If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Biology library

Course: biology library   >   unit 1.

  • The scientific method

Controlled experiments

  • The scientific method and experimental design

Introduction

How are hypotheses tested.

  • One pot of seeds gets watered every afternoon.
  • The other pot of seeds doesn't get any water at all.

Control and experimental groups

Independent and dependent variables, independent variables, dependent variables, variability and repetition, controlled experiment case study: co 2 ‍   and coral bleaching.

  • What your control and experimental groups would be
  • What your independent and dependent variables would be
  • What results you would predict in each group

Experimental setup

  • Some corals were grown in tanks of normal seawater, which is not very acidic ( pH ‍   around 8.2 ‍   ). The corals in these tanks served as the control group .
  • Other corals were grown in tanks of seawater that were more acidic than usual due to addition of CO 2 ‍   . One set of tanks was medium-acidity ( pH ‍   about 7.9 ‍   ), while another set was high-acidity ( pH ‍   about 7.65 ‍   ). Both the medium-acidity and high-acidity groups were experimental groups .
  • In this experiment, the independent variable was the acidity ( pH ‍   ) of the seawater. The dependent variable was the degree of bleaching of the corals.
  • The researchers used a large sample size and repeated their experiment. Each tank held 5 ‍   fragments of coral, and there were 5 ‍   identical tanks for each group (control, medium-acidity, and high-acidity). Experimental setup to test effects of water acidity on coral bleaching. Control group: Coral fragments are placed in a tank of normal seawater (pH 8.2). Experimental group 1: Coral fragments are placed in a tank of slightly acidified seawater (pH 7.9). Experimental group 2: Coral fragments are placed in a tank of more strongly acidified seawater (pH 7.65). The water acidity is the independent variable. 8 weeks are allowed to pass for each of the tanks... Control group: Corals are about 10% bleached on average. Experimental group 1 (medium acidity): Corals are about 20% bleached on average. Experimental group 2 (higher acidity): Corals are about 40% bleached on average. Degree of coral bleaching is the dependent variable. Note: None of these tanks was "acidic" on an absolute scale. That is, the pH ‍   values were all above the neutral pH ‍   of 7.0 ‍   . However, the two groups of experimental tanks were moderately and highly acidic to the corals , that is, relative to their natural habitat of plain seawater.

Analyzing the results

Non-experimental hypothesis tests, case study: coral bleaching and temperature, attribution:, works cited:.

  • Hoegh-Guldberg, O. (1999). Climate change, coral bleaching, and the future of the world's coral reefs. Mar. Freshwater Res. , 50 , 839-866. Retrieved from www.reef.edu.au/climate/Hoegh-Guldberg%201999.pdf.
  • Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S., and Hoegh-Guldberg, O. (2008). Ocean acidification causes bleaching and productivity loss in coral reef builders. PNAS , 105 (45), 17442-17446. http://dx.doi.org/10.1073/pnas.0804478105 .
  • University of California Museum of Paleontology. (2016). Misconceptions about science. In Understanding science . Retrieved from http://undsci.berkeley.edu/teaching/misconceptions.php .
  • Hoegh-Guldberg, O. and Smith, G. J. (1989). The effect of sudden changes in temperature, light and salinity on the density and export of zooxanthellae from the reef corals Stylophora pistillata (Esper, 1797) and Seriatopora hystrix (Dana, 1846). J. Exp. Mar. Biol. Ecol. , 129 , 279-303. Retrieved from http://www.reef.edu.au/ohg/res-pic/HG%20papers/HG%20and%20Smith%201989%20BLEACH.pdf .

Additional references:

Want to join the conversation.

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Great Answer

Module 1: Introduction to Biology

Experiments and hypotheses, learning outcomes.

  • Form a hypothesis and use it to design a scientific experiment

Now we’ll focus on the methods of scientific inquiry. Science often involves making observations and developing hypotheses. Experiments and further observations are often used to test the hypotheses.

A scientific experiment is a carefully organized procedure in which the scientist intervenes in a system to change something, then observes the result of the change. Scientific inquiry often involves doing experiments, though not always. For example, a scientist studying the mating behaviors of ladybugs might begin with detailed observations of ladybugs mating in their natural habitats. While this research may not be experimental, it is scientific: it involves careful and verifiable observation of the natural world. The same scientist might then treat some of the ladybugs with a hormone hypothesized to trigger mating and observe whether these ladybugs mated sooner or more often than untreated ones. This would qualify as an experiment because the scientist is now making a change in the system and observing the effects.

Forming a Hypothesis

When conducting scientific experiments, researchers develop hypotheses to guide experimental design. A hypothesis is a suggested explanation that is both testable and falsifiable. You must be able to test your hypothesis through observations and research, and it must be possible to prove your hypothesis false.

For example, Michael observes that maple trees lose their leaves in the fall. He might then propose a possible explanation for this observation: “cold weather causes maple trees to lose their leaves in the fall.” This statement is testable. He could grow maple trees in a warm enclosed environment such as a greenhouse and see if their leaves still dropped in the fall. The hypothesis is also falsifiable. If the leaves still dropped in the warm environment, then clearly temperature was not the main factor in causing maple leaves to drop in autumn.

In the Try It below, you can practice recognizing scientific hypotheses. As you consider each statement, try to think as a scientist would: can I test this hypothesis with observations or experiments? Is the statement falsifiable? If the answer to either of these questions is “no,” the statement is not a valid scientific hypothesis.

Practice Questions

Determine whether each following statement is a scientific hypothesis.

Air pollution from automobile exhaust can trigger symptoms in people with asthma.

  • No. This statement is not testable or falsifiable.
  • No. This statement is not testable.
  • No. This statement is not falsifiable.
  • Yes. This statement is testable and falsifiable.

Natural disasters, such as tornadoes, are punishments for bad thoughts and behaviors.

a: No. This statement is not testable or falsifiable. “Bad thoughts and behaviors” are excessively vague and subjective variables that would be impossible to measure or agree upon in a reliable way. The statement might be “falsifiable” if you came up with a counterexample: a “wicked” place that was not punished by a natural disaster. But some would question whether the people in that place were really wicked, and others would continue to predict that a natural disaster was bound to strike that place at some point. There is no reason to suspect that people’s immoral behavior affects the weather unless you bring up the intervention of a supernatural being, making this idea even harder to test.

Testing a Vaccine

Let’s examine the scientific process by discussing an actual scientific experiment conducted by researchers at the University of Washington. These researchers investigated whether a vaccine may reduce the incidence of the human papillomavirus (HPV). The experimental process and results were published in an article titled, “ A controlled trial of a human papillomavirus type 16 vaccine .”

Preliminary observations made by the researchers who conducted the HPV experiment are listed below:

  • Human papillomavirus (HPV) is the most common sexually transmitted virus in the United States.
  • There are about 40 different types of HPV. A significant number of people that have HPV are unaware of it because many of these viruses cause no symptoms.
  • Some types of HPV can cause cervical cancer.
  • About 4,000 women a year die of cervical cancer in the United States.

Practice Question

Researchers have developed a potential vaccine against HPV and want to test it. What is the first testable hypothesis that the researchers should study?

  • HPV causes cervical cancer.
  • People should not have unprotected sex with many partners.
  • People who get the vaccine will not get HPV.
  • The HPV vaccine will protect people against cancer.

Experimental Design

You’ve successfully identified a hypothesis for the University of Washington’s study on HPV: People who get the HPV vaccine will not get HPV.

The next step is to design an experiment that will test this hypothesis. There are several important factors to consider when designing a scientific experiment. First, scientific experiments must have an experimental group. This is the group that receives the experimental treatment necessary to address the hypothesis.

The experimental group receives the vaccine, but how can we know if the vaccine made a difference? Many things may change HPV infection rates in a group of people over time. To clearly show that the vaccine was effective in helping the experimental group, we need to include in our study an otherwise similar control group that does not get the treatment. We can then compare the two groups and determine if the vaccine made a difference. The control group shows us what happens in the absence of the factor under study.

However, the control group cannot get “nothing.” Instead, the control group often receives a placebo. A placebo is a procedure that has no expected therapeutic effect—such as giving a person a sugar pill or a shot containing only plain saline solution with no drug. Scientific studies have shown that the “placebo effect” can alter experimental results because when individuals are told that they are or are not being treated, this knowledge can alter their actions or their emotions, which can then alter the results of the experiment.

Moreover, if the doctor knows which group a patient is in, this can also influence the results of the experiment. Without saying so directly, the doctor may show—through body language or other subtle cues—their views about whether the patient is likely to get well. These errors can then alter the patient’s experience and change the results of the experiment. Therefore, many clinical studies are “double blind.” In these studies, neither the doctor nor the patient knows which group the patient is in until all experimental results have been collected.

Both placebo treatments and double-blind procedures are designed to prevent bias. Bias is any systematic error that makes a particular experimental outcome more or less likely. Errors can happen in any experiment: people make mistakes in measurement, instruments fail, computer glitches can alter data. But most such errors are random and don’t favor one outcome over another. Patients’ belief in a treatment can make it more likely to appear to “work.” Placebos and double-blind procedures are used to level the playing field so that both groups of study subjects are treated equally and share similar beliefs about their treatment.

The scientists who are researching the effectiveness of the HPV vaccine will test their hypothesis by separating 2,392 young women into two groups: the control group and the experimental group. Answer the following questions about these two groups.

  • This group is given a placebo.
  • This group is deliberately infected with HPV.
  • This group is given nothing.
  • This group is given the HPV vaccine.
  • a: This group is given a placebo. A placebo will be a shot, just like the HPV vaccine, but it will have no active ingredient. It may change peoples’ thinking or behavior to have such a shot given to them, but it will not stimulate the immune systems of the subjects in the same way as predicted for the vaccine itself.
  • d: This group is given the HPV vaccine. The experimental group will receive the HPV vaccine and researchers will then be able to see if it works, when compared to the control group.

Experimental Variables

A variable is a characteristic of a subject (in this case, of a person in the study) that can vary over time or among individuals. Sometimes a variable takes the form of a category, such as male or female; often a variable can be measured precisely, such as body height. Ideally, only one variable is different between the control group and the experimental group in a scientific experiment. Otherwise, the researchers will not be able to determine which variable caused any differences seen in the results. For example, imagine that the people in the control group were, on average, much more sexually active than the people in the experimental group. If, at the end of the experiment, the control group had a higher rate of HPV infection, could you confidently determine why? Maybe the experimental subjects were protected by the vaccine, but maybe they were protected by their low level of sexual contact.

