• Cookies & Privacy
  • GETTING STARTED
  • Introduction
  • FUNDAMENTALS

data analysis dissertation

Getting to the main article

Choosing your route

Setting research questions/ hypotheses

Assessment point

Building the theoretical case

Setting your research strategy

Data collection

Data analysis

Data analysis techniques

In STAGE NINE: Data analysis , we discuss the data you will have collected during STAGE EIGHT: Data collection . However, before you collect your data, having followed the research strategy you set out in this STAGE SIX , it is useful to think about the data analysis techniques you may apply to your data when it is collected.

The statistical tests that are appropriate for your dissertation will depend on (a) the research questions/hypotheses you have set, (b) the research design you are using, and (c) the nature of your data. You should already been clear about your research questions/hypotheses from STAGE THREE: Setting research questions and/or hypotheses , as well as knowing the goal of your research design from STEP TWO: Research design in this STAGE SIX: Setting your research strategy . These two pieces of information - your research questions/hypotheses and research design - will let you know, in principle , the statistical tests that may be appropriate to run on your data in order to answer your research questions.

We highlight the words in principle and may because the most appropriate statistical test to run on your data not only depend on your research questions/hypotheses and research design, but also the nature of your data . As you should have identified in STEP THREE: Research methods , and in the article, Types of variables , in the Fundamentals part of Lærd Dissertation, (a) not all data is the same, and (b) not all variables are measured in the same way (i.e., variables can be dichotomous, ordinal or continuous). In addition, not all data is normal , nor is the data when comparing groups necessarily equal , terms we explain in the Data Analysis section in the Fundamentals part of Lærd Dissertation. As a result, you might think that running a particular statistical test is correct at this point of setting your research strategy (e.g., a statistical test called a dependent t-test ), based on the research questions/hypotheses you have set, but when you collect your data (i.e., during STAGE EIGHT: Data collection ), the data may fail certain assumptions that are important to such a statistical test (i.e., normality and homogeneity of variance ). As a result, you have to run another statistical test (e.g., a Wilcoxon signed-rank test instead of a dependent t-test ).

At this stage in the dissertation process, it is important, or at the very least, useful to think about the data analysis techniques you may apply to your data when it is collected. We suggest that you do this for two reasons:

REASON A Supervisors sometimes expect you to know what statistical analysis you will perform at this stage of the dissertation process

This is not always the case, but if you have had to write a Dissertation Proposal or Ethics Proposal , there is sometimes an expectation that you explain the type of data analysis that you plan to carry out. An understanding of the data analysis that you will carry out on your data can also be an expected component of the Research Strategy chapter of your dissertation write-up (i.e., usually Chapter Three: Research Strategy ). Therefore, it is a good time to think about the data analysis process if you plan to start writing up this chapter at this stage.

REASON B It takes time to get your head around data analysis

When you come to analyse your data in STAGE NINE: Data analysis , you will need to think about (a) selecting the correct statistical tests to perform on your data, (b) running these tests on your data using a statistics package such as SPSS, and (c) learning how to interpret the output from such statistical tests so that you can answer your research questions or hypotheses. Whilst we show you how to do this for a wide range of scenarios in the in the Data Analysis section in the Fundamentals part of Lærd Dissertation, it can be a time consuming process. Unless you took an advanced statistics module/option as part of your degree (i.e., not just an introductory course to statistics, which are often taught in undergraduate and master?s degrees), it can take time to get your head around data analysis. Starting this process at this stage (i.e., STAGE SIX: Research strategy ), rather than waiting until you finish collecting your data (i.e., STAGE EIGHT: Data collection ) is a sensible approach.

Final thoughts...

Setting the research strategy for your dissertation required you to describe, explain and justify the research paradigm, quantitative research design, research method(s), sampling strategy, and approach towards research ethics and data analysis that you plan to follow, as well as determine how you will ensure the research quality of your findings so that you can effectively answer your research questions/hypotheses. However, from a practical perspective, just remember that the main goal of STAGE SIX: Research strategy is to have a clear research strategy that you can implement (i.e., operationalize ). After all, if you are unable to clearly follow your plan and carry out your research in the field, you will struggle to answer your research questions/hypotheses. Once you are sure that you have a clear plan, it is a good idea to take a step back, speak with your supervisor, and assess where you are before moving on to collect data. Therefore, when you are ready, proceed to STAGE SEVEN: Assessment point .

