather for a photo at the Itsukushima Shrine during the G7 Summit in Hiroshima, Japan in 2023

Policymakers often work behind closed doors — but the documents they produce offer clues about the research that influences them. Credit: Stefan Rousseau/Getty

When David Autor co-wrote a paper on how computerization affects job skill demands more than 20 years ago, a journal took 18 months to consider it — only to reject it after review. He went on to submit it to The Quarterly Journal of Economics , which eventually published the work 1 in November 2003.

Autor’s paper is now the third most cited in policy documents worldwide, according to an analysis of data provided exclusively to Nature . It has accumulated around 1,100 citations in policy documents, show figures from the London-based firm Overton (see ‘The most-cited papers in policy’), which maintains a database of more than 12 million policy documents, think-tank papers, white papers and guidelines.

“I thought it was destined to be quite an obscure paper,” recalls Autor, a public-policy scholar and economist at the Massachusetts Institute of Technology in Cambridge. “I’m excited that a lot of people are citing it.”

The most-cited papers in policy

Economics papers dominate the top ten papers that policy documents reference most.

Data from Overton as of 15 April 2024

The top ten most cited papers in policy documents are dominated by economics research; the number one most referenced study has around 1,300 citations. When economics studies are excluded, a 1997 Nature paper 2 about Earth’s ecosystem services and natural capital is second on the list, with more than 900 policy citations. The paper has also garnered more than 32,000 references from other studies, according to Google Scholar. Other highly cited non-economics studies include works on planetary boundaries, sustainable foods and the future of employment (see ‘Most-cited papers — excluding economics research’).

These lists provide insight into the types of research that politicians pay attention to, but policy citations don’t necessarily imply impact or influence, and Overton’s database has a bias towards documents published in English.

Interdisciplinary impact

Overton usually charges a licence fee to access its citation data. But last year, the firm worked with the publisher Sage to release a free web-based tool , based in Thousand Oaks, California, that allows any researcher to find out how many times policy documents have cited their papers or mention their names. Overton and Sage said they created the tool, called Sage Policy Profiles, to help researchers to demonstrate the impact or influence their work might be having on policy. This can be useful for researchers during promotion or tenure interviews and in grant applications.

Autor thinks his study stands out because his paper was different from what other economists were writing at the time. It suggested that ‘middle-skill’ work, typically done in offices or factories by people who haven’t attended university, was going to be largely automated, leaving workers with either highly skilled jobs or manual work. “It has stood the test of time,” he says, “and it got people to focus on what I think is the right problem.” That topic is just as relevant today, Autor says, especially with the rise of artificial intelligence.

Most-cited papers — excluding economics research

When economics studies are excluded, the research papers that policy documents most commonly reference cover topics including climate change and nutrition.

Walter Willett, an epidemiologist and food scientist at the Harvard T.H. Chan School of Public Health in Boston, Massachusetts, thinks that interdisciplinary teams are most likely to gain a lot of policy citations. He co-authored a paper on the list of most cited non-economics studies: a 2019 work 3 that was part of a Lancet commission to investigate how to feed the global population a healthy and environmentally sustainable diet by 2050 and has accumulated more than 600 policy citations.

“I think it had an impact because it was clearly a multidisciplinary effort,” says Willett. The work was co-authored by 37 scientists from 17 countries. The team included researchers from disciplines including food science, health metrics, climate change, ecology and evolution and bioethics. “None of us could have done this on our own. It really did require working with people outside our fields.”

Sverker Sörlin, an environmental historian at the KTH Royal Institute of Technology in Stockholm, agrees that papers with a diverse set of authors often attract more policy citations. “It’s the combined effect that is often the key to getting more influence,” he says.

research work about the

Has your research influenced policy? Use this free tool to check

Sörlin co-authored two papers in the list of top ten non-economics papers. One of those is a 2015 Science paper 4 on planetary boundaries — a concept defining the environmental limits in which humanity can develop and thrive — which has attracted more than 750 policy citations. Sörlin thinks one reason it has been popular is that it’s a sequel to a 2009 Nature paper 5 he co-authored on the same topic, which has been cited by policy documents 575 times.

Although policy citations don’t necessarily imply influence, Willett has seen evidence that his paper is prompting changes in policy. He points to Denmark as an example, noting that the nation is reformatting its dietary guidelines in line with the study’s recommendations. “I certainly can’t say that this document is the only thing that’s changing their guidelines,” he says. But “this gave it the support and credibility that allowed them to go forward”.

Broad brush

Peter Gluckman, who was the chief science adviser to the prime minister of New Zealand between 2009 and 2018, is not surprised by the lists. He expects policymakers to refer to broad-brush papers rather than those reporting on incremental advances in a field.

Gluckman, a paediatrician and biomedical scientist at the University of Auckland in New Zealand, notes that it’s important to consider the context in which papers are being cited, because studies reporting controversial findings sometimes attract many citations. He also warns that the list is probably not comprehensive: many policy papers are not easily accessible to tools such as Overton, which uses text mining to compile data, and so will not be included in the database.

research work about the

The top 100 papers

“The thing that worries me most is the age of the papers that are involved,” Gluckman says. “Does that tell us something about just the way the analysis is done or that relatively few papers get heavily used in policymaking?”

Gluckman says it’s strange that some recent work on climate change, food security, social cohesion and similar areas hasn’t made it to the non-economics list. “Maybe it’s just because they’re not being referred to,” he says, or perhaps that work is cited, in turn, in the broad-scope papers that are most heavily referenced in policy documents.

As for Sage Policy Profiles, Gluckman says it’s always useful to get an idea of which studies are attracting attention from policymakers, but he notes that studies often take years to influence policy. “Yet the average academic is trying to make a claim here and now that their current work is having an impact,” he adds. “So there’s a disconnect there.”

Willett thinks policy citations are probably more important than scholarly citations in other papers. “In the end, we don’t want this to just sit on an academic shelf.”

doi: https://doi.org/10.1038/d41586-024-00660-1

Updates & Corrections

Correction 22 April 2024 : The original version of this story credited Sage, rather than Overton, as the source of the policy papers’ citation data. Sage’s location has also been updated.

Autor, D. H., Levy, F. & Murnane, R. J. Q. J. Econ. 118 , 1279–1333 (2003).

Article   Google Scholar  

Costanza, R. et al. Nature 387 , 253–260 (1997).

Willett, W. et al. Lancet 393 , 447–492 (2019).

Article   PubMed   Google Scholar  

Steffen, W. et al. Science 347 , 1259855 (2015).

Rockström, J. et al. Nature 461 , 472–475 (2009).

Download references

Reprints and permissions

Related Articles

research work about the

India’s 50-year-old Chipko movement is a model for environmental activism

Correspondence 23 APR 24

The Middle East’s largest hypersaline lake risks turning into an environmental disaster zone

More work is needed to take on the rural wastewater challenge

CERN’s impact goes way beyond tiny particles

CERN’s impact goes way beyond tiny particles

Spotlight 17 APR 24

The economic commitment of climate change

The economic commitment of climate change

Article 17 APR 24

Last-mile delivery increases vaccine uptake in Sierra Leone

Last-mile delivery increases vaccine uptake in Sierra Leone

Article 13 MAR 24

Postdoctoral Associate- Computational Spatial Biology

Houston, Texas (US)

Baylor College of Medicine (BCM)

research work about the

Staff Scientist - Genetics and Genomics

Technician - senior technician in cell and molecular biology.

APPLICATION CLOSING DATE: 24.05.2024 Human Technopole (HT) is a distinguished life science research institute founded and supported by the Italian ...

Human Technopole

research work about the

Postdoctoral Fellow

The Dubal Laboratory of Neuroscience and Aging at the University of California, San Francisco (UCSF) seeks postdoctoral fellows to investigate the ...

San Francisco, California

University of California, San Francsico

research work about the

Postdoctoral Associate

research work about the

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research work about the

  •   ResearchWorks Home

Welcome to ResearchWorks at the University of Washington

First time adding to ResearchWorks? Please contact us .

ResearchWorks Archive is the University of Washington's digital repository (also known as "institutional repository") for disseminating scholarly work. More information about ResearchWorks can be found on the Scholarly Publishing Services page .

Looking to deposit a dataset? UW has a membership with the generalist data repository Dryad. Use our guide to see if Dryad is the right place for you to deposit your data.

Communities in ResearchWorks

Select a community to browse its collections.

A collection of faculty research work.