To avoid this situation, experimenters make sure that their subject groups are as similar as possible in all variables except for the variable that is being tested in the experiment. This variable, or factor, will be deliberately changed in the experimental group. The one variable that is different between the two groups is called the independent variable. An independent variable is known or hypothesized to cause some outcome. Imagine an educational researcher investigating the effectiveness of a new teaching strategy in a classroom. The experimental group receives the new teaching strategy, while the control group receives the traditional strategy. It is the teaching strategy that is the independent variable in this scenario. In an experiment, the independent variable is the variable that the scientist deliberately changes or imposes on the subjects.

Dependent variables are known or hypothesized consequences; they are the effects that result from changes or differences in an independent variable. In an experiment, the dependent variables are those that the scientist measures before, during, and particularly at the end of the experiment to see if they have changed as expected. The dependent variable must be stated so that it is clear how it will be observed or measured. Rather than comparing “learning” among students (which is a vague and difficult to measure concept), an educational researcher might choose to compare test scores, which are very specific and easy to measure.

In any real-world example, many, many variables MIGHT affect the outcome of an experiment, yet only one or a few independent variables can be tested. Other variables must be kept as similar as possible between the study groups and are called control variables . For our educational research example, if the control group consisted only of people between the ages of 18 and 20 and the experimental group contained people between the ages of 30 and 35, we would not know if it was the teaching strategy or the students’ ages that played a larger role in the results. To avoid this problem, a good study will be set up so that each group contains students with a similar age profile. In a well-designed educational research study, student age will be a controlled variable, along with other possibly important factors like gender, past educational achievement, and pre-existing knowledge of the subject area.

What is the independent variable in this experiment?

  • Sex (all of the subjects will be female)
  • Presence or absence of the HPV vaccine
  • Presence or absence of HPV (the virus)

List three control variables other than age.

What is the dependent variable in this experiment?

  • Sex (male or female)
  • Rates of HPV infection
  • Age (years)

Contribute!

Improve this page Learn More

  • Revision and adaptation. Authored by : Shelli Carter and Lumen Learning. Provided by : Lumen Learning. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Scientific Inquiry. Provided by : Open Learning Initiative. Located at : https://oli.cmu.edu/jcourse/workbook/activity/page?context=434a5c2680020ca6017c03488572e0f8 . Project : Introduction to Biology (Open + Free). License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

Footer Logo Lumen Waymaker

What is a scientific hypothesis?

It's the initial building block in the scientific method.

A girl looks at plants in a test tube for a science experiment. What's her scientific hypothesis?

Hypothesis basics

What makes a hypothesis testable.

  • Types of hypotheses
  • Hypothesis versus theory

Additional resources

Bibliography.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method . Many describe it as an "educated guess" based on prior knowledge and observation. While this is true, a hypothesis is more informed than a guess. While an "educated guess" suggests a random prediction based on a person's expertise, developing a hypothesis requires active observation and background research. 

The basic idea of a hypothesis is that there is no predetermined outcome. For a solution to be termed a scientific hypothesis, it has to be an idea that can be supported or refuted through carefully crafted experimentation or observation. This concept, called falsifiability and testability, was advanced in the mid-20th century by Austrian-British philosopher Karl Popper in his famous book "The Logic of Scientific Discovery" (Routledge, 1959).

A key function of a hypothesis is to derive predictions about the results of future experiments and then perform those experiments to see whether they support the predictions.

A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include "may," according to California State University, Bakersfield .

Here are some examples of hypothesis statements:

  • If garlic repels fleas, then a dog that is given garlic every day will not get fleas.
  • If sugar causes cavities, then people who eat a lot of candy may be more prone to cavities.
  • If ultraviolet light can damage the eyes, then maybe this light can cause blindness.

A useful hypothesis should be testable and falsifiable. That means that it should be possible to prove it wrong. A theory that can't be proved wrong is nonscientific, according to Karl Popper's 1963 book " Conjectures and Refutations ."

An example of an untestable statement is, "Dogs are better than cats." That's because the definition of "better" is vague and subjective. However, an untestable statement can be reworded to make it testable. For example, the previous statement could be changed to this: "Owning a dog is associated with higher levels of physical fitness than owning a cat." With this statement, the researcher can take measures of physical fitness from dog and cat owners and compare the two.

Types of scientific hypotheses

In an experiment, researchers generally state their hypotheses in two ways. The null hypothesis predicts that there will be no relationship between the variables tested, or no difference between the experimental groups. The alternative hypothesis predicts the opposite: that there will be a difference between the experimental groups. This is usually the hypothesis scientists are most interested in, according to the University of Miami .

For example, a null hypothesis might state, "There will be no difference in the rate of muscle growth between people who take a protein supplement and people who don't." The alternative hypothesis would state, "There will be a difference in the rate of muscle growth between people who take a protein supplement and people who don't."

If the results of the experiment show a relationship between the variables, then the null hypothesis has been rejected in favor of the alternative hypothesis, according to the book " Research Methods in Psychology " (​​BCcampus, 2015). 

There are other ways to describe an alternative hypothesis. The alternative hypothesis above does not specify a direction of the effect, only that there will be a difference between the two groups. That type of prediction is called a two-tailed hypothesis. If a hypothesis specifies a certain direction — for example, that people who take a protein supplement will gain more muscle than people who don't — it is called a one-tailed hypothesis, according to William M. K. Trochim , a professor of Policy Analysis and Management at Cornell University.

Sometimes, errors take place during an experiment. These errors can happen in one of two ways. A type I error is when the null hypothesis is rejected when it is true. This is also known as a false positive. A type II error occurs when the null hypothesis is not rejected when it is false. This is also known as a false negative, according to the University of California, Berkeley . 

A hypothesis can be rejected or modified, but it can never be proved correct 100% of the time. For example, a scientist can form a hypothesis stating that if a certain type of tomato has a gene for red pigment, that type of tomato will be red. During research, the scientist then finds that each tomato of this type is red. Though the findings confirm the hypothesis, there may be a tomato of that type somewhere in the world that isn't red. Thus, the hypothesis is true, but it may not be true 100% of the time.

Scientific theory vs. scientific hypothesis

The best hypotheses are simple. They deal with a relatively narrow set of phenomena. But theories are broader; they generally combine multiple hypotheses into a general explanation for a wide range of phenomena, according to the University of California, Berkeley . For example, a hypothesis might state, "If animals adapt to suit their environments, then birds that live on islands with lots of seeds to eat will have differently shaped beaks than birds that live on islands with lots of insects to eat." After testing many hypotheses like these, Charles Darwin formulated an overarching theory: the theory of evolution by natural selection.

"Theories are the ways that we make sense of what we observe in the natural world," Tanner said. "Theories are structures of ideas that explain and interpret facts." 

  • Read more about writing a hypothesis, from the American Medical Writers Association.
  • Find out why a hypothesis isn't always necessary in science, from The American Biology Teacher.
  • Learn about null and alternative hypotheses, from Prof. Essa on YouTube .

Encyclopedia Britannica. Scientific Hypothesis. Jan. 13, 2022. https://www.britannica.com/science/scientific-hypothesis

Karl Popper, "The Logic of Scientific Discovery," Routledge, 1959.

California State University, Bakersfield, "Formatting a testable hypothesis." https://www.csub.edu/~ddodenhoff/Bio100/Bio100sp04/formattingahypothesis.htm  

Karl Popper, "Conjectures and Refutations," Routledge, 1963.

Price, P., Jhangiani, R., & Chiang, I., "Research Methods of Psychology — 2nd Canadian Edition," BCcampus, 2015.‌

University of Miami, "The Scientific Method" http://www.bio.miami.edu/dana/161/evolution/161app1_scimethod.pdf  

William M.K. Trochim, "Research Methods Knowledge Base," https://conjointly.com/kb/hypotheses-explained/  

University of California, Berkeley, "Multiple Hypothesis Testing and False Discovery Rate" https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf  

University of California, Berkeley, "Science at multiple levels" https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Alina Bradford

Iceland volcano: 'Most powerful' eruption yet narrowly misses Grindavik but could still trigger life-threatening toxic gas plume

'Worrisome and even frightening': Ancient ecosystem of Lake Baikal at risk of regime change from warming

Deadly dog parasite found in Southern California in a 1st

Most Popular

By Anna Gora December 27, 2023

By Anna Gora December 26, 2023

By Anna Gora December 25, 2023

By Emily Cooke December 23, 2023

By Victoria Atkinson December 22, 2023

By Anna Gora December 16, 2023

By Anna Gora December 15, 2023

By Anna Gora November 09, 2023

By Donavyn Coffey November 06, 2023

By Anna Gora October 31, 2023

By Anna Gora October 26, 2023

  • 2 India's evolutionary past tied to huge migration 50,000 years ago and to now-extinct human relatives
  • 3 Dying SpaceX rocket creates glowing, galaxy-like spiral in the middle of the Northern Lights
  • 4 12 surprising facts about pi to chew on this Pi Day
  • 5 1,900-year-old coins from Jewish revolt against the Romans discovered in the Judaen desert
  • 2 'Flow state' uncovered: We finally know what happens in the brain when you're 'in the zone'
  • 3 12 surprising facts about pi to chew on this Pi Day
  • 4 James Webb telescope confirms there is something seriously wrong with our understanding of the universe
  • More from M-W
  • To save this word, you'll need to log in. Log In

Definition of hypothesis

Did you know.

The Difference Between Hypothesis and Theory

A hypothesis is an assumption, an idea that is proposed for the sake of argument so that it can be tested to see if it might be true.

In the scientific method, the hypothesis is constructed before any applicable research has been done, apart from a basic background review. You ask a question, read up on what has been studied before, and then form a hypothesis.

A hypothesis is usually tentative; it's an assumption or suggestion made strictly for the objective of being tested.

A theory , in contrast, is a principle that has been formed as an attempt to explain things that have already been substantiated by data. It is used in the names of a number of principles accepted in the scientific community, such as the Big Bang Theory . Because of the rigors of experimentation and control, it is understood to be more likely to be true than a hypothesis is.

In non-scientific use, however, hypothesis and theory are often used interchangeably to mean simply an idea, speculation, or hunch, with theory being the more common choice.

Since this casual use does away with the distinctions upheld by the scientific community, hypothesis and theory are prone to being wrongly interpreted even when they are encountered in scientific contexts—or at least, contexts that allude to scientific study without making the critical distinction that scientists employ when weighing hypotheses and theories.