LOGO ANALYTICS FOR DECISIONS

11 Tips For Writing a Dissertation Data Analysis

Since the evolution of the fourth industrial revolution – the Digital World; lots of data have surrounded us. There are terabytes of data around us or in data centers that need to be processed and used. The data needs to be appropriately analyzed to process it, and Dissertation data analysis forms its basis. If data analysis is valid and free from errors, the research outcomes will be reliable and lead to a successful dissertation. 

Considering the complexity of many data analysis projects, it becomes challenging to get precise results if analysts are not familiar with data analysis tools and tests properly. The analysis is a time-taking process that starts with collecting valid and relevant data and ends with the demonstration of error-free results.

So, in today’s topic, we will cover the need to analyze data, dissertation data analysis, and mainly the tips for writing an outstanding data analysis dissertation. If you are a doctoral student and plan to perform dissertation data analysis on your data, make sure that you give this article a thorough read for the best tips!

What is Data Analysis in Dissertation?

Dissertation Data Analysis  is the process of understanding, gathering, compiling, and processing a large amount of data. Then identifying common patterns in responses and critically examining facts and figures to find the rationale behind those outcomes.

Even f you have the data collected and compiled in the form of facts and figures, it is not enough for proving your research outcomes. There is still a need to apply dissertation data analysis on your data; to use it in the dissertation. It provides scientific support to the thesis and conclusion of the research.

Data Analysis Tools

There are plenty of indicative tests used to analyze data and infer relevant results for the discussion part. Following are some tests  used to perform analysis of data leading to a scientific conclusion:

11 Most Useful Tips for Dissertation Data Analysis

Doctoral students need to perform dissertation data analysis and then dissertation to receive their degree. Many Ph.D. students find it hard to do dissertation data analysis because they are not trained in it.

1. Dissertation Data Analysis Services

The first tip applies to those students who can afford to look for help with their dissertation data analysis work. It’s a viable option, and it can help with time management and with building the other elements of the dissertation with much detail.

Dissertation Analysis services are professional services that help doctoral students with all the basics of their dissertation work, from planning, research and clarification, methodology, dissertation data analysis and review, literature review, and final powerpoint presentation.

One great reference for dissertation data analysis professional services is Statistics Solutions , they’ve been around for over 22 years helping students succeed in their dissertation work. You can find the link to their website here .

For a proper dissertation data analysis, the student should have a clear understanding and statistical knowledge. Through this knowledge and experience, a student can perform dissertation analysis on their own. 

Following are some helpful tips for writing a splendid dissertation data analysis:

2. Relevance of Collected Data

If the data is irrelevant and not appropriate, you might get distracted from the point of focus. To show the reader that you can critically solve the problem, make sure that you write a theoretical proposition regarding the selection  and analysis of data.

3. Data Analysis

For analysis, it is crucial to use such methods that fit best with the types of data collected and the research objectives. Elaborate on these methods and the ones that justify your data collection methods thoroughly. Make sure to make the reader believe that you did not choose your method randomly. Instead, you arrived at it after critical analysis and prolonged research.

On the other hand,  quantitative analysis  refers to the analysis and interpretation of facts and figures – to build reasoning behind the advent of primary findings. An assessment of the main results and the literature review plays a pivotal role in qualitative and quantitative analysis.

The overall objective of data analysis is to detect patterns and inclinations in data and then present the outcomes implicitly.  It helps in providing a solid foundation for critical conclusions and assisting the researcher to complete the dissertation proposal. 

4. Qualitative Data Analysis

Qualitative data refers to data that does not involve numbers. You are required to carry out an analysis of the data collected through experiments, focus groups, and interviews. This can be a time-taking process because it requires iterative examination and sometimes demanding the application of hermeneutics. Note that using qualitative technique doesn’t only mean generating good outcomes but to unveil more profound knowledge that can be transferrable.