The University of Washington Bothell ResearchWorks Archive is an open access institutional repository maintained by the University of Washington Libraries. UW Bothell faculty, staff, and researchers are encouraged to submit articles,

Recently Added

The california carbon report: an analysis of the embodied and operational carbon impacts of 30 buildings , clf wblca benchmark study (v2) data entry template v1.0 , clf wblca benchmark study (v2) data collection user guide v1.0 , validation of a sports betting adaptation to the problem gambling severity index in young adults , end of life modeling and data in north american whole building life cycle assessment tools .

feed

  • Privacy Policy

Research Method

Home » Research Paper Format – Types, Examples and Templates

Research Paper Format – Types, Examples and Templates

Table of Contents

Research Paper Formats

Research paper format is an essential aspect of academic writing that plays a crucial role in the communication of research findings . The format of a research paper depends on various factors such as the discipline, style guide, and purpose of the research. It includes guidelines for the structure, citation style, referencing , and other elements of the paper that contribute to its overall presentation and coherence. Adhering to the appropriate research paper format is vital for ensuring that the research is accurately and effectively communicated to the intended audience. In this era of information, it is essential to understand the different research paper formats and their guidelines to communicate research effectively, accurately, and with the required level of detail. This post aims to provide an overview of some of the common research paper formats used in academic writing.

Research Paper Formats

Research Paper Formats are as follows:

  • APA (American Psychological Association) format
  • MLA (Modern Language Association) format
  • Chicago/Turabian style
  • IEEE (Institute of Electrical and Electronics Engineers) format
  • AMA (American Medical Association) style
  • Harvard style
  • Vancouver style
  • ACS (American Chemical Society) style
  • ASA (American Sociological Association) style
  • APSA (American Political Science Association) style

APA (American Psychological Association) Format

Here is a general APA format for a research paper:

  • Title Page: The title page should include the title of your paper, your name, and your institutional affiliation. It should also include a running head, which is a shortened version of the title, and a page number in the upper right-hand corner.
  • Abstract : The abstract is a brief summary of your paper, typically 150-250 words. It should include the purpose of your research, the main findings, and any implications or conclusions that can be drawn.
  • Introduction: The introduction should provide background information on your topic, state the purpose of your research, and present your research question or hypothesis. It should also include a brief literature review that discusses previous research on your topic.
  • Methods: The methods section should describe the procedures you used to collect and analyze your data. It should include information on the participants, the materials and instruments used, and the statistical analyses performed.
  • Results: The results section should present the findings of your research in a clear and concise manner. Use tables and figures to help illustrate your results.
  • Discussion : The discussion section should interpret your results and relate them back to your research question or hypothesis. It should also discuss the implications of your findings and any limitations of your study.
  • References : The references section should include a list of all sources cited in your paper. Follow APA formatting guidelines for your citations and references.

Some additional tips for formatting your APA research paper:

  • Use 12-point Times New Roman font throughout the paper.
  • Double-space all text, including the references.
  • Use 1-inch margins on all sides of the page.
  • Indent the first line of each paragraph by 0.5 inches.
  • Use a hanging indent for the references (the first line should be flush with the left margin, and all subsequent lines should be indented).
  • Number all pages, including the title page and references page, in the upper right-hand corner.

APA Research Paper Format Template

APA Research Paper Format Template is as follows:

Title Page:

  • Title of the paper
  • Author’s name
  • Institutional affiliation
  • A brief summary of the main points of the paper, including the research question, methods, findings, and conclusions. The abstract should be no more than 250 words.

Introduction:

  • Background information on the topic of the research paper
  • Research question or hypothesis
  • Significance of the study
  • Overview of the research methods and design
  • Brief summary of the main findings
  • Participants: description of the sample population, including the number of participants and their characteristics (age, gender, ethnicity, etc.)
  • Materials: description of any materials used in the study (e.g., survey questions, experimental apparatus)
  • Procedure: detailed description of the steps taken to conduct the study
  • Presentation of the findings of the study, including statistical analyses if applicable
  • Tables and figures may be included to illustrate the results

Discussion:

  • Interpretation of the results in light of the research question and hypothesis
  • Implications of the study for the field
  • Limitations of the study
  • Suggestions for future research

References:

  • A list of all sources cited in the paper, in APA format

Formatting guidelines:

  • Double-spaced
  • 12-point font (Times New Roman or Arial)
  • 1-inch margins on all sides
  • Page numbers in the top right corner
  • Headings and subheadings should be used to organize the paper
  • The first line of each paragraph should be indented
  • Quotations of 40 or more words should be set off in a block quote with no quotation marks
  • In-text citations should include the author’s last name and year of publication (e.g., Smith, 2019)

APA Research Paper Format Example

APA Research Paper Format Example is as follows:

The Effects of Social Media on Mental Health

University of XYZ

This study examines the relationship between social media use and mental health among college students. Data was collected through a survey of 500 students at the University of XYZ. Results suggest that social media use is significantly related to symptoms of depression and anxiety, and that the negative effects of social media are greater among frequent users.

Social media has become an increasingly important aspect of modern life, especially among young adults. While social media can have many positive effects, such as connecting people across distances and sharing information, there is growing concern about its impact on mental health. This study aims to examine the relationship between social media use and mental health among college students.

Participants: Participants were 500 college students at the University of XYZ, recruited through online advertisements and flyers posted on campus. Participants ranged in age from 18 to 25, with a mean age of 20.5 years. The sample was 60% female, 40% male, and 5% identified as non-binary or gender non-conforming.

Data was collected through an online survey administered through Qualtrics. The survey consisted of several measures, including the Patient Health Questionnaire-9 (PHQ-9) for depression symptoms, the Generalized Anxiety Disorder-7 (GAD-7) for anxiety symptoms, and questions about social media use.

Procedure :

Participants were asked to complete the online survey at their convenience. The survey took approximately 20-30 minutes to complete. Data was analyzed using descriptive statistics, correlations, and multiple regression analysis.

Results indicated that social media use was significantly related to symptoms of depression (r = .32, p < .001) and anxiety (r = .29, p < .001). Regression analysis indicated that frequency of social media use was a significant predictor of both depression symptoms (β = .24, p < .001) and anxiety symptoms (β = .20, p < .001), even when controlling for age, gender, and other relevant factors.

The results of this study suggest that social media use is associated with symptoms of depression and anxiety among college students. The negative effects of social media are greater among frequent users. These findings have important implications for mental health professionals and educators, who should consider addressing the potential negative effects of social media use in their work with young adults.

References :

References should be listed in alphabetical order according to the author’s last name. For example:

  • Chou, H. T. G., & Edge, N. (2012). “They are happier and having better lives than I am”: The impact of using Facebook on perceptions of others’ lives. Cyberpsychology, Behavior, and Social Networking, 15(2), 117-121.
  • Twenge, J. M., Joiner, T. E., Rogers, M. L., & Martin, G. N. (2018). Increases in depressive symptoms, suicide-related outcomes, and suicide rates among U.S. adolescents after 2010 and links to increased new media screen time. Clinical Psychological Science, 6(1), 3-17.

Note: This is just a sample Example do not use this in your assignment.

MLA (Modern Language Association) Format

MLA (Modern Language Association) Format is as follows:

  • Page Layout : Use 8.5 x 11-inch white paper, with 1-inch margins on all sides. The font should be 12-point Times New Roman or a similar serif font.
  • Heading and Title : The first page of your research paper should include a heading and a title. The heading should include your name, your instructor’s name, the course title, and the date. The title should be centered and in title case (capitalizing the first letter of each important word).
  • In-Text Citations : Use parenthetical citations to indicate the source of your information. The citation should include the author’s last name and the page number(s) of the source. For example: (Smith 23).
  • Works Cited Page : At the end of your paper, include a Works Cited page that lists all the sources you used in your research. Each entry should include the author’s name, the title of the work, the publication information, and the medium of publication.
  • Formatting Quotations : Use double quotation marks for short quotations and block quotations for longer quotations. Indent the entire quotation five spaces from the left margin.
  • Formatting the Body : Use a clear and readable font and double-space your text throughout. The first line of each paragraph should be indented one-half inch from the left margin.

MLA Research Paper Template

MLA Research Paper Format Template is as follows:

  • Use 8.5 x 11 inch white paper.
  • Use a 12-point font, such as Times New Roman.
  • Use double-spacing throughout the entire paper, including the title page and works cited page.
  • Set the margins to 1 inch on all sides.
  • Use page numbers in the upper right corner, beginning with the first page of text.
  • Include a centered title for the research paper, using title case (capitalizing the first letter of each important word).
  • Include your name, instructor’s name, course name, and date in the upper left corner, double-spaced.