The most common occurrence is when theory is interpreted—and sometimes even gleefully seized upon—to mean something having less truth value than other scientific principles. (The word law applies to principles so firmly established that they are almost never questioned, such as the law of gravity.)

This mistake is one of projection: since we use theory in general to mean something lightly speculated, then it's implied that scientists must be talking about the same level of uncertainty when they use theory to refer to their well-tested and reasoned principles.

The distinction has come to the forefront particularly on occasions when the content of science curricula in schools has been challenged—notably, when a school board in Georgia put stickers on textbooks stating that evolution was "a theory, not a fact, regarding the origin of living things." As Kenneth R. Miller, a cell biologist at Brown University, has said , a theory "doesn’t mean a hunch or a guess. A theory is a system of explanations that ties together a whole bunch of facts. It not only explains those facts, but predicts what you ought to find from other observations and experiments.”

While theories are never completely infallible, they form the basis of scientific reasoning because, as Miller said "to the best of our ability, we’ve tested them, and they’ve held up."

  • proposition
  • supposition

hypothesis , theory , law mean a formula derived by inference from scientific data that explains a principle operating in nature.

hypothesis implies insufficient evidence to provide more than a tentative explanation.

theory implies a greater range of evidence and greater likelihood of truth.

law implies a statement of order and relation in nature that has been found to be invariable under the same conditions.

Examples of hypothesis in a Sentence

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'hypothesis.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

Greek, from hypotithenai to put under, suppose, from hypo- + tithenai to put — more at do

1641, in the meaning defined at sense 1a

Phrases Containing hypothesis

  • nebular hypothesis
  • null hypothesis
  • Whorfian hypothesis
  • planetesimal hypothesis
  • counter - hypothesis

Articles Related to hypothesis

hypothesis

This is the Difference Between a...

This is the Difference Between a Hypothesis and a Theory

In scientific reasoning, they're two completely different things

Dictionary Entries Near hypothesis

hypothermia

hypothesize

Cite this Entry

“Hypothesis.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/hypothesis. Accessed 21 Mar. 2024.

Kids Definition

Kids definition of hypothesis, medical definition, medical definition of hypothesis, more from merriam-webster on hypothesis.

Nglish: Translation of hypothesis for Spanish Speakers

Britannica English: Translation of hypothesis for Arabic Speakers

Britannica.com: Encyclopedia article about hypothesis

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

8 grammar terms you used to know, but forgot, homophones, homographs, and homonyms, commonly misspelled words, how to use em dashes (—), en dashes (–) , and hyphens (-), absent letters that are heard anyway, popular in wordplay, the words of the week - mar. 15, 9 superb owl words, 'gaslighting,' 'woke,' 'democracy,' and other top lookups, 10 words for lesser-known games and sports, your favorite band is in the dictionary, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

What Is a Hypothesis? (Science)

If...,Then...

Angela Lumsden/Getty Images

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject.

In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

In the study of logic, a hypothesis is an if-then proposition, typically written in the form, "If X , then Y ."

In common usage, a hypothesis is simply a proposed explanation or prediction, which may or may not be tested.

Writing a Hypothesis

Most scientific hypotheses are proposed in the if-then format because it's easy to design an experiment to see whether or not a cause and effect relationship exists between the independent variable and the dependent variable . The hypothesis is written as a prediction of the outcome of the experiment.

  • Null Hypothesis and Alternative Hypothesis

Statistically, it's easier to show there is no relationship between two variables than to support their connection. So, scientists often propose the null hypothesis . The null hypothesis assumes changing the independent variable will have no effect on the dependent variable.

In contrast, the alternative hypothesis suggests changing the independent variable will have an effect on the dependent variable. Designing an experiment to test this hypothesis can be trickier because there are many ways to state an alternative hypothesis.

For example, consider a possible relationship between getting a good night's sleep and getting good grades. The null hypothesis might be stated: "The number of hours of sleep students get is unrelated to their grades" or "There is no correlation between hours of sleep and grades."

An experiment to test this hypothesis might involve collecting data, recording average hours of sleep for each student and grades. If a student who gets eight hours of sleep generally does better than students who get four hours of sleep or 10 hours of sleep, the hypothesis might be rejected.

But the alternative hypothesis is harder to propose and test. The most general statement would be: "The amount of sleep students get affects their grades." The hypothesis might also be stated as "If you get more sleep, your grades will improve" or "Students who get nine hours of sleep have better grades than those who get more or less sleep."

In an experiment, you can collect the same data, but the statistical analysis is less likely to give you a high confidence limit.

Usually, a scientist starts out with the null hypothesis. From there, it may be possible to propose and test an alternative hypothesis, to narrow down the relationship between the variables.

Example of a Hypothesis

Examples of a hypothesis include:

  • If you drop a rock and a feather, (then) they will fall at the same rate.
  • Plants need sunlight in order to live. (if sunlight, then life)
  • Eating sugar gives you energy. (if sugar, then energy)
  • White, Jay D.  Research in Public Administration . Conn., 1998.
  • Schick, Theodore, and Lewis Vaughn.  How to Think about Weird Things: Critical Thinking for a New Age . McGraw-Hill Higher Education, 2002.
  • Null Hypothesis Definition and Examples
  • Definition of a Hypothesis
  • What Are the Elements of a Good Hypothesis?
  • Six Steps of the Scientific Method
  • What Are Examples of a Hypothesis?
  • Understanding Simple vs Controlled Experiments
  • Scientific Method Flow Chart
  • Scientific Method Vocabulary Terms
  • What Is a Testable Hypothesis?
  • Null Hypothesis Examples
  • What 'Fail to Reject' Means in a Hypothesis Test
  • How To Design a Science Fair Experiment
  • What Is an Experiment? Definition and Design
  • Hypothesis Test for the Difference of Two Population Proportions
  • How to Conduct a Hypothesis Test

1.1 The Science of Biology

Learning objectives.

In this section, you will explore the following questions:

  • What are the characteristics shared by the natural sciences?
  • What are the steps of the scientific method?

Connection for AP ® courses

Biology is the science that studies living organisms and their interactions with one another and with their environment. The process of science attempts to describe and understand the nature of the universe by rational means. Science has many fields; those fields related to the physical world, including biology, are considered natural sciences. All of the natural sciences follow the laws of chemistry and physics. For example, when studying biology, you must remember living organisms obey the laws of thermodynamics while using free energy and matter from the environment to carry out life processes that are explored in later chapters, such as metabolism and reproduction.

Two types of logical reasoning are used in science: inductive reasoning and deductive reasoning. Inductive reasoning uses particular results to produce general scientific principles. Deductive reasoning uses logical thinking to predict results by applying scientific principles or practices. The scientific method is a step-by-step process that consists of: making observations, defining a problem, posing hypotheses, testing these hypotheses by designing and conducting investigations, and drawing conclusions from data and results. Scientists then communicate their results to the scientific community. Scientific theories are subject to revision as new information is collected.

The content presented in this section supports the Learning Objectives outlined in Big Idea 2 of the AP ® Biology Curriculum Framework. The Learning Objectives merge Essential Knowledge content with one or more of the seven Science Practices. These objectives provide a transparent foundation for the AP ® Biology course, along with inquiry-based laboratory experiences, instructional activities, and AP ® Exam questions.

Teacher Support

Illustrate uses of the scientific method in class. Divide students in groups of four or five and ask them to design experiments to test the existence of connections they have wondered about. Help them decide if they have a working hypothesis that can be tested and falsified. Give examples of hypotheses that are not falsifiable because they are based on subjective assessments. They are neither observable nor measurable. For example, birds like classical music is based on a subjective assessment. Ask if this hypothesis can be modified to become a testable hypothesis. Stress the need for controls and provide examples such as the use of placebos in pharmacology.

Biology is not a collection of facts to be memorized. Biological systems follow the law of physics and chemistry. Give as an example gas laws in chemistry and respiration physiology. Many students come with a 19th century view of natural sciences; each discipline is in its own sphere. Give as an example, bioinformatics which uses organism biology, chemistry, and physics to label DNA with light emitting reporter molecules (Next Generation sequencing). These molecules can then be scanned by light-sensing machinery, allowing huge amounts of information to be gathered on their DNA. Bring to their attention the fact that the analysis of these data is an application of mathematics and computer science.

For more information about next generation sequencing, check out this informative review .

What is biology? In simple terms, biology is the study of life. This is a very broad definition because the scope of biology is vast. Biologists may study anything from the microscopic or submicroscopic view of a cell to ecosystems and the whole living planet ( Figure 1.2 ). Listening to the daily news, you will quickly realize how many aspects of biology are discussed every day. For example, recent news topics include Escherichia coli ( Figure 1.3 ) outbreaks in spinach and Salmonella contamination in peanut butter. On a global scale, many researchers are committed to finding ways to protect the planet, solve environmental issues, and reduce the effects of climate change. All of these diverse endeavors are related to different facets of the discipline of biology.

The Process of Science

Biology is a science, but what exactly is science? What does the study of biology share with other scientific disciplines? Science (from the Latin scientia , meaning “knowledge”) can be defined as knowledge that covers general truths or the operation of general laws, especially when acquired and tested by the scientific method. It becomes clear from this definition that the application of the scientific method plays a major role in science. The scientific method is a method of research with defined steps that include experiments and careful observation.

The steps of the scientific method will be examined in detail later, but one of the most important aspects of this method is the testing of hypotheses by means of repeatable experiments. A hypothesis is a suggested explanation for an event, which can be tested. Although using the scientific method is inherent to science, it is inadequate in determining what science is. This is because it is relatively easy to apply the scientific method to disciplines such as physics and chemistry, but when it comes to disciplines like archaeology, psychology, and geology, the scientific method becomes less applicable as it becomes more difficult to repeat experiments.

These areas of study are still sciences, however. Consider archaeology—even though one cannot perform repeatable experiments, hypotheses may still be supported. For instance, an archaeologist can hypothesize that an ancient culture existed based on finding a piece of pottery. Further hypotheses could be made about various characteristics of this culture, and these hypotheses may be found to be correct or false through continued support or contradictions from other findings. A hypothesis may become a verified theory. A theory is a tested and confirmed explanation for observations or phenomena. Science may be better defined as fields of study that attempt to comprehend the nature of the universe.