Presenting qualitative data analysis in a dissertation  can also be a challenging task. It contains longer and more detailed responses. Placing such comprehensive data coherently in one chapter of the dissertation can be difficult due to two reasons. Firstly, we cannot figure out clearly which data to include and which one to exclude. Secondly, unlike quantitative data, it becomes problematic to present data in figures and tables. Making information condensed into a visual representation is not possible. As a writer, it is of essence to address both of these challenges.

          Qualitative Data Analysis Methods

Following are the methods used to perform quantitative data analysis. 

  •   Deductive Method

This method involves analyzing qualitative data based on an argument that a researcher already defines. It’s a comparatively easy approach to analyze data. It is suitable for the researcher with a fair idea about the responses they are likely to receive from the questionnaires.

  •  Inductive Method

In this method, the researcher analyzes the data not based on any predefined rules. It is a time-taking process used by students who have very little knowledge of the research phenomenon.

5. Quantitative Data Analysis

Quantitative data contains facts and figures obtained from scientific research and requires extensive statistical analysis. After collection and analysis, you will be able to conclude. Generic outcomes can be accepted beyond the sample by assuming that it is representative – one of the preliminary checkpoints to carry out in your analysis to a larger group. This method is also referred to as the “scientific method”, gaining its roots from natural sciences.

The Presentation of quantitative data  depends on the domain to which it is being presented. It is beneficial to consider your audience while writing your findings. Quantitative data for  hard sciences  might require numeric inputs and statistics. As for  natural sciences , such comprehensive analysis is not required.

                Quantitative Analysis Methods

Following are some of the methods used to perform quantitative data analysis. 

  • Trend analysis:  This corresponds to a statistical analysis approach to look at the trend of quantitative data collected over a considerable period.
  • Cross-tabulation:  This method uses a tabula way to draw readings among data sets in research.  
  • Conjoint analysis :   Quantitative data analysis method that can collect and analyze advanced measures. These measures provide a thorough vision about purchasing decisions and the most importantly, marked parameters.
  • TURF analysis:  This approach assesses the total market reach of a service or product or a mix of both. 
  • Gap analysis:  It utilizes the  side-by-side matrix  to portray quantitative data, which captures the difference between the actual and expected performance. 
  • Text analysis:  In this method, innovative tools enumerate  open-ended data  into easily understandable data. 

6. Data Presentation Tools

Since large volumes of data need to be represented, it becomes a difficult task to present such an amount of data in coherent ways. To resolve this issue, consider all the available choices you have, such as tables, charts, diagrams, and graphs. 

Tables help in presenting both qualitative and quantitative data concisely. While presenting data, always keep your reader in mind. Anything clear to you may not be apparent to your reader. So, constantly rethink whether your data presentation method is understandable to someone less conversant with your research and findings. If the answer is “No”, you may need to rethink your Presentation. 

7. Include Appendix or Addendum

After presenting a large amount of data, your dissertation analysis part might get messy and look disorganized. Also, you would not be cutting down or excluding the data you spent days and months collecting. To avoid this, you should include an appendix part. 

The data you find hard to arrange within the text, include that in the  appendix part of a dissertation . And place questionnaires, copies of focus groups and interviews, and data sheets in the appendix. On the other hand, one must put the statistical analysis and sayings quoted by interviewees within the dissertation. 

8. Thoroughness of Data

It is a common misconception that the data presented is self-explanatory. Most of the students provide the data and quotes and think that it is enough and explaining everything. It is not sufficient. Rather than just quoting everything, you should analyze and identify which data you will use to approve or disapprove your standpoints. 

Thoroughly demonstrate the ideas and critically analyze each perspective taking care of the points where errors can occur. Always make sure to discuss the anomalies and strengths of your data to add credibility to your research.

9. Discussing Data

Discussion of data involves elaborating the dimensions to classify patterns, themes, and trends in presented data. In addition, to balancing, also take theoretical interpretations into account. Discuss the reliability of your data by assessing their effect and significance. Do not hide the anomalies. While using interviews to discuss the data, make sure you use relevant quotes to develop a strong rationale. 