In-Text Citations

  • When quoting or paraphrasing information from sources, include an in-text citation within the text of your paper.
  • Use the author’s last name and the page number in parentheses at the end of the sentence, before the punctuation mark.
  • If the author’s name is mentioned in the sentence, only include the page number in parentheses.

Works Cited Page

  • List all sources cited in alphabetical order by the author’s last name.
  • Each entry should include the author’s name, title of the work, publication information, and medium of publication.
  • Use italics for book and journal titles, and quotation marks for article and chapter titles.
  • For online sources, include the date of access and the URL.

Here is an example of how the first page of a research paper in MLA format should look:

Headings and Subheadings

  • Use headings and subheadings to organize your paper and make it easier to read.
  • Use numerals to number your headings and subheadings (e.g. 1, 2, 3), and capitalize the first letter of each word.
  • The main heading should be centered and in boldface type, while subheadings should be left-aligned and in italics.
  • Use only one space after each period or punctuation mark.
  • Use quotation marks to indicate direct quotes from a source.
  • If the quote is more than four lines, format it as a block quote, indented one inch from the left margin and without quotation marks.
  • Use ellipses (…) to indicate omitted words from a quote, and brackets ([…]) to indicate added words.

Works Cited Examples

  • Book: Last Name, First Name. Title of Book. Publisher, Publication Year.
  • Journal Article: Last Name, First Name. “Title of Article.” Title of Journal, volume number, issue number, publication date, page numbers.
  • Website: Last Name, First Name. “Title of Webpage.” Title of Website, publication date, URL. Accessed date.

Here is an example of how a works cited entry for a book should look:

Smith, John. The Art of Writing Research Papers. Penguin, 2021.

MLA Research Paper Example

MLA Research Paper Format Example is as follows:

Your Professor’s Name

Course Name and Number

Date (in Day Month Year format)

Word Count (not including title page or Works Cited)

Title: The Impact of Video Games on Aggression Levels

Video games have become a popular form of entertainment among people of all ages. However, the impact of video games on aggression levels has been a subject of debate among scholars and researchers. While some argue that video games promote aggression and violent behavior, others argue that there is no clear link between video games and aggression levels. This research paper aims to explore the impact of video games on aggression levels among young adults.

Background:

The debate on the impact of video games on aggression levels has been ongoing for several years. According to the American Psychological Association, exposure to violent media, including video games, can increase aggression levels in children and adolescents. However, some researchers argue that there is no clear evidence to support this claim. Several studies have been conducted to examine the impact of video games on aggression levels, but the results have been mixed.

Methodology:

This research paper used a quantitative research approach to examine the impact of video games on aggression levels among young adults. A sample of 100 young adults between the ages of 18 and 25 was selected for the study. The participants were asked to complete a questionnaire that measured their aggression levels and their video game habits.

The results of the study showed that there was a significant correlation between video game habits and aggression levels among young adults. The participants who reported playing violent video games for more than 5 hours per week had higher aggression levels than those who played less than 5 hours per week. The study also found that male participants were more likely to play violent video games and had higher aggression levels than female participants.

The findings of this study support the claim that video games can increase aggression levels among young adults. However, it is important to note that the study only examined the impact of video games on aggression levels and did not take into account other factors that may contribute to aggressive behavior. It is also important to note that not all video games promote violence and aggression, and some games may have a positive impact on cognitive and social skills.

Conclusion :

In conclusion, this research paper provides evidence to support the claim that video games can increase aggression levels among young adults. However, it is important to conduct further research to examine the impact of video games on other aspects of behavior and to explore the potential benefits of video games. Parents and educators should be aware of the potential impact of video games on aggression levels and should encourage young adults to engage in a variety of activities that promote cognitive and social skills.

Works Cited:

  • American Psychological Association. (2017). Violent Video Games: Myths, Facts, and Unanswered Questions. Retrieved from https://www.apa.org/news/press/releases/2017/08/violent-video-games
  • Ferguson, C. J. (2015). Do Angry Birds make for angry children? A meta-analysis of video game influences on children’s and adolescents’ aggression, mental health, prosocial behavior, and academic performance. Perspectives on Psychological Science, 10(5), 646-666.
  • Gentile, D. A., Swing, E. L., Lim, C. G., & Khoo, A. (2012). Video game playing, attention problems, and impulsiveness: Evidence of bidirectional causality. Psychology of Popular Media Culture, 1(1), 62-70.
  • Greitemeyer, T. (2014). Effects of prosocial video games on prosocial behavior. Journal of Personality and Social Psychology, 106(4), 530-548.

Chicago/Turabian Style

Chicago/Turabian Formate is as follows:

  • Margins : Use 1-inch margins on all sides of the paper.
  • Font : Use a readable font such as Times New Roman or Arial, and use a 12-point font size.
  • Page numbering : Number all pages in the upper right-hand corner, beginning with the first page of text. Use Arabic numerals.
  • Title page: Include a title page with the title of the paper, your name, course title and number, instructor’s name, and the date. The title should be centered on the page and in title case (capitalize the first letter of each word).
  • Headings: Use headings to organize your paper. The first level of headings should be centered and in boldface or italics. The second level of headings should be left-aligned and in boldface or italics. Use as many levels of headings as necessary to organize your paper.
  • In-text citations : Use footnotes or endnotes to cite sources within the text of your paper. The first citation for each source should be a full citation, and subsequent citations can be shortened. Use superscript numbers to indicate footnotes or endnotes.
  • Bibliography : Include a bibliography at the end of your paper, listing all sources cited in your paper. The bibliography should be in alphabetical order by the author’s last name, and each entry should include the author’s name, title of the work, publication information, and date of publication.
  • Formatting of quotations: Use block quotations for quotations that are longer than four lines. Indent the entire quotation one inch from the left margin, and do not use quotation marks. Single-space the quotation, and double-space between paragraphs.
  • Tables and figures: Use tables and figures to present data and illustrations. Number each table and figure sequentially, and provide a brief title for each. Place tables and figures as close as possible to the text that refers to them.
  • Spelling and grammar : Use correct spelling and grammar throughout your paper. Proofread carefully for errors.

Chicago/Turabian Research Paper Template

Chicago/Turabian Research Paper Template is as folows:

Title of Paper

Name of Student

Professor’s Name

I. Introduction

A. Background Information

B. Research Question

C. Thesis Statement

II. Literature Review

A. Overview of Existing Literature

B. Analysis of Key Literature

C. Identification of Gaps in Literature

III. Methodology

A. Research Design

B. Data Collection

C. Data Analysis

IV. Results

A. Presentation of Findings

B. Analysis of Findings

C. Discussion of Implications

V. Conclusion

A. Summary of Findings

B. Implications for Future Research

C. Conclusion

VI. References

A. Bibliography

B. In-Text Citations

VII. Appendices (if necessary)

A. Data Tables

C. Additional Supporting Materials

Chicago/Turabian Research Paper Example

Title: The Impact of Social Media on Political Engagement

Name: John Smith

Class: POLS 101

Professor: Dr. Jane Doe

Date: April 8, 2023

I. Introduction:

Social media has become an integral part of our daily lives. People use social media platforms like Facebook, Twitter, and Instagram to connect with friends and family, share their opinions, and stay informed about current events. With the rise of social media, there has been a growing interest in understanding its impact on various aspects of society, including political engagement. In this paper, I will examine the relationship between social media use and political engagement, specifically focusing on how social media influences political participation and political attitudes.

II. Literature Review:

There is a growing body of literature on the impact of social media on political engagement. Some scholars argue that social media has a positive effect on political participation by providing new channels for political communication and mobilization (Delli Carpini & Keeter, 1996; Putnam, 2000). Others, however, suggest that social media can have a negative impact on political engagement by creating filter bubbles that reinforce existing beliefs and discourage political dialogue (Pariser, 2011; Sunstein, 2001).

III. Methodology:

To examine the relationship between social media use and political engagement, I conducted a survey of 500 college students. The survey included questions about social media use, political participation, and political attitudes. The data was analyzed using descriptive statistics and regression analysis.