Natural Sciences

What would you expect to see in a museum of natural sciences? Frogs? Plants? Dinosaur skeletons? Exhibits about how the brain functions? A planetarium? Gems and minerals? Or, maybe all of the above? Science includes such diverse fields as astronomy, biology, computer sciences, geology, logic, physics, chemistry, and mathematics ( Figure 1.4 ). However, those fields of science related to the physical world and its phenomena and processes are considered natural sciences . Thus, a museum of natural sciences might contain any of the items listed above.

There is no complete agreement when it comes to defining what the natural sciences include, however. For some experts, the natural sciences are astronomy, biology, chemistry, earth science, and physics. Other scholars choose to divide natural sciences into life sciences , which study living things and include biology, and physical sciences , which study nonliving matter and include astronomy, geology, physics, and chemistry. Some disciplines such as biophysics and biochemistry build on both life and physical sciences and are interdisciplinary. Natural sciences are sometimes referred to as “hard science” because they rely on the use of quantitative data; social sciences that study society and human behavior are more likely to use qualitative assessments to drive investigations and findings.

Not surprisingly, the natural science of biology has many branches or subdisciplines. Cell biologists study cell structure and function, while biologists who study anatomy investigate the structure of an entire organism. Those biologists studying physiology, however, focus on the internal functioning of an organism. Some areas of biology focus on only particular types of living things. For example, botanists explore plants, while zoologists specialize in animals.

Scientific Reasoning

One thing is common to all forms of science: an ultimate goal “to know.” Curiosity and inquiry are the driving forces for the development of science. Scientists seek to understand the world and the way it operates. To do this, they use two methods of logical thinking: inductive reasoning and deductive reasoning.

Inductive reasoning is a form of logical thinking that uses related observations to arrive at a general conclusion. This type of reasoning is common in descriptive science. A life scientist such as a biologist makes observations and records them. These data can be qualitative or quantitative, and the raw data can be supplemented with drawings, pictures, photos, or videos. From many observations, the scientist can infer conclusions (inductions) based on evidence. Inductive reasoning involves formulating generalizations inferred from careful observation and the analysis of a large amount of data. Brain studies provide an example. In this type of research, many live brains are observed while people are doing a specific activity, such as viewing images of food. The part of the brain that “lights up” during this activity is then predicted to be the part controlling the response to the selected stimulus, in this case, images of food. The “lighting up” of the various areas of the brain is caused by excess absorption of radioactive sugar derivatives by active areas of the brain. The resultant increase in radioactivity is observed by a scanner. Then, researchers can stimulate that part of the brain to see if similar responses result.

Deductive reasoning or deduction is the type of logic used in hypothesis-based science. In deductive reason, the pattern of thinking moves in the opposite direction as compared to inductive reasoning. Deductive reasoning is a form of logical thinking that uses a general principle or law to predict specific results. From those general principles, a scientist can deduce and predict the specific results that would be valid as long as the general principles are valid. Studies in climate change can illustrate this type of reasoning. For example, scientists may predict that if the climate becomes warmer in a particular region, then the distribution of plants and animals should change. These predictions have been made and tested, and many such changes have been found, such as the modification of arable areas for agriculture, with change based on temperature averages.

Both types of logical thinking are related to the two main pathways of scientific study: descriptive science and hypothesis-based science. Descriptive (or discovery) science , which is usually inductive, aims to observe, explore, and discover, while hypothesis-based science , which is usually deductive, begins with a specific question or problem and a potential answer or solution that can be tested. The boundary between these two forms of study is often blurred, and most scientific endeavors combine both approaches. The fuzzy boundary becomes apparent when thinking about how easily observation can lead to specific questions. For example, a gentleman in the 1940s observed that the burr seeds that stuck to his clothes and his dog’s fur had a tiny hook structure. On closer inspection, he discovered that the burrs’ gripping device was more reliable than a zipper. He eventually developed a company and produced the hook-and-loop fastener often used on lace-less sneakers and athletic braces. Descriptive science and hypothesis-based science are in continuous dialogue.

The Scientific Method

Biologists study the living world by posing questions about it and seeking science-based responses. This approach is common to other sciences as well and is often referred to as the scientific method. The scientific method was used even in ancient times, but it was first documented by England’s Sir Francis Bacon (1561–1626) ( Figure 1.5 ), who set up inductive methods for scientific inquiry. The scientific method is not exclusively used by biologists but can be applied to almost all fields of study as a logical, rational problem-solving method.

The scientific process typically starts with an observation (often a problem to be solved) that leads to a question. Let’s think about a simple problem that starts with an observation and apply the scientific method to solve the problem. One Monday morning, a student arrives at class and quickly discovers that the classroom is too warm. That is an observation that also describes a problem: the classroom is too warm. The student then asks a question: “Why is the classroom so warm?”

Proposing a Hypothesis

Recall that a hypothesis is a suggested explanation that can be tested. To solve a problem, several hypotheses may be proposed. For example, one hypothesis might be, “The classroom is warm because no one turned on the air conditioning.” But there could be other responses to the question, and therefore other hypotheses may be proposed. A second hypothesis might be, “The classroom is warm because there is a power failure, and so the air conditioning doesn’t work.”

Once a hypothesis has been selected, the student can make a prediction. A prediction is similar to a hypothesis but it typically has the format “If . . . then . . . .” For example, the prediction for the first hypothesis might be, “ If the student turns on the air conditioning, then the classroom will no longer be too warm.”

Testing a Hypothesis

A valid hypothesis must be testable. It should also be falsifiable , meaning that it can be disproven by experimental results. Importantly, science does not claim to “prove” anything because scientific understandings are always subject to modification with further information. This step—openness to disproving ideas—is what distinguishes sciences from non-sciences. The presence of the supernatural, for instance, is neither testable nor falsifiable. To test a hypothesis, a researcher will conduct one or more experiments designed to eliminate one or more of the hypotheses. Each experiment will have one or more variables and one or more controls. A variable is any part of the experiment that can vary or change during the experiment. The control group contains every feature of the experimental group except it is not given the manipulation that is hypothesized about. Therefore, if the results of the experimental group differ from the control group, the difference must be due to the hypothesized manipulation, rather than some outside factor. Look for the variables and controls in the examples that follow. To test the first hypothesis, the student would find out if the air conditioning is on. If the air conditioning is turned on but does not work, there should be another reason, and this hypothesis should be rejected. To test the second hypothesis, the student could check if the lights in the classroom are functional. If so, there is no power failure and this hypothesis should be rejected. Each hypothesis should be tested by carrying out appropriate experiments. Be aware that rejecting one hypothesis does not determine whether or not the other hypotheses can be accepted; it simply eliminates one hypothesis that is not valid ( see this figure ). Using the scientific method, the hypotheses that are inconsistent with experimental data are rejected.

While this “warm classroom” example is based on observational results, other hypotheses and experiments might have clearer controls. For instance, a student might attend class on Monday and realize she had difficulty concentrating on the lecture. One observation to explain this occurrence might be, “When I eat breakfast before class, I am better able to pay attention.” The student could then design an experiment with a control to test this hypothesis.

In hypothesis-based science, specific results are predicted from a general premise. This type of reasoning is called deductive reasoning: deduction proceeds from the general to the particular. But the reverse of the process is also possible: sometimes, scientists reach a general conclusion from a number of specific observations. This type of reasoning is called inductive reasoning, and it proceeds from the particular to the general. Inductive and deductive reasoning are often used in tandem to advance scientific knowledge ( see this figure ). In recent years a new approach of testing hypotheses has developed as a result of an exponential growth of data deposited in various databases. Using computer algorithms and statistical analyses of data in databases, a new field of so-called "data research" (also referred to as "in silico" research) provides new methods of data analyses and their interpretation. This will increase the demand for specialists in both biology and computer science, a promising career opportunity.

Science Practice Connection for AP® Courses

Think about it.

Almost all plants use water, carbon dioxide, and energy from the sun to make sugars. Think about what would happen to plants that don’t have sunlight as an energy source or sufficient water. What would happen to organisms that depend on those plants for their own survival?

Make a prediction about what would happen to the organisms living in a rain forest if 50% of its trees were destroyed. How would you test your prediction?

Use this example as a model to make predictions. Emphasize there is no rigid scientific method scheme. Active science is a combination of observations and measurement. Offer the example of ecology where the conventional scientific method is not always applicable because researchers cannot always set experiments in a laboratory and control all the variables.

Possible answers:

Destruction of the rain forest affects the trees, the animals which feed on the vegetation, take shelter on the trees, and large predators which feed on smaller animals. Furthermore, because the trees positively affect rain through massive evaporation and condensation of water vapor, drought follows deforestation.

Tell students a similar experiment on a grand scale may have happened in the past and introduce the next activity “What killed the dinosaurs?”

Some predictions can be made and later observations can support or disprove the prediction.

Ask, “what killed the dinosaurs?” Explain many scientists point to a massive asteroid crashing in the Yucatan peninsula in Mexico. One of the effects was the creation of smoke clouds and debris that blocked the Sun, stamped out many plants and, consequently, brought mass extinction. As is common in the scientific community, many other researchers offer divergent explanations.

Go to this site for a good example of the complexity of scientific method and scientific debate.

Visual Connection

In the example below, the scientific method is used to solve an everyday problem. Order the scientific method steps (numbered items) with the process of solving the everyday problem (lettered items). Based on the results of the experiment, is the hypothesis correct? If it is incorrect, propose some alternative hypotheses.

  • The original hypothesis is correct. There is something wrong with the electrical outlet and therefore the toaster doesn’t work.
  • The original hypothesis is incorrect. Alternative hypothesis includes that toaster wasn’t turned on.
  • The original hypothesis is correct. The coffee maker and the toaster do not work when plugged into the outlet.
  • The original hypothesis is incorrect. Alternative hypotheses includes that both coffee maker and toaster were broken.
  • All flying birds and insects have wings. Birds and insects flap their wings as they move through the air. Therefore, wings enable flight.
  • Insects generally survive mild winters better than harsh ones. Therefore, insect pests will become more problematic if global temperatures increase.
  • Chromosomes, the carriers of DNA, are distributed evenly between the daughter cells during cell division. Therefore, each daughter cell will have the same chromosome set as the mother cell.
  • Animals as diverse as humans, insects, and wolves all exhibit social behavior. Therefore, social behavior must have an evolutionary advantage.
  • 1- Inductive, 2- Deductive, 3- Deductive, 4- Inductive
  • 1- Deductive, 2- Inductive, 3- Deductive, 4- Inductive
  • 1- Inductive, 2- Deductive, 3- Inductive, 4- Deductive
  • 1- Inductive, 2-Inductive, 3- Inductive, 4- Deductive

The scientific method may seem too rigid and structured. It is important to keep in mind that, although scientists often follow this sequence, there is flexibility. Sometimes an experiment leads to conclusions that favor a change in approach; often, an experiment brings entirely new scientific questions to the puzzle. Many times, science does not operate in a linear fashion; instead, scientists continually draw inferences and make generalizations, finding patterns as their research proceeds. Scientific reasoning is more complex than the scientific method alone suggests. Notice, too, that the scientific method can be applied to solving problems that aren’t necessarily scientific in nature.