It also involves answering what you are trying to do with the data and how you have structured your findings. Once you have presented the results, the reader will be looking for interpretation. Hence, it is essential to deliver the understanding as soon as you have submitted your data.

10. Findings and Results

Findings refer to the facts derived after the analysis of collected data. These outcomes should be stated; clearly, their statements should tightly support your objective and provide logical reasoning and scientific backing to your point. This part comprises of majority part of the dissertation. 

In the finding part, you should tell the reader what they are looking for. There should be no suspense for the reader as it would divert their attention. State your findings clearly and concisely so that they can get the idea of what is more to come in your dissertation.

11. Connection with Literature Review

At the ending of your data analysis in the dissertation, make sure to compare your data with other published research. In this way, you can identify the points of differences and agreements. Check the consistency of your findings if they meet your expectations—lookup for bottleneck position. Analyze and discuss the reasons behind it. Identify the key themes, gaps, and the relation of your findings with the literature review. In short, you should link your data with your research question, and the questions should form a basis for literature.

The Role of Data Analytics at The Senior Management Level

The Role of Data Analytics at The Senior Management Level

From small and medium-sized businesses to Fortune 500 conglomerates, the success of a modern business is now increasingly tied to how the company implements its data infrastructure and data-based decision-making. According

The Decision-Making Model Explained (In Plain Terms)

The Decision-Making Model Explained (In Plain Terms)

Any form of the systematic decision-making process is better enhanced with data. But making sense of big data or even small data analysis when venturing into a decision-making process might

13 Reasons Why Data Is Important in Decision Making

13 Reasons Why Data Is Important in Decision Making

Wrapping Up

Writing data analysis in the dissertation involves dedication, and its implementations demand sound knowledge and proper planning. Choosing your topic, gathering relevant data, analyzing it, presenting your data and findings correctly, discussing the results, connecting with the literature and conclusions are milestones in it. Among these checkpoints, the Data analysis stage is most important and requires a lot of keenness.

In this article, we thoroughly looked at the tips that prove valuable for writing a data analysis in a dissertation. Make sure to give this article a thorough read before you write data analysis in the dissertation leading to the successful future of your research.

Oxbridge Essays. Top 10 Tips for Writing a Dissertation Data Analysis.

Emidio Amadebai

As an IT Engineer, who is passionate about learning and sharing. I have worked and learned quite a bit from Data Engineers, Data Analysts, Business Analysts, and Key Decision Makers almost for the past 5 years. Interested in learning more about Data Science and How to leverage it for better decision-making in my business and hopefully help you do the same in yours.

Recent Posts

Causal vs Evidential Decision-making (How to Make Businesses More Effective) 

In today’s fast-paced business landscape, it is crucial to make informed decisions to stay in the competition which makes it important to understand the concept of the different characteristics and...

Bootstrapping vs. Boosting

Over the past decade, the field of machine learning has witnessed remarkable advancements in predictive techniques and ensemble learning methods. Ensemble techniques are very popular in machine...

data analysis dissertation

Premier-Dissertations-Logo

Get an experienced writer start working

Review our examples before placing an order, learn how to draft academic papers, a step-by-step guide to dissertation data analysis.

dissertation-conclusion-example

How to Write a Dissertation Conclusion? | Tips & Examples

data analysis dissertation

What is PhD Thesis Writing? | Beginner’s Guide

data analysis dissertation

A data analysis dissertation is a complex and challenging project requiring significant time, effort, and expertise. Fortunately, it is possible to successfully complete a data analysis dissertation with careful planning and execution.

As a student, you must know how important it is to have a strong and well-written dissertation, especially regarding data analysis. Proper data analysis is crucial to the success of your research and can often make or break your dissertation.