Iv. Results:

The results of the survey indicate that social media use is positively associated with political participation. Specifically, respondents who reported using social media to discuss politics were more likely to have participated in a political campaign, attended a political rally, or contacted a political representative. Additionally, social media use was found to be associated with more positive attitudes towards political engagement, such as increased trust in government and belief in the effectiveness of political action.

V. Conclusion:

The findings of this study suggest that social media has a positive impact on political engagement, by providing new opportunities for political communication and mobilization. However, there is also a need for caution, as social media can also create filter bubbles that reinforce existing beliefs and discourage political dialogue. Future research should continue to explore the complex relationship between social media and political engagement, and develop strategies to harness the potential benefits of social media while mitigating its potential negative effects.

Vii. References:

  • Delli Carpini, M. X., & Keeter, S. (1996). What Americans know about politics and why it matters. Yale University Press.
  • Pariser, E. (2011). The filter bubble: What the Internet is hiding from you. Penguin.
  • Putnam, R. D. (2000). Bowling alone: The collapse and revival of American community. Simon & Schuster.
  • Sunstein, C. R. (2001). Republic.com. Princeton University Press.

IEEE (Institute of Electrical and Electronics Engineers) Format

IEEE (Institute of Electrical and Electronics Engineers) Research Paper Format is as follows:

  • Title : A concise and informative title that accurately reflects the content of the paper.
  • Abstract : A brief summary of the paper, typically no more than 250 words, that includes the purpose of the study, the methods used, the key findings, and the main conclusions.
  • Introduction : An overview of the background, context, and motivation for the research, including a clear statement of the problem being addressed and the objectives of the study.
  • Literature review: A critical analysis of the relevant research and scholarship on the topic, including a discussion of any gaps or limitations in the existing literature.
  • Methodology : A detailed description of the methods used to collect and analyze data, including any experiments or simulations, data collection instruments or procedures, and statistical analyses.
  • Results : A clear and concise presentation of the findings, including any relevant tables, graphs, or figures.
  • Discussion : A detailed interpretation of the results, including a comparison of the findings with previous research, a discussion of the implications of the results, and any recommendations for future research.
  • Conclusion : A summary of the key findings and main conclusions of the study.
  • References : A list of all sources cited in the paper, formatted according to IEEE guidelines.

In addition to these elements, an IEEE research paper should also follow certain formatting guidelines, including using 12-point font, double-spaced text, and numbered headings and subheadings. Additionally, any tables, figures, or equations should be clearly labeled and referenced in the text.

AMA (American Medical Association) Style

AMA (American Medical Association) Style Research Paper Format:

  • Title Page: This page includes the title of the paper, the author’s name, institutional affiliation, and any acknowledgments or disclaimers.
  • Abstract: The abstract is a brief summary of the paper that outlines the purpose, methods, results, and conclusions of the study. It is typically limited to 250 words or less.
  • Introduction: The introduction provides a background of the research problem, defines the research question, and outlines the objectives and hypotheses of the study.
  • Methods: The methods section describes the research design, participants, procedures, and instruments used to collect and analyze data.
  • Results: The results section presents the findings of the study in a clear and concise manner, using graphs, tables, and charts where appropriate.
  • Discussion: The discussion section interprets the results, explains their significance, and relates them to previous research in the field.
  • Conclusion: The conclusion summarizes the main points of the paper, discusses the implications of the findings, and suggests future research directions.
  • References: The reference list includes all sources cited in the paper, listed in alphabetical order by author’s last name.

In addition to these sections, the AMA format requires that authors follow specific guidelines for citing sources in the text and formatting their references. The AMA style uses a superscript number system for in-text citations and provides specific formats for different types of sources, such as books, journal articles, and websites.

Harvard Style

Harvard Style Research Paper format is as follows:

  • Title page: This should include the title of your paper, your name, the name of your institution, and the date of submission.
  • Abstract : This is a brief summary of your paper, usually no more than 250 words. It should outline the main points of your research and highlight your findings.
  • Introduction : This section should introduce your research topic, provide background information, and outline your research question or thesis statement.
  • Literature review: This section should review the relevant literature on your topic, including previous research studies, academic articles, and other sources.
  • Methodology : This section should describe the methods you used to conduct your research, including any data collection methods, research instruments, and sampling techniques.
  • Results : This section should present your findings in a clear and concise manner, using tables, graphs, and other visual aids if necessary.
  • Discussion : This section should interpret your findings and relate them to the broader research question or thesis statement. You should also discuss the implications of your research and suggest areas for future study.
  • Conclusion : This section should summarize your main findings and provide a final statement on the significance of your research.
  • References : This is a list of all the sources you cited in your paper, presented in alphabetical order by author name. Each citation should include the author’s name, the title of the source, the publication date, and other relevant information.

In addition to these sections, a Harvard Style research paper may also include a table of contents, appendices, and other supplementary materials as needed. It is important to follow the specific formatting guidelines provided by your instructor or academic institution when preparing your research paper in Harvard Style.

Vancouver Style

Vancouver Style Research Paper format is as follows:

The Vancouver citation style is commonly used in the biomedical sciences and is known for its use of numbered references. Here is a basic format for a research paper using the Vancouver citation style:

  • Title page: Include the title of your paper, your name, the name of your institution, and the date.
  • Abstract : This is a brief summary of your research paper, usually no more than 250 words.
  • Introduction : Provide some background information on your topic and state the purpose of your research.
  • Methods : Describe the methods you used to conduct your research, including the study design, data collection, and statistical analysis.
  • Results : Present your findings in a clear and concise manner, using tables and figures as needed.
  • Discussion : Interpret your results and explain their significance. Also, discuss any limitations of your study and suggest directions for future research.
  • References : List all of the sources you cited in your paper in numerical order. Each reference should include the author’s name, the title of the article or book, the name of the journal or publisher, the year of publication, and the page numbers.

ACS (American Chemical Society) Style

ACS (American Chemical Society) Style Research Paper format is as follows:

The American Chemical Society (ACS) Style is a citation style commonly used in chemistry and related fields. When formatting a research paper in ACS Style, here are some guidelines to follow:

  • Paper Size and Margins : Use standard 8.5″ x 11″ paper with 1-inch margins on all sides.
  • Font: Use a 12-point serif font (such as Times New Roman) for the main text. The title should be in bold and a larger font size.
  • Title Page : The title page should include the title of the paper, the authors’ names and affiliations, and the date of submission. The title should be centered on the page and written in bold font. The authors’ names should be centered below the title, followed by their affiliations and the date.
  • Abstract : The abstract should be a brief summary of the paper, no more than 250 words. It should be on a separate page and include the title of the paper, the authors’ names and affiliations, and the text of the abstract.
  • Main Text : The main text should be organized into sections with headings that clearly indicate the content of each section. The introduction should provide background information and state the research question or hypothesis. The methods section should describe the procedures used in the study. The results section should present the findings of the study, and the discussion section should interpret the results and provide conclusions.
  • References: Use the ACS Style guide to format the references cited in the paper. In-text citations should be numbered sequentially throughout the text and listed in numerical order at the end of the paper.
  • Figures and Tables: Figures and tables should be numbered sequentially and referenced in the text. Each should have a descriptive caption that explains its content. Figures should be submitted in a high-quality electronic format.
  • Supporting Information: Additional information such as data, graphs, and videos may be included as supporting information. This should be included in a separate file and referenced in the main text.
  • Acknowledgments : Acknowledge any funding sources or individuals who contributed to the research.

ASA (American Sociological Association) Style

ASA (American Sociological Association) Style Research Paper format is as follows:

  • Title Page: The title page of an ASA style research paper should include the title of the paper, the author’s name, and the institutional affiliation. The title should be centered and should be in title case (the first letter of each major word should be capitalized).
  • Abstract: An abstract is a brief summary of the paper that should appear on a separate page immediately following the title page. The abstract should be no more than 200 words in length and should summarize the main points of the paper.
  • Main Body: The main body of the paper should begin on a new page following the abstract page. The paper should be double-spaced, with 1-inch margins on all sides, and should be written in 12-point Times New Roman font. The main body of the paper should include an introduction, a literature review, a methodology section, results, and a discussion.
  • References : The reference section should appear on a separate page at the end of the paper. All sources cited in the paper should be listed in alphabetical order by the author’s last name. Each reference should include the author’s name, the title of the work, the publication information, and the date of publication.
  • Appendices : Appendices are optional and should only be included if they contain information that is relevant to the study but too lengthy to be included in the main body of the paper. If you include appendices, each one should be labeled with a letter (e.g., Appendix A, Appendix B, etc.) and should be referenced in the main body of the paper.