Two Types of Science: Basic Science and Applied Science

The scientific community has been debating for the last few decades about the value of different types of science. Is it valuable to pursue science for the sake of simply gaining knowledge, or does scientific knowledge only have worth if we can apply it to solving a specific problem or to bettering our lives? This question focuses on the differences between two types of science: basic science and applied science.

Basic science or “pure” science seeks to expand knowledge regardless of the short-term application of that knowledge. It is not focused on developing a product or a service of immediate public or commercial value. The immediate goal of basic science is knowledge for knowledge’s sake, though this does not mean that, in the end, it may not result in a practical application.

In contrast, applied science or “technology,” aims to use science to solve real-world problems, making it possible, for example, to improve a crop yield, find a cure for a particular disease, or save animals threatened by a natural disaster ( Figure 1.8 ). In applied science, the problem is usually defined for the researcher.

Some individuals may perceive applied science as “useful” and basic science as “useless.” A question these people might pose to a scientist advocating knowledge acquisition would be, “What for?” A careful look at the history of science, however, reveals that basic knowledge has resulted in many remarkable applications of great value. Many scientists think that a basic understanding of science is necessary before an application is developed; therefore, applied science relies on the results generated through basic science. Other scientists think that it is time to move on from basic science and instead to find solutions to actual problems. Both approaches are valid. It is true that there are problems that demand immediate attention; however, few solutions would be found without the help of the wide knowledge foundation generated through basic science.

One example of how basic and applied science can work together to solve practical problems occurred after the discovery of DNA structure led to an understanding of the molecular mechanisms governing DNA replication. Strands of DNA, unique in every human, are found in our cells, where they provide the instructions necessary for life. During DNA replication, DNA makes new copies of itself, shortly before a cell divides. Understanding the mechanisms of DNA replication enabled scientists to develop laboratory techniques that are now used to identify genetic diseases. Without basic science, it is unlikely that applied science could exist.

Another example of the link between basic and applied research is the Human Genome Project, a study in which each human chromosome was analyzed and mapped to determine the precise sequence of DNA subunits and the exact location of each gene. (The gene is the basic unit of heredity represented by a specific DNA segment that codes for a functional molecule.) Other less complex organisms have also been studied as part of this project in order to gain a better understanding of human chromosomes. The Human Genome Project ( Figure 1.9 ) relied on basic research carried out with simple organisms and, later, with the human genome. An important end goal eventually became using the data for applied research, seeking cures and early diagnoses for genetically related diseases.

While research efforts in both basic science and applied science are usually carefully planned, it is important to note that some discoveries are made by serendipity , that is, by means of a fortunate accident or a lucky surprise. Penicillin was discovered when biologist Alexander Fleming accidentally left a petri dish of Staphylococcus bacteria open. An unwanted mold grew on the dish, killing the bacteria. The mold turned out to be Penicillium , and a new antibiotic was discovered. Even in the highly organized world of science, luck—when combined with an observant, curious mind—can lead to unexpected breakthroughs.

Reporting Scientific Work

Whether scientific research is basic science or applied science, scientists must share their findings in order for other researchers to expand and build upon their discoveries. Collaboration with other scientists—when planning, conducting, and analyzing results—is important for scientific research. For this reason, important aspects of a scientist’s work are communicating with peers and disseminating results to peers. Scientists can share results by presenting them at a scientific meeting or conference, but this approach can reach only the select few who are present. Instead, most scientists present their results in peer-reviewed manuscripts that are published in scientific journals. Peer-reviewed manuscripts are scientific papers that are reviewed by a scientist’s colleagues, or peers. These colleagues are qualified individuals, often experts in the same research area, who judge whether or not the scientist’s work is suitable for publication. The process of peer review helps to ensure that the research described in a scientific paper or grant proposal is original, significant, logical, and thorough. Grant proposals, which are requests for research funding, are also subject to peer review. Scientists publish their work so other scientists can reproduce their experiments under similar or different conditions to expand on the findings.

A scientific paper is very different from creative writing. Although creativity is required to design experiments, there are fixed guidelines when it comes to presenting scientific results. First, scientific writing must be brief, concise, and accurate. A scientific paper needs to be succinct but detailed enough to allow peers to reproduce the experiments.

The scientific paper consists of several specific sections—introduction, materials and methods, results, and discussion. This structure is sometimes called the “IMRaD” format. There are usually acknowledgment and reference sections as well as an abstract (a concise summary) at the beginning of the paper. There might be additional sections depending on the type of paper and the journal where it will be published; for example, some review papers require an outline.

The introduction starts with brief, but broad, background information about what is known in the field. A good introduction also gives the rationale of the work; it justifies the work carried out and also briefly mentions the end of the paper, where the hypothesis or research question driving the research will be presented. The introduction refers to the published scientific work of others and therefore requires citations following the style of the journal. Using the work or ideas of others without proper citation is considered plagiarism .

The materials and methods section includes a complete and accurate description of the substances used, and the method and techniques used by the researchers to gather data. The description should be thorough enough to allow another researcher to repeat the experiment and obtain similar results, but it does not have to be verbose. This section will also include information on how measurements were made and what types of calculations and statistical analyses were used to examine raw data. Although the materials and methods section gives an accurate description of the experiments, it does not discuss them.

Some journals require a results section followed by a discussion section, but it is more common to combine both. If the journal does not allow the combination of both sections, the results section simply narrates the findings without any further interpretation. The results are presented by means of tables or graphs, but no duplicate information should be presented. In the discussion section, the researcher will interpret the results, describe how variables may be related, and attempt to explain the observations. It is indispensable to conduct an extensive literature search to put the results in the context of previously published scientific research. Therefore, proper citations are included in this section as well.

Finally, the conclusion section summarizes the importance of the experimental findings. While the scientific paper almost certainly answered one or more scientific questions that were stated, any good research should lead to more questions. Therefore, a well-done scientific paper leaves doors open for the researcher and others to continue and expand on the findings.

Review articles do not follow the IMRAD format because they do not present original scientific findings, or primary literature; instead, they summarize and comment on findings that were published as primary literature and typically include extensive reference sections.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/biology-ap-courses/pages/1-introduction
  • Authors: Julianne Zedalis, John Eggebrecht
  • Publisher/website: OpenStax
  • Book title: Biology for AP® Courses
  • Publication date: Mar 8, 2018
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/biology-ap-courses/pages/1-introduction
  • Section URL: https://openstax.org/books/biology-ap-courses/pages/1-1-the-science-of-biology

© Jan 8, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Hypothesis Examples

Hypothesis Examples

A hypothesis is a prediction of the outcome of a test. It forms the basis for designing an experiment in the scientific method . A good hypothesis is testable, meaning it makes a prediction you can check with observation or experimentation. Here are different hypothesis examples.

Null Hypothesis Examples

The null hypothesis (H 0 ) is also known as the zero-difference or no-difference hypothesis. It predicts that changing one variable ( independent variable ) will have no effect on the variable being measured ( dependent variable ). Here are null hypothesis examples:

  • Plant growth is unaffected by temperature.
  • If you increase temperature, then solubility of salt will increase.
  • Incidence of skin cancer is unrelated to ultraviolet light exposure.
  • All brands of light bulb last equally long.
  • Cats have no preference for the color of cat food.
  • All daisies have the same number of petals.

Sometimes the null hypothesis shows there is a suspected correlation between two variables. For example, if you think plant growth is affected by temperature, you state the null hypothesis: “Plant growth is not affected by temperature.” Why do you do this, rather than say “If you change temperature, plant growth will be affected”? The answer is because it’s easier applying a statistical test that shows, with a high level of confidence, a null hypothesis is correct or incorrect.

Research Hypothesis Examples

A research hypothesis (H 1 ) is a type of hypothesis used to design an experiment. This type of hypothesis is often written as an if-then statement because it’s easy identifying the independent and dependent variables and seeing how one affects the other. If-then statements explore cause and effect. In other cases, the hypothesis shows a correlation between two variables. Here are some research hypothesis examples:

  • If you leave the lights on, then it takes longer for people to fall asleep.
  • If you refrigerate apples, they last longer before going bad.
  • If you keep the curtains closed, then you need less electricity to heat or cool the house (the electric bill is lower).
  • If you leave a bucket of water uncovered, then it evaporates more quickly.
  • Goldfish lose their color if they are not exposed to light.
  • Workers who take vacations are more productive than those who never take time off.

Is It Okay to Disprove a Hypothesis?

Yes! You may even choose to write your hypothesis in such a way that it can be disproved because it’s easier to prove a statement is wrong than to prove it is right. In other cases, if your prediction is incorrect, that doesn’t mean the science is bad. Revising a hypothesis is common. It demonstrates you learned something you did not know before you conducted the experiment.

Test yourself with a Scientific Method Quiz .

  • Mellenbergh, G.J. (2008). Chapter 8: Research designs: Testing of research hypotheses. In H.J. Adèr & G.J. Mellenbergh (eds.), Advising on Research Methods: A Consultant’s Companion . Huizen, The Netherlands: Johannes van Kessel Publishing.
  • Popper, Karl R. (1959). The Logic of Scientific Discovery . Hutchinson & Co. ISBN 3-1614-8410-X.
  • Schick, Theodore; Vaughn, Lewis (2002). How to think about weird things: critical thinking for a New Age . Boston: McGraw-Hill Higher Education. ISBN 0-7674-2048-9.
  • Tobi, Hilde; Kampen, Jarl K. (2018). “Research design: the methodology for interdisciplinary research framework”. Quality & Quantity . 52 (3): 1209–1225. doi: 10.1007/s11135-017-0513-8

Related Posts

Null hypothesis

null hypothesis definition

Null hypothesis n., plural: null hypotheses [nʌl haɪˈpɒθɪsɪs] Definition: a hypothesis that is valid or presumed true until invalidated by a statistical test

Table of Contents

Null Hypothesis Definition

Null hypothesis is defined as “the commonly accepted fact (such as the sky is blue) and researcher aim to reject or nullify this fact”.