To get a better understanding, you may review the data analysis dissertation examples listed below;

  • Impact of Leadership Style on the Job Satisfaction of Nurses
  • Effect of Brand Love on Consumer Buying Behaviour in Dietary Supplement Sector
  • An Insight Into Alternative Dispute Resolution
  • An Investigation of Cyberbullying and its Impact on Adolescent Mental Health in UK

3-Step  Dissertation Process!

data analysis dissertation

Get 3+ Topics

data analysis dissertation

Dissertation Proposal

data analysis dissertation

Get Final Dissertation

Types of data analysis for dissertation.

The various types of data Analysis in a Dissertation are as follows;

1.   Qualitative Data Analysis

Qualitative data analysis is a type of data analysis that involves analyzing data that cannot be measured numerically. This data type includes interviews, focus groups, and open-ended surveys. Qualitative data analysis can be used to identify patterns and themes in the data.

2.   Quantitative Data Analysis

Quantitative data analysis is a type of data analysis that involves analyzing data that can be measured numerically. This data type includes test scores, income levels, and crime rates. Quantitative data analysis can be used to test hypotheses and to look for relationships between variables.

3.   Descriptive Data Analysis

Descriptive data analysis is a type of data analysis that involves describing the characteristics of a dataset. This type of data analysis summarizes the main features of a dataset.

4.   Inferential Data Analysis

Inferential data analysis is a type of data analysis that involves making predictions based on a dataset. This type of data analysis can be used to test hypotheses and make predictions about future events.

5.   Exploratory Data Analysis

Exploratory data analysis is a type of data analysis that involves exploring a data set to understand it better. This type of data analysis can identify patterns and relationships in the data.

Time Period to Plan and Complete a Data Analysis Dissertation?

When planning dissertation data analysis, it is important to consider the dissertation methodology structure and time series analysis as they will give you an understanding of how long each stage will take. For example, using a qualitative research method, your data analysis will involve coding and categorizing your data.

This can be time-consuming, so allowing enough time in your schedule is important. Once you have coded and categorized your data, you will need to write up your findings. Again, this can take some time, so factor this into your schedule.

Finally, you will need to proofread and edit your dissertation before submitting it. All told, a data analysis dissertation can take anywhere from several weeks to several months to complete, depending on the project’s complexity. Therefore, starting planning early and allowing enough time in your schedule to complete the task is important.

Essential Strategies for Data Analysis Dissertation

A.   Planning

The first step in any dissertation is planning. You must decide what you want to write about and how you want to structure your argument. This planning will involve deciding what data you want to analyze and what methods you will use for a data analysis dissertation.

B.   Prototyping

Once you have a plan for your dissertation, it’s time to start writing. However, creating a prototype is important before diving head-first into writing your dissertation. A prototype is a rough draft of your argument that allows you to get feedback from your advisor and committee members. This feedback will help you fine-tune your argument before you start writing the final version of your dissertation.

C.   Executing

After you have created a plan and prototype for your data analysis dissertation, it’s time to start writing the final version. This process will involve collecting and analyzing data and writing up your results. You will also need to create a conclusion section that ties everything together.

D.   Presenting

The final step in acing your data analysis dissertation is presenting it to your committee. This presentation should be well-organized and professionally presented. During the presentation, you’ll also need to be ready to respond to questions concerning your dissertation.

Data Analysis Tools

Numerous suggestive tools are employed to assess the data and deduce pertinent findings for the discussion section. The tools used to analyze data and get a scientific conclusion are as follows:

a.     Excel

Excel is a spreadsheet program part of the Microsoft Office productivity software suite. Excel is a powerful tool that can be used for various data analysis tasks, such as creating charts and graphs, performing mathematical calculations, and sorting and filtering data.

b.     Google Sheets

Google Sheets is a free online spreadsheet application that is part of the Google Drive suite of productivity software. Google Sheets is similar to Excel in terms of functionality, but it also has some unique features, such as the ability to collaborate with other users in real-time.

c.     SPSS

SPSS is a statistical analysis software program commonly used in the social sciences. SPSS can be used for various data analysis tasks, such as hypothesis testing, factor analysis, and regression analysis.

d.     STATA

STATA is a statistical analysis software program commonly used in the sciences and economics. STATA can be used for data management, statistical modelling, descriptive statistics analysis, and data visualization tasks.