APSA (American Political Science Association) Style

APSA (American Political Science Association) Style Research Paper format is as follows:

  • Title Page: The title page should include the title of the paper, the author’s name, the name of the course or instructor, and the date.
  • Abstract : An abstract is typically not required in APSA style papers, but if one is included, it should be brief and summarize the main points of the paper.
  • Introduction : The introduction should provide an overview of the research topic, the research question, and the main argument or thesis of the paper.
  • Literature Review : The literature review should summarize the existing research on the topic and provide a context for the research question.
  • Methods : The methods section should describe the research methods used in the paper, including data collection and analysis.
  • Results : The results section should present the findings of the research.
  • Discussion : The discussion section should interpret the results and connect them back to the research question and argument.
  • Conclusion : The conclusion should summarize the main findings and implications of the research.
  • References : The reference list should include all sources cited in the paper, formatted according to APSA style guidelines.

In-text citations in APSA style use parenthetical citation, which includes the author’s last name, publication year, and page number(s) if applicable. For example, (Smith 2010, 25).

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Delimitations

Delimitations in Research – Types, Examples and...

Research Design

Research Design – Types, Methods and Examples

Research Paper Title

Research Paper Title – Writing Guide and Example

Research Paper Introduction

Research Paper Introduction – Writing Guide and...

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

The Edward A. Doisy Research Center on SLU's campus.

Creating the Next Generation of Researchers

Rita Heuertz, Ph.D.

A generous grant from the DeNardo Education and Research Foundation awarded to Rita Heuertz, Ph.D., i s creating unique opportunities for Saint Louis University students to work alongside the University's world-class researchers on impactful projects.

University students often find themselves eager for opportunities to apply what they’ve learned in the classroom to real-life research scenarios. Whereas students at some universities are frustrated with hypothetical or scaled-back research opportunities, students at Saint Louis University receive opportunities to work alongside world-class researchers on real, externally funded projects. A generous grant from the DeNardo Education and Research Foundation connects students at varying levels to get involved in such opportunities as early as freshman year.

Rita Heuertz, Ph.D., MLS(ASCP) , professor of clinical health sciences, has served as the principal investigator for the DeNardo grant since it was first awarded to her in 2013. Her program “Active Learning Through Research'' is in its sixth round of continuous funding and has enabled over 81 research scholarships to be awarded to students over the past decade.

"In doing all of this, the students take away from the experience a deep respect for research that stays with them throughout their future years and careers," Heuertz said.

Students work alongside SLU faculty researchers from a variety of disciplines, including clinical health sciences, pediatrics, and nutrition and dietetics. They receive two or more semesters of mentored research experience, the opportunity to publish their research in peer-reviewed journals, and the ability to present their research at conferences in St. Louis and across the country. Students have completed research in fields such as cancer, neuroscience, bacterial biofilms and antimicrobial resistance, sickle cell anemia, and protein regulation.

Heuertz and one of her DeNardo Scholar undergraduate students, Nilan Patel, presented research results from the project “Swarming behavior of Pseudomonas aeruginosa,” a study that assessed the swarming behavior of a pathogen responsible for many infections, such as those seen in patients with burns, chronic infections and cystic fibrosis. Through funding from the DeNardo Foundation, Patel was able to present his research at three venues over the past year, including the 2023 SLU Institute for Drug and Biotherapeutic Innovation (IDBI) Research Symposium, in which he won second place in the undergraduate research competition); the 2023 Discover BMB Conference, which is the annual conference of the American Society for Biochemistry and Molecular Biology; and the 2023 Sigma Xi Research Symposium (SLU Chapter).

Because of this experience, students gain critical research experience early in their undergraduate studies, which leads them toward successful futures. DeNardo Scholars who have graduated from SLU have continued their education at impressive research institutions or pursued careers at industry-leading companies. Heuertz shared that the program has cultivated an appreciation for research and a uniquely profound opportunity to put classwork into action.

“This is excellent for bringing the classroom into the laboratory,” Heuertz said. “It’s in the laboratory, when the students are there doing an experiment, where they learn firsthand the things that we teach in the classroom.”

Heuertz and the SLU community see the program as a pipeline — cultivating the next generation of researchers. With a decade of supporting undergraduate student research under its belt, the future of research continues to shine brightly across campus and into the world.

Story by Mary Pogue, senior copywriter, Paradigm .

This piece was written for the 2023 SLU Research Institute Annual Impact Report. The Impact Report is printed each spring to celebrate the successes of our researchers from the previous year and share the story of SLU's rise as a preeminent Jesuit research university. Design, photography, and some writing contributions are made by Paradigm . More information can be found here .

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Research: More People Use Mental Health Benefits When They Hear That Colleagues Use Them Too

  • Laura M. Giurge,
  • Lauren C. Howe,
  • Zsofia Belovai,
  • Guusje Lindemann,
  • Sharon O’Connor

research work about the

A study of 2,400 Novartis employees around the world found that simply hearing about others’ struggles can normalize accessing support at work.

Novartis has trained more than 1,000 employees as Mental Health First Aiders to offer peer-to-peer support for their colleagues. While employees were eager for the training, uptake of the program remains low. To understand why, a team of researchers conducted a randomized controlled trial with 2,400 Novartis employees who worked in the UK, Ireland, India, and Malaysia. Employees were shown one of six framings that were designed to overcome two key barriers: privacy concerns and usage concerns. They found that employees who read a story about their colleague using the service were more likely to sign up to learn more about the program, and that emphasizing the anonymity of the program did not seem to have an impact. Their findings suggest that one way to encourage employees to make use of existing mental health resources is by creating a supportive culture that embraces sharing about mental health challenges at work.

“I almost scheduled an appointment about a dozen times. But no, in the end I never went. I just wasn’t sure if my problems were big enough to warrant help and I didn’t want to take up someone else’s time unnecessarily.”

research work about the

  • Laura M. Giurge is an assistant professor at the London School of Economics, and a faculty affiliate at London Business School. Her research focuses on time and boundaries in organizations, workplace well-being, and the future of work. She is also passionate about translating research to the broader public through interactive and creative keynote talks, workshops, and coaching. Follow her on LinkedIn  here .
  • Lauren C. Howe is an assistant professor in management at the University of Zurich. As head of research at the Center for Leadership in the Future of Work , she focuses on how human aspects, such as mindsets, socioemotional skills, and leadership, play a role in the changing world of work.
  • Zsofia Belovai is a behavioral science lead for the organizational performance research practice at MoreThanNow, focusing on exploring how employee welfare can drive KPIs.
  • Guusje Lindemann is a senior behavioral scientist at MoreThanNow, in the social impact and organizational performance practices, working on making the workplace better for all.
  • Sharon O’Connor is the global employee wellbeing lead at Novartis. She is a founding member of the Wellbeing Executives Council of The Conference Board, and a guest lecturer on the Workplace Wellness postgraduate certificate at Trinity College Dublin.

Partner Center

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Black workers’ views and experiences in the U.S. labor force stand out in key ways

A U.S. Postal Service employee scans a package. (Brandon Bell/Getty Images)

There are more than 21 million Black Americans in the U.S. labor force today. Their workforce experiences are varied but stand out from people of other races and ethnicities on several important measures: They are more likely to be employed in certain postal work, transit, health care and security fields; report experiencing more racial discrimination on the job; and place a higher value on diversity, equity and inclusion efforts in the workplace.

For Labor Day, here are facts about Black workers’ labor force experiences and attitudes, drawn from federal data sources and recent Pew Research Center surveys.

Pew Research Center conducted this analysis to understand the views and experiences of Black workers in the United States and how they differ from those of people from other racial or ethnic backgrounds. Findings are based on data from the U.S. Bureau of Labor Statistics, the U.S. Census Bureau and Center surveys. Additional information about each survey and its methodology can be found in the links in the text of this post.

In the Center surveys, references to workers or employed adults include those who are employed part time or full time; are not self-employed; have only one job or have multiple jobs but consider one their primary job; and whose company or organization has 10 or more people.

References to White, Black and Asian adults include those who are not Hispanic and identify as only one race. Hispanics are of any race. Asian American respondents include only English speakers.  

Black Americans make up large shares of workers in certain transit, health and security occupations, according to Bureau of Labor Statistics (BLS) data from 2022, the most recent year available. Black workers account for about 13% of all U.S. workers, including those who work full time, part time and are self-employed. They make up especially large shares of employees in certain occupations, including postal service clerks (40.4%), transit and intercity bus drivers (36.6%), nursing assistants (36.0%), security guards and gambling surveillance officers (34.5%), and home health aides (32.5%).