More formally, we can define a null hypothesis as “a statistical theory suggesting that no statistical relationship exists between given observed variables” .

In biology , the null hypothesis is used to nullify or reject a common belief. The researcher carries out the research which is aimed at rejecting the commonly accepted belief.

What Is a Null Hypothesis?

A hypothesis is defined as a theory or an assumption that is based on inadequate evidence. It needs and requires more experiments and testing for confirmation. There are two possibilities that by doing more experiments and testing, a hypothesis can be false or true. It means it can either prove wrong or true (Blackwelder, 1982).

For example, Susie assumes that mineral water helps in the better growth and nourishment of plants over distilled water. To prove this hypothesis, she performs this experiment for almost a month. She watered some plants with mineral water and some with distilled water.

In a hypothesis when there are no statistically significant relationships among the two variables, the hypothesis is said to be a null hypothesis. The investigator is trying to disprove such a hypothesis. In the above example of plants, the null hypothesis is:

There are no statistical relationships among the forms of water that are given to plants for growth and nourishment.

Usually, an investigator tries to prove the null hypothesis wrong and tries to explain a relation and association between the two variables.

An opposite and reverse of the null hypothesis are known as the alternate hypothesis . In the example of plants the alternate hypothesis is:

There are statistical relationships among the forms of water that are given to plants for growth and nourishment.

The example below shows the difference between null vs alternative hypotheses:

Alternate Hypothesis: The world is round Null Hypothesis: The world is not round.

Copernicus and many other scientists try to prove the null hypothesis wrong and false. By their experiments and testing, they make people believe that alternate hypotheses are correct and true. If they do not prove the null hypothesis experimentally wrong then people will not believe them and never consider the alternative hypothesis true and correct.

The alternative and null hypothesis for Susie’s assumption is:

  • Null Hypothesis: If one plant is watered with distilled water and the other with mineral water, then there is no difference in the growth and nourishment of these two plants.
  • Alternative Hypothesis:  If one plant is watered with distilled water and the other with mineral water, then the plant with mineral water shows better growth and nourishment.

The null hypothesis suggests that there is no significant or statistical relationship. The relation can either be in a single set of variables or among two sets of variables.

Most people consider the null hypothesis true and correct. Scientists work and perform different experiments and do a variety of research so that they can prove the null hypothesis wrong or nullify it. For this purpose, they design an alternate hypothesis that they think is correct or true. The null hypothesis symbol is H 0 (it is read as H null or H zero ).

Why is it named the “Null”?

The name null is given to this hypothesis to clarify and explain that the scientists are working to prove it false i.e. to nullify the hypothesis. Sometimes it confuses the readers; they might misunderstand it and think that statement has nothing. It is blank but, actually, it is not. It is more appropriate and suitable to call it a nullifiable hypothesis instead of the null hypothesis.

Why do we need to assess it? Why not just verify an alternate one?

In science, the scientific method is used. It involves a series of different steps. Scientists perform these steps so that a hypothesis can be proved false or true. Scientists do this to confirm that there will be any limitation or inadequacy in the new hypothesis. Experiments are done by considering both alternative and null hypotheses, which makes the research safe. It gives a negative as well as a bad impact on research if a null hypothesis is not included or a part of the study. It seems like you are not taking your research seriously and not concerned about it and just want to impose your results as correct and true if the null hypothesis is not a part of the study.

Development of the Null

In statistics, firstly it is necessary to design alternate and null hypotheses from the given problem. Splitting the problem into small steps makes the pathway towards the solution easier and less challenging. how to write a null hypothesis?

Writing a null hypothesis consists of two steps:

  • Firstly, initiate by asking a question.
  • Secondly, restate the question in such a way that it seems there are no relationships among the variables.

In other words, assume in such a way that the treatment does not have any effect.

The usual recovery duration after knee surgery is considered almost 8 weeks.

A researcher thinks that the recovery period may get elongated if patients go to a physiotherapist for rehabilitation twice per week, instead of thrice per week, i.e. recovery duration reduces if the patient goes three times for rehabilitation instead of two times.

Step 1: Look for the problem in the hypothesis. The hypothesis either be a word or can be a statement. In the above example the hypothesis is:

“The expected recovery period in knee rehabilitation is more than 8 weeks”

Step 2: Make a mathematical statement from the hypothesis. Averages can also be represented as μ, thus the null hypothesis formula will be.

In the above equation, the hypothesis is equivalent to H1, the average is denoted by μ and > that the average is greater than eight.

Step 3: Explain what will come up if the hypothesis does not come right i.e., the rehabilitation period may not proceed more than 08 weeks.

There are two options: either the recovery will be less than or equal to 8 weeks.

H 0 : μ ≤ 8

In the above equation, the null hypothesis is equivalent to H 0 , the average is denoted by μ and ≤ represents that the average is less than or equal to eight.

What will happen if the scientist does not have any knowledge about the outcome?

Problem: An investigator investigates the post-operative impact and influence of radical exercise on patients who have operative procedures of the knee. The chances are either the exercise will improve the recovery or will make it worse. The usual time for recovery is 8 weeks.

Step 1: Make a null hypothesis i.e. the exercise does not show any effect and the recovery time remains almost 8 weeks.

H 0 : μ = 8

In the above equation, the null hypothesis is equivalent to H 0 , the average is denoted by μ, and the equal sign (=) shows that the average is equal to eight.

Step 2: Make the alternate hypothesis which is the reverse of the null hypothesis. Particularly what will happen if treatment (exercise) makes an impact?

In the above equation, the alternate hypothesis is equivalent to H1, the average is denoted by μ and not equal sign (≠) represents that the average is not equal to eight.

Significance Tests

To get a reasonable and probable clarification of statistics (data), a significance test is performed. The null hypothesis does not have data. It is a piece of information or statement which contains numerical figures about the population. The data can be in different forms like in means or proportions. It can either be the difference of proportions and means or any odd ratio.

The following table will explain the symbols:

P-value is the chief statistical final result of the significance test of the null hypothesis.

  • P-value = Pr(data or data more extreme | H 0 true)
  • | = “given”
  • Pr = probability
  • H 0 = the null hypothesis

The first stage of Null Hypothesis Significance Testing (NHST) is to form an alternate and null hypothesis. By this, the research question can be briefly explained.

Null Hypothesis = no effect of treatment, no difference, no association Alternative Hypothesis = effective treatment, difference, association

When to reject the null hypothesis?

Researchers will reject the null hypothesis if it is proven wrong after experimentation. Researchers accept null hypothesis to be true and correct until it is proven wrong or false. On the other hand, the researchers try to strengthen the alternate hypothesis. The binomial test is performed on a sample and after that, a series of tests were performed (Frick, 1995).

Step 1: Evaluate and read the research question carefully and consciously and make a null hypothesis. Verify the sample that supports the binomial proportion. If there is no difference then find out the value of the binomial parameter.

Show the null hypothesis as:

H 0 :p= the value of p if H 0 is true

To find out how much it varies from the proposed data and the value of the null hypothesis, calculate the sample proportion.

Step 2: In test statistics, find the binomial test that comes under the null hypothesis. The test must be based on precise and thorough probabilities. Also make a list of pmf that apply, when the null hypothesis proves true and correct.

When H 0 is true, X~b(n, p)

N = size of the sample

P = assume value if H 0 proves true.

Step 3: Find out the value of P. P-value is the probability of data that is under observation.

Rise or increase in the P value = Pr(X ≥ x)

X = observed number of successes

P value = Pr(X ≤ x).

Step 4: Demonstrate the findings or outcomes in a descriptive detailed way.

  • Sample proportion
  • The direction of difference (either increases or decreases)

Perceived Problems With the Null Hypothesis

Variable or model selection and less information in some cases are the chief important issues that affect the testing of the null hypothesis. Statistical tests of the null hypothesis are reasonably not strong. There is randomization about significance. (Gill, 1999) The main issue with the testing of the null hypothesis is that they all are wrong or false on a ground basis.

There is another problem with the a-level . This is an ignored but also a well-known problem. The value of a-level is without a theoretical basis and thus there is randomization in conventional values, most commonly 0.q, 0.5, or 0.01. If a fixed value of a is used, it will result in the formation of two categories (significant and non-significant) The issue of a randomized rejection or non-rejection is also present when there is a practical matter which is the strong point of the evidence related to a scientific matter.

The P-value has the foremost importance in the testing of null hypothesis but as an inferential tool and for interpretation, it has a problem. The P-value is the probability of getting a test statistic at least as extreme as the observed one.

The main point about the definition is: Observed results are not based on a-value

Moreover, the evidence against the null hypothesis was overstated due to unobserved results. A-value has importance more than just being a statement. It is a precise statement about the evidence from the observed results or data. Similarly, researchers found that P-values are objectionable. They do not prefer null hypotheses in testing. It is also clear that the P-value is strictly dependent on the null hypothesis. It is computer-based statistics. In some precise experiments, the null hypothesis statistics and actual sampling distribution are closely related but this does not become possible in observational studies.

Some researchers pointed out that the P-value is depending on the sample size. If the true and exact difference is small, a null hypothesis even of a large sample may get rejected. This shows the difference between biological importance and statistical significance. (Killeen, 2005)

Another issue is the fix a-level, i.e., 0.1. On the basis, if a-level a null hypothesis of a large sample may get accepted or rejected. If the size of simple is infinity and the null hypothesis is proved true there are still chances of Type I error. That is the reason this approach or method is not considered consistent and reliable. There is also another problem that the exact information about the precision and size of the estimated effect cannot be known. The only solution is to state the size of the effect and its precision.

Null Hypothesis Examples

Here are some examples:

Example 1: Hypotheses with One Sample of One Categorical Variable

Among all the population of humans, almost 10% of people prefer to do their task with their left hand i.e. left-handed. Let suppose, a researcher in the Penn States says that the population of students at the College of Arts and Architecture is mostly left-handed as compared to the general population of humans in general public society. In this case, there is only a sample and there is a comparison among the known population values to the population proportion of sample value.

  • Research Question: Do artists more expected to be left-handed as compared to the common population persons in society?
  • Response Variable: Sorting the student into two categories. One category has left-handed persons and the other category have right-handed persons.
  • Form Null Hypothesis: Arts and Architecture college students are no more predicted to be lefty as compared to the common population persons in society (Lefty students of Arts and Architecture college population is 10% or p= 0.10)

Example 2: Hypotheses with One Sample of One Measurement Variable

A generic brand of antihistamine Diphenhydramine making medicine in the form of a capsule, having a 50mg dose. The maker of the medicines is concerned that the machine has come out of calibration and is not making more capsules with the suitable and appropriate dose.