SAS is a commercial statistical analysis software program used by businesses and organizations worldwide. SAS can be used for predictive modelling, market research, and fraud detection.

R is a free, open-source statistical programming language popular among statisticians and data scientists. R can be used for tasks such as data wrangling, machine learning, and creating complex visualizations.

g.     Python

A variety of applications may be used using the distinctive programming language Python, including web development, scientific computing, and artificial intelligence. Python also has a number of modules and libraries that can be used for data analysis tasks, such as numerical computing, statistical modelling, and data visualization.

Testimonials

Very satisfied students

This is our reason for working. We want to make all students happy, every day. Review us on Sitejabber

Tips to Compose a Successful Data Analysis Dissertation

a.   Choose a Topic You’re Passionate About

The first step to writing a successful data analysis dissertation is to choose a topic you’re passionate about. Not only will this make the research and writing process more enjoyable, but it will also ensure that you produce a high-quality paper.

Choose a topic that is particular enough to be covered in your paper’s scope but not so specific that it will be challenging to obtain enough evidence to substantiate your arguments.

b.   Do Your Research

data analysis in research is an important part of academic writing. Once you’ve selected a topic, it’s time to begin your research. Be sure to consult with your advisor or supervisor frequently during this stage to ensure that you are on the right track. In addition to secondary sources such as books, journal articles, and reports, you should also consider conducting primary research through surveys or interviews. This will give you first-hand insights into your topic that can be invaluable when writing your paper.

c.   Develop a Strong Thesis Statement

After you’ve done your research, it’s time to start developing your thesis statement. It is arguably the most crucial part of your entire paper, so take care to craft a clear and concise statement that encapsulates the main argument of your paper.

Remember that your thesis statement should be arguable—that is, it should be capable of being disputed by someone who disagrees with your point of view. If your thesis statement is not arguable, it will be difficult to write a convincing paper.

d.   Write a Detailed Outline

Once you have developed a strong thesis statement, the next step is to write a detailed outline of your paper. This will offer you a direction to write in and guarantee that your paper makes sense from beginning to end.

Your outline should include an introduction, in which you state your thesis statement; several body paragraphs, each devoted to a different aspect of your argument; and a conclusion, in which you restate your thesis and summarize the main points of your paper.

e.   Write Your First Draft

With your outline in hand, it’s finally time to start writing your first draft. At this stage, don’t worry about perfecting your grammar or making sure every sentence is exactly right—focus on getting all of your ideas down on paper (or onto the screen). Once you have completed your first draft, you can revise it for style and clarity.

And there you have it! Following these simple tips can increase your chances of success when writing your data analysis dissertation. Just remember to start early, give yourself plenty of time to research and revise, and consult with your supervisor frequently throughout the process.

How Does It Work ?

data analysis dissertation

Fill the Form

data analysis dissertation

Writer Starts Working

data analysis dissertation

3+ Topics Emailed!

Studying the above examples gives you valuable insight into the structure and content that should be included in your own data analysis dissertation. You can also learn how to effectively analyze and present your data and make a lasting impact on your readers.

In addition to being a useful resource for completing your dissertation, these examples can also serve as a valuable reference for future academic writing projects. By following these examples and understanding their principles, you can improve your data analysis skills and increase your chances of success in your academic career.

You may also contact Premier Dissertations to develop your data analysis dissertation.

For further assistance, some other resources in the dissertation writing section are shared below;

How Do You Select the Right Data Analysis

How to Write Data Analysis For A Dissertation?

How to Develop a Conceptual Framework in Dissertation?

What is a Hypothesis in a Dissertation?

Get an Immediate Response

Discuss your requirments with our writers

WhatsApp Us Email Us Chat with Us

Get 3+ Free   Dissertation Topics within 24 hours?

Your Number

Academic Level Select Academic Level Undergraduate Masters PhD

Area of Research

admin farhan

admin farhan

Related posts.