A bar chart showing occupations where Black workers make up 25% or more of the workforce.

Black workers make up much smaller shares of farmers, ranchers and other agricultural managers (1.5%). They also tend to be underrepresented in some science, engineering and technology occupations such as veterinarians (2.2%), mechanical engineers (3.6%) and electrical and electronics engineers (6.0%).

A 2021 Center survey found that Black adults see barriers for Black workers in STEM fields, including an unwelcoming professional environment and the need for more mentorship and representation for young people in science, technology, engineering and math.

Black workers generally earn less than U.S. workers overall, according to BLS data from 2022. Among full-time wage and salary workers, the median weekly earnings for Black workers ages 16 and older are $878, compared with $1,059 for all U.S. workers in the same age group. Among workers of other races and ethnicities in the same age group, the median weekly earnings are $823 for Hispanic workers, $1,085 for White workers and $1,401 for Asian workers. And the differences hold when accounting for education level – Black workers earn less than those in other groups even among workers with bachelor’s or advanced degrees.

Household income for Black Americans has lagged behind that for Americans of other races for several decades, according to U.S. Census Bureau data .

The unemployment rate for Black Americans is the highest of any racial or ethnic group and roughly double the rate for the U.S. overall, BLS data shows. In 2022, the unemployment rate for Americans ages 16 and older was 3.7% for men and 3.6% for women, according to BLS annual averages . Among Black Americans, the unemployment rate was 6.3% for men and 6.0% for women. This compared with around 3% each for White and Asian men and women and about 4% each for Hispanic men and women.

Monthly unemployment figures showed a record-low unemployment rate for Black Americans in April of this year, but it has begun to tick back up .

As with gaps in household income, Black Americans have experienced higher unemployment rates than their White counterparts for decades. Researchers have identified a variety of factors causing this trend , including racial discrimination and gaps in education, skills and work experience.

Black workers are the most likely to say they’ve experienced discrimination at work because of their race or ethnicity, according to a February 2023 Center survey of U.S. workers . About four-in-ten Black workers (41%) say they have experienced discrimination or been treated unfairly by an employer in hiring, pay or promotions because of their race or ethnicity. Much smaller shares of Asian (25%), Hispanic (20%) and White (8%) workers say the same.

Among Black workers, 48% of men and 36% of women say they’ve experienced discrimination or unfair treatment by an employer due to their race. There are no gender differences among White and Hispanic workers, and the sample size for Asian workers is too small to analyze men and women separately.

A bar chart that shows Black workers are most likely to say they've faced workplace discrimination due to race or ethnicity.

A quarter of U.S. workers say being Black makes it harder to succeed where they work, the February survey shows. Just 8% of U.S. workers say being Black makes it a little or a lot easier to be successful where they work, 50% say it makes it neither easier nor harder, and 17% aren’t sure.

Among Black workers, 51% say that being Black makes it harder to succeed where they work. By comparison, 41% of Asian, 23% of Hispanic and 18% of White workers view being Black as a disadvantage in their workplace. And about four-in-ten or fewer among Asian (39%), Hispanic (29%) and White (7%) workers say that being their own race or ethnicity makes it harder to be successful where they work.

A bar chart showing that about half of Black workers say that being Black makes it harder to succeed where they work.

Majorities of Black Americans see racial and ethnic bias as a major problem in hiring and performance evaluations generally, according to a separate Center survey of all U.S. adults conducted in December 2022 . Some 64% of Black adults say that, in hiring generally, bias and unfair treatment based on job applicants’ race or ethnicity is a major problem. This compares with 49% of Asian, 41% of Hispanic and 30% of White adults who view racial and ethnic bias in hiring as a major problem.

When it comes to performance evaluations, 56% of Black adults say that, in general, racial and ethnic bias is a major problem. About four-in-ten Asian or Hispanic adults and 23% of White adults say the same.

A bar chart that shows Black Americans more likely than other racial and ethnic groups to describe racial bias in hiring and performance evaluations as a major problem.

Black workers especially value diversity in their workplace, the February survey of workers found. Regardless of how diverse their workplace is, 53% of Black workers say it is extremely or very important to them to work somewhere with a mix of employees of different races and ethnicities. That percentage is larger than the shares of Hispanic, White and Asian workers who say this. And 42% of Black workers say they highly value a workplace with employees of different ages, compared with smaller shares of workers who are Hispanic (33%), Asian (30%) or White (24%).

There is a similar trend in views of workplace accessibility: 62% of Black workers say it is extremely or very important to them to work at a place that is accessible for people with physical disabilities, compared with 51% of Hispanic, 48% of White and 43% of Asian workers.

The vast majority of Black workers say that increasing diversity, equity and inclusion (DEI) at work is a good thing, but a sizable share give their employer low marks in this area, according to the February workers survey .

A bar chart that shows about three-in-ten Black workers say their employer pays too little attention to DEI.

Around eight-in-ten Black workers (78%) say that focusing on increasing DEI at work is a good thing. Just 1% of Black workers say this is a bad thing, and 20% view it as neither good nor bad. While majorities of Asian (72%) and Hispanic (65%) workers also say that focusing on increasing DEI is a good thing, roughly half (47%) of White workers hold this view. In fact, 21% of White workers say it’s a bad thing.

But when it comes to their own employer’s DEI efforts, 28% of Black workers say their company or organization pays too little attention to increasing DEI – the largest share of any racial or ethnic group. Black workers are also the least likely to say that their company or organization pays too much attention to DEI. Just 3% hold this view, compared with one-in-ten or more among Hispanic (11%), White (16%) and Asian (18%) workers.

  • Black Americans
  • Business & Workplace
  • Discrimination & Prejudice
  • Economy & Work
  • Racial Bias & Discrimination

Katherine Schaeffer's photo

Katherine Schaeffer is a research analyst at Pew Research Center

A look at Black-owned businesses in the U.S.

8 facts about black americans and the news, black americans’ views on success in the u.s., among black adults, those with higher incomes are most likely to say they are happy, fewer than half of black americans say the news often covers the issues that are important to them, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

At hospital co-op, this Northeastern student is helping bridge the gap between neonatal care and research

  • Search Search

Isabella Rando is completing a co-op the Center for Child Development and Lactation at Brigham and Women’s Hospital.

Headshot of Cesareo Contreras

  • Copy Link Link Copied!

Isabella Rando playing on the floor with a child.

Witnessing a live birth can give someone a new perspective on life.

That’s certainly the case for Isabella Rando, a third-year behavioral neuroscience major who is completing a co-op at the Center for Child Development and Lactation at Brigham and Women’s Hospital, which treats babies born prematurely and with complex diseases.

Recently, Rando had one of the most transformative weeks of her life — witnessing five C-section procedures in a matter of two days.

“To be in the room when a human life takes its first breath, and to see the new parents be excited for the adventure, and these doctors saying ‘Welcome to the world!’ It was so life-changing,” she says. “I remember telling one of the residents, ‘I can’t imagine this could ever get old.’” 

This is Rando’s second co-op at the Boston hospital. Last year, she was a medical assistant and worked at an outpatient clinic that treated adults. But she wanted to combine her experience working at the hospital with what she learned at the Center for Cognitive Brain Health at Northeastern University, where she focused on understanding how nutrition, exercise and fitness affect the brain development of young children. 

Headshot of Isabella Rando taken through a window.

So she went to work developing her second co-op at the hospital with a focus on pediatrics. That’s what led her to the Center for Child Development and Lactation, where she is now getting clinical experience as well as research experience. 

Premature babies can have challenges feeding 

On the research front, Rando is exploring two areas. First, she is analyzing the results of a survey by the hospital’s pediatrics department. The survey was given to the families of preterm infants that focused on understanding how frequently their newborns showed symptoms of problematic feeding.

“Some of these symptoms include seeming uncomfortable after feeding, getting exhausted during eating, holding their breath while eating, or breathing faster while eating. The survey also asks whether the baby is exclusively breastfeeding, exclusively bottle-feeding, or a combination of both,” Rando says.

Featured Stories

Brown water coming out of a faucet into a white sink.

Drinking water in low-income communities is more likely to be contaminated by ‘forever chemicals,’ research finds

Silhouette of a person at the Seattle Commencement ceremony in 2023 wearing a cap and gown.