  • Research Question: Does the statistical data recommended about the mean and average dosage of the population differ from 50mg?
  • Response Variable: Chemical assay used to find the appropriate dosage of the active ingredient.
  • Null Hypothesis: Usually, the 50mg dosage of capsules of this trade name (population average and means dosage =50 mg).

Example 3: Hypotheses with Two Samples of One Categorical Variable

Several people choose vegetarian meals on a daily basis. Typically, the researcher thought that females like vegetarian meals more than males.

  • Research Question: Does the data recommend that females (women) prefer vegetarian meals more than males (men) regularly?
  • Response Variable: Cataloguing the persons into vegetarian and non-vegetarian categories. Grouping Variable: Gender
  • Null Hypothesis: Gender is not linked to those who like vegetarian meals. (Population percent of women who eat vegetarian meals regularly = population percent of men who eat vegetarian meals regularly or p women = p men).

Example 4: Hypotheses with Two Samples of One Measurement Variable

Nowadays obesity and being overweight is one of the major and dangerous health issues. Research is performed to confirm that a low carbohydrates diet leads to faster weight loss than a low-fat diet.

  • Research Question: Does the given data recommend that usually, a low-carbohydrate diet helps in losing weight faster as compared to a low-fat diet?
  • Response Variable: Weight loss (pounds)
  • Explanatory Variable: Form of diet either low carbohydrate or low fat
  • Null Hypothesis: There is no significant difference when comparing the mean loss of weight of people using a low carbohydrate diet to people using a diet having low fat. (population means loss of weight on a low carbohydrate diet = population means loss of weight on a diet containing low fat).

Example 5: Hypotheses about the relationship between Two Categorical Variables

A case-control study was performed. The study contains nonsmokers, stroke patients, and controls. The subjects are of the same occupation and age and the question was asked if someone at their home or close surrounding smokes?

  • Research Question: Did second-hand smoke enhance the chances of stroke?
  • Variables: There are 02 diverse categories of variables. (Controls and stroke patients) (whether the smoker lives in the same house). The chances of having a stroke will be increased if a person is living with a smoker.
  • Null Hypothesis: There is no significant relationship between a passive smoker and stroke or brain attack. (odds ratio between stroke and the passive smoker is equal to 1).

Example 6: Hypotheses about the relationship between Two Measurement Variables

A financial expert observes that there is somehow a positive and effective relationship between the variation in stock rate price and the quantity of stock bought by non-management employees

  • Response variable- Regular alteration in price
  • Explanatory Variable- Stock bought by non-management employees
  • Null Hypothesis: The association and relationship between the regular stock price alteration ($) and the daily stock-buying by non-management employees ($) = 0.

Example 7: Hypotheses about comparing the relationship between Two Measurement Variables in Two Samples

  • Research Question: Is the relation between the bill paid in a restaurant and the tip given to the waiter, is linear? Is this relation different for dining and family restaurants?
  • Explanatory Variable- total bill amount
  • Response Variable- the amount of tip
  • Null Hypothesis: The relationship and association between the total bill quantity at a family or dining restaurant and the tip, is the same.

Try to answer the quiz below to check what you have learned so far about the null hypothesis.

Choose the best answer. 

Send Your Results (Optional)

clock.png

Time is Up!

  • Blackwelder, W. C. (1982). “Proving the null hypothesis” in clinical trials. Controlled Clinical Trials , 3(4), 345–353.
  • Frick, R. W. (1995). Accepting the null hypothesis. Memory & Cognition, 23(1), 132–138.
  • Gill, J. (1999). The insignificance of null hypothesis significance testing. Political Research Quarterly , 52(3), 647–674.
  • Killeen, P. R. (2005). An alternative to null-hypothesis significance tests. Psychological Science, 16(5), 345–353.

©BiologyOnline.com. Content provided and moderated by Biology Online Editors.

Last updated on June 16th, 2022

You will also like...

hypothesis meaning in biology

The sea was teeming with life. Eventually, through reproduction and continued variation, fish came about. There are over..

Gene Regulation in Eukaryotes

Gene Regulation in Eukaryotes

Learn about the general structure of a eukaryotic gene, the transcription factors, and post-transcriptional regulation....

Energy pyramid

Freshwater Community Energy Relationships – Producers & Consumers

This tutorial looks at the relationship between organisms. It also explores how energy is passed on in the food chain an..

kinesin motor proteins transporting molecules across microtubules

Movement of Molecules Across Cell Membranes

Molecules move within the cell or from one cell to another through different strategies. Transport may be in the form of..

DNA carries genes coding for proteins

Genetic Information and Protein Synthesis

Genes are expressed through the process of protein synthesis. This elaborate tutorial provides an in-depth review of the..

Schematic diagram of DNA replication

DNA Structure & DNA Replication

DNA is a double helix structure comprised of nucleotides. A nucleotide, in turn, is made up of phosphate molecule, deoxy..

Related Articles...

hypothesis meaning in biology

No related articles found

Talk to our experts

1800-120-456-456

What is a Hypothesis?

Hypothesis means something taken or supposed for granted, with the object of following out its consequences. In Greek, the term hypothesis is “a putting under,” and in Latin, it is equivalent to being suppositio.

Scientific Hypothesis

In the plan of an action course, one may consider different alternatives, working out each in a detailed way. Although the term hypothesis is typically not used in this particular case, this procedure is virtually similar to that of an investigator of crime considering different suspects. Various methods can be used for deciding what the different alternatives may be, but the fundamental is that the consideration of a supposal as if it were true, without actually accepting it to be true. The earliest use of the word in this sense was present in geometry, which is described by Plato in the Meno.

[Image will be uploaded soon]

The essential modern use of a hypothesis is in relation to scientific investigation. Merely, a scientist is not concerned about accumulating such facts as may be discovered by observation: linkages should be discovered to connect such facts. An initial problem or puzzle provides the impetus, but clues should be used to ascertain which facts will help in yielding a solution.

The tentative hypothesis is the best guide that fits within the existing doctrine body. With its help, it is so framed that deductions may be made that under certain factual conditions (also called “initial conditions”), certain other facts would be found when, if the hypothesis were correct.

Concept of Hypothesis

The concepts that are involved in the hypothesis need not themselves refer to the observable objects. But, the initial conditions must be capable of being observed or produced experimentally, and the deduced facts must be able to be observed. The research made by William Harvey on circulation in animals demonstrates how greatly the experimental observation is helped by a fruitful hypothesis. While a hypothesis may be confirmed partially by showing what is deduced from it with certain initial conditions is found under those conditions actually, it can’t be completely proved in this way.

What would have to be shown is, no other hypothesis would serve. Therefore, in assessing the hypothesis soundness, stress is laid on the variety and range of facts that can be brought under its scope. Also, it is essential that it should be capable of being linked systematically with the hypotheses that have been found fertile in other fields.

Predictions

If the predictions, which are derived from the hypothesis are not found to be true, the hypothesis may have to be modified or given up. However, the fault may lie in some other principle, which forms part of the body of accepted doctrine that has been utilized in deducing hypothesis consequences. Also, it may lie in the fact that other conditions, hitherto have unobserved, are present beside the initial conditions, affecting the entire result.

Therefore, the hypothesis can be kept pending further examination of some remodelling of principles or facts. A good illustration of this can be found in the history of the undulatory and the corpuscular hypotheses about light.

Working Hypothesis

A working hypothesis is one that is tentatively accepted as a foundation for more study in the hopes of producing a tenable theory, even though the hypothesis fails in the end. Similar to all hypotheses, a working hypothesis can be constructed as a statement of expectations that can be linked to the exploratory research purpose in the empirical investigation. Often, working hypotheses may be used as a conceptual framework in qualitative researches.

The working hypotheses’ provisional nature makes them useful as an organizing device in any applied research. Here, they act as a useful guide to address the problems, which are still in a formative phase.

Uses of Hypothesis

The theory was originally referred to as a plot outline of a classical drama. The word hypothesis in English comes from the ancient Greek word, whose literal or etymological hypothesis sense is about "placing or putting under" and thus, in extended use, has several other meanings, including "supposition."

Socrates deconstructs virtue in Plato's Meno (86e–87b) using a mathematical approach known as "investigating from a hypothesis." In this particular sense, 'hypothesis' refers to a convenient mathematical approach or a clever idea that simplifies the cumbersome calculations. And Cardinal Bellarmine gave one of the famous hypothesis examples about this usage in the warning issued to Galileo in the early 17th century: that he should not treat the Earth’s motion as a reality but merely as a hypothesis.

In the 21st century’s common usage, a hypothesis term refers to a provisional idea whose merit needs evaluation. For a proper evaluation, the hypothesis’ framer needs to describe specifics in operational terms. A hypothesis needs more work by the researcher to either disprove or confirm it. In due course, a confirmed hypothesis can occasionally grow to become a theory itself or become part of a theory.

FAQs on Hypothesis

1. Explain the Scientific Hypothesis?

Answer: In general, scientific hypotheses contain the form of a mathematical model. At times, but not always, we can also formulate them as existential statements, stating that some specific phenomenon instances under the examination contain some causal explanations and characteristics, which contain the general form of universal statements, stating that each and every phenomenon instance has a particular characteristic.

2. Explain the Importance of the Hypothesis?

Answer: Hempel's deductive-nomological hypothesis model concepts play an important role in both the development and testing of hypotheses. Many formal hypotheses connect the concepts by specifying the relationships that are expected between the propositions. When hypotheses are grouped together, they become a conceptual framework type. And, when a conceptual framework incorporates explanation or causality and complexity, it is generally called a theory.

3. What is Statistical Hypothesis Testing?

Answer: Whenever a possible correlation or any similar relation between the phenomena is investigated, like whether a proposed remedy is effective in the treatment of a disease, the hypothesis, which a relation exists cannot be examined the similar way one might examine any proposed new law of nature. In that type of investigation, if the tested remedy exhibits no effect in some cases, these do not necessarily falsify the concept of hypothesis.

4. How is Statistical Testing Used?

Answer: Statistical tests may be used to define how likely it is that the entire effect would be noticed if the hypothesized relation doesn’t exist. If that particular likelihood is sufficiently small (for example, less than 1%), the relation's existence may be assumed. Else, any observed effect can be due to pure chance.