Northeastern University announces speakers for global campus commencements, and college and school ceremonies

Gene Tunik and Matthew Yarossi conducting research.

Is AI revolutionizing rehabilitation care? This Northeastern expert is digging deep on the issue   

Illustration of Hans Van Der Sande squatting in front of a tortoise making observations.

This student spent co-op on an island helping protect sea turtles and other endangered species

Rando’s job is to sift through the data to see the differences and frequency of issues that occur in the various ways a baby can be fed — breast, bottle or both.

“I am also looking to see what factors, such as gestational age (a measure of how long pregnancy lasts starting from the beginning of the women’s last menstrual period), are predictors or correlates of feeding issues,” she says. 

Premature babies often have difficulty with feeding, Rando says, because they haven’t had time to develop “mature oral feeding skills.” 

“This is because of issues that occur during one or many of the three phases of mature feeding: issues during the oral phase (involved in sucking) would result in issues like biting and chewing during feeding, whereas issues during the pharyngeal or esophageal phases (involved in swallowing) would result in issues like choking or reflux,” she says. 

These issues can have a long-term impact on a child’s development, Rando stresses. 

Rando is also helping conduct research on understanding the impact transition-to-home programs have on infants’ weight gain and hospital admission rates. 

“Transition-to-home programs, like the one offered at Brigham and Women’s Hospital, are designed to help families and their infants after they leave the NICU by providing support, education, and care coordination to ensure a smooth and seamless transition,” Rando says. “The hope is that these Transition to Home programs reduce rehospitalizations and improve the rate of weight gain so that these babies can grow and develop on par with healthy, full-term infants.”

Isabella Rando putting together a monitor connected to a baby's foot.

Gap between clinic and research

Rando is in the clinic Mondays through Thursdays from 8:30 a.m. to 5 p.m. 

She spent the first few weeks, shadowing clinicians and medical professionals, getting the hang of the operations of the clinic. 

“I had never really worked in such a multidisciplinary setting where there’s speech and language pathologists. Those are our feeding therapists. There’s occupational therapists and physical therapists. There’s neonatologists. There’s nutritionists.” 

“Any combination of those providers could be seeing one baby at one visit,” she adds. 

Now that she’s a few months in, she is helping set up follow-up appointments and ensuring patients involved in research studies are regularly checked on. 

“One of my roles is to help bridge the gap between what’s happening in the clinic and what’s happening on the research side of things,” she says. “I will go in and identify any of our patients who are enrolled in research studies, so that we can make sure that everything is taken care of when they come in. They’re getting their clinic visit and seeing the neonatologist, but also any research follow-ups that need to occur are happening at the same time.” 

In addition to playing a role in helping bring a new life into the world, Rando says she’s been greatly encouraged by the clinicians who work with her. The experience has only solidified that she is on the right path.  

“Being surrounded by such intelligent and inspiring women every day in this field is so exciting to me because it shows that I’m doing everything in my power to be in their shoes one day,” she says, “I’m going to embrace every step along that journey.”

University News

research work about the

Recent Stories

research work about the

  • Request info
  • Majors & Degrees
  • Prospective Students
  • Current Undergraduate Students
  • Current Graduate Students
  • Online Students
  • Alumni and Friends
  • Faculty and Staff

USM Brothers Earn Fellowships to Prestigious MIT Program

Wed, 04/24/2024 - 09:48am | By: Van Arnold

Summer Research Program

Kaitochukwu Chukwuka

Kaitochukwu and Otitodilichukwu Chukwuka, twin brothers and undergraduate polymer science students at The University of Southern Mississippi (USM), have been awarded fellowships to the prestigious MIT Summer Research Program (MSRP).

MSRP began in 1986 as an institutional effort to address the issue of underrepresentation of African Americans, Mexican Americans, Native Americans, and Puerto Ricans in engineering and science in the United States. Today, the program’s goal is to increase the number of underrepresented minorities and underserved (e.g. low socio-economic background, first generation) students in the research enterprise.

Summer Research Program

Otitodilichukwu Chukwuka

Originally from Lagos, Nigeria, the Chukwuka brothers were encouraged by their parents to pursue an international experience when considering a college choice. USM’s renowned polymer program and esteemed Honors College proved decisive in their journey to Hattiesburg, Miss.

Both students work in the lab of Associate Professor Xiaodan Gu, who also serves as Director of the Center for Optoelectronic Materials and Devices Initiative at USM. They harbor high expectations for the rigorous two-month fellowship program.

“I will likely be working in a material science lab that focuses on organic electronics, which is close to what we do here at the Gu lab, but with more bioengineering applications. Something I’d really like to get into,” said Kaitochukwu, who was born three minutes ahead of his fraternal twin brother. “They say MIT MSRP in intensive, and I really look forward to learning more techniques for fabricating organic electronics and honing more research skills, while making connections for grad school and beyond.”

Added Otitodilichukwu: “At MIT, I look forward to developing my skills of scientific observation and inquiry. I want to learn how to identify problems and propose relevant solutions in a scientific way. Learning new characterization techniques and making connections with renowned scientists and fellow students at MIT are also main goals of mine for the summer, but most important to me is to learn the art of observation and scientific inquiry because I believe that is how discoveries are made.”

MSRP seeks to identify talented sophomores, juniors, and non-graduating seniors who might benefit from spending a summer on MIT’s campus in Cambridge, Mass., conducting research under the guidance of MIT faculty members, postdoctoral fellows, and advanced graduate students.

Noting their exceptional work ethic, Gu played a pivotal role in helping secure fellowships for the brothers.

“They are highly motivated, which makes it a great match for them,” said Gu. “Having collaborated with the MIT faculty for many years, I was aware they could host USM students. Without any hesitation, I recommended my students for the program, expecting them to perform to high standards. As faculty, it is crucial for us to create opportunities for students, and this fellowship is an excellent chance for both of them.”

When asked to describe the atmosphere of working in the same lab as his brother, Otitodilichukwu said, “Working with my twin is the advantage I have. We help motivate each other, as well as keep an eye out for each other, making sure we both get work done. We also ask each other lots of questions that stimulate both of us intellectually.”

Kaitochukwu concurred, noting: “It is really amazing. It’s like a friendly competition…we are both trying to be the best at what we do and so it’s much motivation for the other person. We correct each other and are there to help each other when we struggle.”

Categories: Arts and Sciences Research

Recent News Articles

Usm graduate students honored with hall of fame portrait unveiling, southern miss gulf coast civic chorale presents joy - a concert series of uplifting works, usm student health coalition, sigma alpha lambda holding bake sale on hattiesburg campus april 25; feral cat society to sell t-shirts.

Research Assistant I - Public Health/Health Sciences (Student/Work Study)

How to apply.

To be considered for this position, candidates must attach a cover letter as the first page of your resume. The cover letter should address your specific interest in the position and outline skills and experience that directly relates to the qualifications of this position.  A writing sample, such as a paper you wrote for a class, should be attached with the cover letter and resume.

The University of Michigan-Flint is seeking an undergraduate student as a Research Assistant I (Temporary).  This student will join the research team with a two professors, the undergraduate student and graduate students.  This study is sponsored by the National Institutes of Health (NIH) where you will conduct research to understand adolescents' perspectives on improving telehealth (remote care such as video and telephone healthcare visits).

This position is from May 2024 through April 31, 2025 for approximately 10 hours per week. 

Responsibilities*

Responsibilities include, but are not limited to:

  • Conduct literature reviews to develop expertise in the area of telehealth
  • Participate in mock interviews to prepare for the actual interviews
  • Schedule, conduct (with another researcher),and take notes during video interviews
  • Engage in writing summaries
  • Serve as a co-author of presentations
  • Be trained on, and assist in, analyzing qualitative and quantitative data
  • Attend workshops on qualitative research
  • Present research findings at local conference(s)
  • Potential to present at a National conference
  • Travel to/from pediatrician offices to invite them to participate, place flyers and recruit participants

Required Qualifications*

  • Current undergraduate student in good standing with the University of Michigan-Flint 
  • Strong verbal and written communication skills
  • Interest in research, particularly pediatrics and telehealth
  • Ability to travel to/from pediatrician offices with reliable transportation
  • Available at least 10 hours per week

Desired Qualifications*

  • Prior research experience 
  • Familiarity with Qualtrics 
  • Experience with quantitative data analysis software such as SPSS and Microsoft Excel
  • Must have the ability to work independently on projects
  • Demonstrate the ability to respect confidentiality

Additional Information

University of Michigan-Flint - Plan for Diversity, Equity and Inclusion

The University of Michigan-Flint's DEI plan can be found at: https://www.umflint.edu/dei/?  

The University of Michigan-Flint exhibits its commitment to diversity, equity, and inclusion through enacting fair practices, policies, and procedures particularly in support of the equitable participation of the historically underserved. UM-Flint recognizes the value of diversity in our efforts to provide equitable access and opportunities to all regardless of individual identities in support of a climate where everyone feels a sense of belonging, community, and agency.

Diversity is a core value at University of Michigan-Flint. We are passionate about building and sustaining an inclusive and equitable working and learning environment for all students, staff, and faculty. The University of Michigan-Flint seeks to recruit and retain a diverse workforce as a reflection of our commitment to serve the diverse people of Michigan, to maintain the excellence of the University, and to offer our students richly varied disciplines, perspectives, and ways of knowing and learning for the purpose of becoming global citizens in a connected world.

Background Screening

The University of Michigan conducts background checks on all job candidates upon acceptance of a contingent offer and may use a third party administrator to conduct background checks.  Background checks are performed in compliance with the Fair Credit Reporting Act.

Application Deadline

Job openings are posted for a minimum of three calendar days.  The review and selection process may begin as early as the fourth day after posting. This opening may be removed from posting boards and filled anytime after the minimum posting period has ended.

U-M EEO/AA Statement

The University of Michigan is an equal opportunity/affirmative action employer.

IMAGES

  1. How to Write a Research Article

    research work about the

  2. The Research Process

    research work about the

  3. The Research Process

    research work about the

  4. Calaméo

    research work about the

  5. How To Research Effectively: Tools And Tips For Better Research

    research work about the

  6. What is Research

    research work about the

VIDEO

  1. B.1 A Working Research Station

  2. Language, Emotion, and Personality: How the Words We Use Reflect Who We Are

  3. What We Know and What You Can Do: Learning How to Turn Gender Research into Diversity Action

  4. Track These 4 Numbers to Become a Millionaire

  5. How TodayΓÇÖs Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses

  6. Accessing RefWorks

COMMENTS

  1. How to Write a Research Paper

    Choose a research paper topic. Conduct preliminary research. Develop a thesis statement. Create a research paper outline. Write a first draft of the research paper. Write the introduction. Write a compelling body of text. Write the conclusion. The second draft.

  2. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  3. Research

    Artistic research, also seen as 'practice-based research', can take form when creative works are considered both the research and the object of research itself. It is the debatable body of thought which offers an alternative to purely scientific methods in research in its search for knowledge and truth.

  4. A Beginner's Guide to Starting the Research Process

    Step 4: Create a research design. The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you'll use to collect and analyze it, and the location and timescale of your research. There are often many possible paths you can take to answering ...

  5. Overview of Research Process

    Document the Work. Because research reports differ by discipline, the most effective way for you to understand formatting and citations is to examine reports from others in your department or field. The library's electronic databases provide a wealth of examples illustrating how others in your field document their research. Communicate Your ...

  6. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study.

  7. A student's guide to undergraduate research

    A lot of people start their undergraduate research by glancing at the faculty list and e-mailing multiple professors whose work seems interesting. Although this might get you a position somewhere ...

  8. Explaining How Research Works

    Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle. Questions about how the world works are often investigated on many different levels.

  9. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  10. Structuring the Research Paper: Formal Research Structure

    Formal Research Structure. These are the primary purposes for formal research: enter the discourse, or conversation, of other writers and scholars in your field. learn how others in your field use primary and secondary resources. find and understand raw data and information. For the formal academic research assignment, consider an ...

  11. What is Research

    Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, "research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.".

  12. What is Scientific Research and How Can it be Done?

    Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new ...

  13. What a Researcher's Work Is and How To Become One

    1. Earn a bachelor's degree. To become a researcher, you first need to pursue a bachelor's degree. A general degree in clinical research will provide an excellent base for a career as a researcher. If your field of interest is medical research, you can complete a bachelor's degree in chemistry, medicine or biology.

  14. 9 Ways to Do Research

    Start writing the middle, or body, of your paper. Get your ideas down, then see if you need to do any research. Since your introduction and conclusion summarize your paper, it's best to write those last. [8] Include an in-text citation for everything that needs one, even in your initial rough draft.

  15. 1000+ Research Topics & Research Title Examples For Students

    A research topic and a research problem are two distinct concepts that are often confused. A research topic is a broader label that indicates the focus of the study, while a research problem is an issue or gap in knowledge within the broader field that needs to be addressed.. To illustrate this distinction, consider a student who has chosen "teenage pregnancy in the United Kingdom" as ...

  16. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  17. How to Make a Successful Research Presentation

    Instead, focus on the highlights. Identify a single compelling research question which your work addressed, and craft a succinct but complete narrative around it. Craft a compelling research narrative. After identifying the focused research question, walk your audience through your research as if it were a story.

  18. How to do a research project for your academic study

    Methodology - the methods you will use for your primary research. Findings and results - presenting the data from your primary research. Discussion - summarising and analysing your research and what you have found out. Conclusion - how the project went (successes and failures), areas for future study.

  19. Revealed: the ten research papers that policy documents cite most

    The work was co-authored by 37 scientists from 17 countries. The team included researchers from disciplines including food science, health metrics, climate change, ecology and evolution and bioethics.

  20. ResearchWorks Home

    A collection of faculty research work. Student Research Papers [1643] University Libraries Community [7441] University of Washington Bothell [367] The University of Washington Bothell ResearchWorks Archive is an open access institutional repository maintained by the University of Washington Libraries. UW Bothell faculty, staff, and researchers ...

  21. Research Paper Format

    Research paper format is an essential aspect of academic writing that plays a crucial role in the communication of research findings.The format of a research paper depends on various factors such as the discipline, style guide, and purpose of the research. It includes guidelines for the structure, citation style, referencing, and other elements of the paper that contribute to its overall ...

  22. Research Skills: What They Are and Why They're Important

    Common research skills necessary for a variety of jobs include attention to detail, time management, and problem solving. Here we explore what research skills are, examples of in-demand research skills, how you can improve and use research skills at work, and how to highlight your research skills during the job search process.

  23. Creating the Next Generation of Researchers : SLU

    A generous grant from the DeNardo Education and Research Foundation awarded to Rita Heuertz, Ph.D., is creating unique opportunities for Saint Louis University students to work alongside the University's world-class researchers on impactful projects.. University students often find themselves eager for opportunities to apply what they've learned in the classroom to real-life research scenarios.

  24. Research: More People Use Mental Health Benefits When They Hear That

    Her research focuses on time and boundaries in organizations, workplace well-being, and the future of work. She is also passionate about translating research to the broader public through ...

  25. For Labor Day, Black workers' views and experiences of work

    Black workers generally earn less than U.S. workers overall, according to BLS data from 2022. Among full-time wage and salary workers, the median weekly earnings for Black workers ages 16 and older are $878, compared with $1,059 for all U.S. workers in the same age group. Among workers of other races and ethnicities in the same age group, the ...

  26. Student Helps Treat Premature Babies at BWH Co-op

    Malaria and maternity wards: This Northeastern student balances medical research and hospital work during Ghana co-op. Gap between clinic and research. Rando is in the clinic Mondays through Thursdays from 8:30 a.m. to 5 p.m. She spent the first few weeks, shadowing clinicians and medical professionals, getting the hang of the operations of the ...

  27. USM Brothers Earn Fellowships to Prestigious MIT Program

    Kaitochukwu and Otitodilichukwu Chukwuka, twin brothers and undergraduate polymer science students at The University of Southern Mississippi (USM), have been awarded fellowships to the prestigious MIT Summer Research Program (MSRP). MSRP began in 1986 as an institutional effort to address the issue of underrepresentation of African Americans ...

  28. Research Objectives

    Example: Research objectives. To assess the relationship between sedentary habits and muscle atrophy among the participants. To determine the impact of dietary factors, particularly protein consumption, on the muscular health of the participants. To determine the effect of physical activity on the participants' muscular health.

  29. Research Assistant I

    The University of Michigan-Flint is seeking an undergraduate student as a Research Assistant I (Temporary). This student will join the research team with a two professors, the undergraduate student and graduate students. This study is sponsored by the National Institutes of Health (NIH) where you will conduct research to understand adolescents ...