Biology • Class 10

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

1.5.3: Testing hypotheses--Inferential statistics

  • Last updated
  • Save as PDF
  • Page ID 75930

What is a hypothesis and are there different kinds?

Biological (Scientific) hypothesis: An idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. This is the backbone of all scientific inquiry! As such it is important to have a solid biological hypothesis before moving forward in the scientific method (i.e. procedures, results, discussion). After the creation of a solid biological hypothesis, it can then be simplified into a statistical hypothesis (as defined below) that will become the basis for how the data will be analyzed and interpreted.

Statistical hypotheses: After defining a strong biological hypothesis, a statistical hypothesis can be created based on what you will predict will be the measured outcome(s) (dependent variable(s)). If a study has multiple measured outcomes there can be multiple statistical hypotheses. Each statistical hypothesis will have two components (Null and Alternative).

  • Null hypothesis (Ho) –This hypothesis states that there is no relationship (or no pattern) between the independent and dependent variables.
  • Alternative hypothesis (H1) – This hypothesis states that there is a relationship (or is a pattern) between the independent and dependent variables.

Independent versus dependent variables: For both biological and statistical hypotheses there should be two basic variables defined:

  • Independent (explanatory) variable – It is usually what phenomena you think will affect the measure you are interested in (dependent variable).
  • Dependent (response) variable – A dependent variable is what you measure in the experiment and what is affected during the experiment. The dependent variable responds to (depends on) the independent variable. In a scientific experiment, you cannot have a dependent variable without an independent variable.

Yellow-billed Cuckoo nests were counted during breeding season in degraded, restored, and intact riparian habitats to see overall habitat preference for nesting sites increased with habitat health. 

  • Scientific hypothesis: Yellow-billed Cuckoo will have habitat preferences because of habitat health/status.
  • Statistical hypotheses: (Ho) There will be no differences in number of nests between habitats with different health/status. (H1) There will be more nests in restored and intact habitats compared to degraded.
  • Independent variable = Habitat health/status
  • Dependent variable = Number of nests counted

How do you reach conclusions?

Finally, after defining the biological hypothesis, statistical hypothesis, and collecting all your data, a researcher can begin statistical analysis. A statistical test will mathematically “test” your data against the statistical hypothesis. The type of statistical test that is used depends on the type and quantity of variables in the study, as well as the question the researcher wants to ask. After computing the statistical test, the outcome will indicate which statistical hypothesis is more likely. This, in turn indicates to scientists what level of inference can be gained from the data compared to the biological hypothesis (the focus point of the study). Then a conclusion can be made based on the sample about the entire population. It is important to note that the process does not stop here. Scientists will want to continue to test this conclusion until a clear pattern emerges (or not) or to investigate similar but different questions.

Types of Basic Statistical Tests

Inferential statistics generally provide a test statistic, the degrees of freedom (related to the number of individuals in each sample) and a p-value. Significance (acceptance of the alternative hypothesis) is generally based on the p-value. Depending on the field, scientists will often use a cut-off of 0.01 or 0.05 to determine significance. If the test returns a p-value that is less than this value, the relationship is deemed significant. 

  • (e.g. do different habitats different in the numbers of species of each type?)
  • (e.g. are oak trees taller than hickory trees, on average?)
  • (e.g. does height differ across tree species, on average?) 
  • (e.g. do taller trees have a larger circumference?)

The “Magic” level of Significance 

If p ≤ 0.05 – accept alternative hypothesis

  • There is less than 5% chance that the samples are from the same population
  • There is a significant difference between the samples

If p > 0.05 – accept null hypothesis

  • There is no significant difference between the samples

Attribution 

Rachel Schleiger ( CC-BY-NC )

IMAGES

  1. 13 Different Types of Hypothesis (2024)

    hypothesis meaning in biology

  2. Hypothesis

    hypothesis meaning in biology

  3. Null hypothesis

    hypothesis meaning in biology

  4. Null hypothesis

    hypothesis meaning in biology

  5. PPT

    hypothesis meaning in biology

  6. Hypothesis

    hypothesis meaning in biology

VIDEO

  1. What is Hypothesis #hypothesis

  2. 1.5. Hypothesis statement

  3. Hypothesis: Meaning. Problem v/s Hypothesis/ Dr Latika varma

  4. Hypothesis Meaning, Characteristics, Formulation of Hypothesis and Types of Hypothesis

  5. Lecture 10: Hypothesis Testing

  6. Hypothesis explain biology book

COMMENTS

  1. Hypothesis

    Biology definition: A hypothesis is a supposition or tentative explanation for (a group of) phenomena, (a set of) facts, or a scientific inquiry that may be tested, verified or answered by further investigation or methodological experiment. It is like a scientific guess.

  2. The scientific method (article)

    The scientific method. At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  3. Biology and the scientific method review

    Meaning. Biology. The study of living things. Observation. Noticing and describing events in an orderly way. Hypothesis. A scientific explanation that can be tested through experimentation or observation. Controlled experiment. An experiment in which only one variable is changed.

  4. Scientific hypothesis

    scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world.The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation.

  5. 1.3: The Science of Biology

    The scientific method can be applied to almost all fields of study as a logical, rational, problem-solving method. Figure 1.3.1 1.3. 1: Sir Francis Bacon: Sir Francis Bacon (1561-1626) is credited with being the first to define the scientific method. The scientific process typically starts with an observation (often a problem to be solved ...

  6. 4.14: Experiments and Hypotheses

    Forming a Hypothesis. When conducting scientific experiments, researchers develop hypotheses to guide experimental design. A hypothesis is a suggested explanation that is both testable and falsifiable. You must be able to test your hypothesis, and it must be possible to prove your hypothesis true or false.

  7. Controlled experiments (article)

    Biologists and other scientists use the scientific method to ask questions about the natural world. The scientific method begins with an observation, which leads the scientist to ask a question. They then come up with a hypothesis, a testable explanation that addresses the question.

  8. Experiments and Hypotheses

    When conducting scientific experiments, researchers develop hypotheses to guide experimental design. A hypothesis is a suggested explanation that is both testable and falsifiable. You must be able to test your hypothesis through observations and research, and it must be possible to prove your hypothesis false. For example, Michael observes that ...

  9. Scientific Hypotheses: Writing, Promoting, and Predicting Implications

    Scientific hypotheses are essential for progress in rapidly developing academic disciplines. Proposing new ideas and hypotheses require thorough analyses of evidence-based data and predictions of the implications. One of the main concerns relates to the ethical implications of the generated hypotheses. The authors may need to outline potential ...

  10. 1.2: The Process of Science

    A hypothesis is a suggested explanation for an event, which can be tested. Hypotheses, or tentative explanations, are generally produced within the context of a scientific theory. A scientific theory is a generally accepted, thoroughly tested and confirmed explanation for a set of observations or phenomena.

  11. What is a scientific hypothesis?

    A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method.Many describe it as an "educated guess ...

  12. Hypothesis Definition & Meaning

    hypothesis: [noun] an assumption or concession made for the sake of argument. an interpretation of a practical situation or condition taken as the ground for action.

  13. What Is a Hypothesis? The Scientific Method

    A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject. In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

  14. 1.2 The Process of Science

    A hypothesis is a suggested explanation for an event, which can be tested. Hypotheses, or tentative explanations, are generally produced within the context of a scientific theory . A generally accepted scientific theory is thoroughly tested and confirmed explanation for a set of observations or phenomena.

  15. 1.1 The Science of Biology

    In simple terms, biology is the study of life. This is a very broad definition because the scope of biology is vast. Biologists may study anything from the microscopic or submicroscopic view of a cell to ecosystems and the whole living planet ( Figure 1.2 ). Listening to the daily news, you will quickly realize how many aspects of biology we ...

  16. 1.1 The Science of Biology

    Biology is the science that studies living organisms and their interactions with one another and with their environment. The process of science attempts to describe and understand the nature of the universe by rational means. ... Recall that a hypothesis is a suggested explanation that can be tested. To solve a problem, several hypotheses may ...

  17. Hypothesis Examples

    A hypothesis proposes a relationship between the independent and dependent variable. A hypothesis is a prediction of the outcome of a test. It forms the basis for designing an experiment in the scientific method.A good hypothesis is testable, meaning it makes a prediction you can check with observation or experimentation.

  18. 1.2: The Science of Biology

    A hypothesis is a statement/prediction that can be tested by experimentation. A theory is an explanation for a set of observations or phenomena that is supported by extensive research and that can be used as the basis for further research. Inductive reasoning draws on observations to infer logical conclusions based on the evidence.

  19. Null hypothesis

    Biology definition: A null hypothesis is an assumption or proposition where an observed difference between two samples of a statistical population is purely accidental and not due to systematic causes. It is the hypothesis to be investigated through statistical hypothesis testing so that when refuted indicates that the alternative hypothesis is true. . Thus, a null hypothesis is a hypothesis ...

  20. Hypothesis

    The word hypothesis in English comes from the ancient Greek word, whose literal or etymological hypothesis sense is about "placing or putting under" and thus, in extended use, has several other meanings, including "supposition." Socrates deconstructs virtue in Plato's Meno (86e-87b) using a mathematical approach known as "investigating from a ...

  21. Biology Unit 1 hypothesis Flashcards

    Hypothesis. is a scientific explanation for a set of observations that can be tested in ways that support or reject it. Controlled experiment. when only one variable is changed and all of the other variables stay unchanged or controlled. Independent variable. is the one that deliberately changed. Dependent variable.

  22. 1.3: Scientific Theories

    Scientific Theories. With repeated testing, some hypotheses may eventually become scientific theories. Keep in mind, a hypothesis is a possible answer to a scientific question. A scientific theory is a broad explanation for events that is widely accepted as true. To become a theory, a hypothesis must be tested over and over again, and it must be supported by a great deal of evidence.

  23. AlphaFold-Multimer struggles in predicting PROTAC-mediated ...

    AlphaFold2 (AF2) made its debut in the CASP14 competition, generating structures which could rival experimentally determined ones and causing a paradigm shift in the structural biology community. From then onwards, further developments enabled the prediction of multimeric protein structures while improving calculation efficiency, leading to the widespread usage of AF2. However, previous work ...

  24. 1.5.3: Testing hypotheses--Inferential statistics

    What is a hypothesis and are there different kinds? Biological (Scientific) hypothesis: An idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. This is the backbone of all scientific inquiry! As such it is important to have a solid biological hypothesis before moving forward in the scientific method (i.e. procedures, results ...