What is Conventions in Writing | Definition, Importance & Examples

What is Conventions in Writing | Definition, Importance & Examples

Understanding TOK Concepts | A Beginner's Guide

Understanding TOK Concepts: A Beginner’s Guide

Research Hypotheses: Directional vs. Non-Directional Hypotheses

Research Hypotheses: Directional vs. Non-Directional Hypotheses

Comments are closed.

Raw Data to Excellence: Master Dissertation Analysis

Discover the secrets of successful dissertation data analysis. Get practical advice and useful insights from experienced experts now!

' src=

Have you ever found yourself knee-deep in a dissertation, desperately seeking answers from the data you’ve collected? Or have you ever felt clueless with all the data that you’ve collected but don’t know where to start? Fear not, in this article we are going to discuss a method that helps you come out of this situation and that is Dissertation Data Analysis.

Dissertation data analysis is like uncovering hidden treasures within your research findings. It’s where you roll up your sleeves and explore the data you’ve collected, searching for patterns, connections, and those “a-ha!” moments. Whether you’re crunching numbers, dissecting narratives, or diving into qualitative interviews, data analysis is the key that unlocks the potential of your research.

Dissertation Data Analysis

Dissertation data analysis plays a crucial role in conducting rigorous research and drawing meaningful conclusions. It involves the systematic examination, interpretation, and organization of data collected during the research process. The aim is to identify patterns, trends, and relationships that can provide valuable insights into the research topic.

The first step in dissertation data analysis is to carefully prepare and clean the collected data. This may involve removing any irrelevant or incomplete information, addressing missing data, and ensuring data integrity. Once the data is ready, various statistical and analytical techniques can be applied to extract meaningful information.

Descriptive statistics are commonly used to summarize and describe the main characteristics of the data, such as measures of central tendency (e.g., mean, median) and measures of dispersion (e.g., standard deviation, range). These statistics help researchers gain an initial understanding of the data and identify any outliers or anomalies.

Furthermore, qualitative data analysis techniques can be employed when dealing with non-numerical data, such as textual data or interviews. This involves systematically organizing, coding, and categorizing qualitative data to identify themes and patterns.

Types of Research

When considering research types in the context of dissertation data analysis, several approaches can be employed:

1. Quantitative Research

This type of research involves the collection and analysis of numerical data. It focuses on generating statistical information and making objective interpretations. Quantitative research often utilizes surveys, experiments, or structured observations to gather data that can be quantified and analyzed using statistical techniques.

2. Qualitative Research

In contrast to quantitative research, qualitative research focuses on exploring and understanding complex phenomena in depth. It involves collecting non-numerical data such as interviews, observations, or textual materials. Qualitative data analysis involves identifying themes, patterns, and interpretations, often using techniques like content analysis or thematic analysis.

3. Mixed-Methods Research

This approach combines both quantitative and qualitative research methods. Researchers employing mixed-methods research collect and analyze both numerical and non-numerical data to gain a comprehensive understanding of the research topic. The integration of quantitative and qualitative data can provide a more nuanced and comprehensive analysis, allowing for triangulation and validation of findings.

Primary vs. Secondary Research

Primary research.

Primary research involves the collection of original data specifically for the purpose of the dissertation. This data is directly obtained from the source, often through surveys, interviews, experiments, or observations. Researchers design and implement their data collection methods to gather information that is relevant to their research questions and objectives. Data analysis in primary research typically involves processing and analyzing the raw data collected.

Secondary Research

Secondary research involves the analysis of existing data that has been previously collected by other researchers or organizations. This data can be obtained from various sources such as academic journals, books, reports, government databases, or online repositories. Secondary data can be either quantitative or qualitative, depending on the nature of the source material. Data analysis in secondary research involves reviewing, organizing, and synthesizing the available data.

If you wanna deepen into Methodology in Research, also read: What is Methodology in Research and How Can We Write it?

Types of Analysis 

Various types of analysis techniques can be employed to examine and interpret the collected data. Of all those types, the ones that are most important and used are:

  • Descriptive Analysis: Descriptive analysis focuses on summarizing and describing the main characteristics of the data. It involves calculating measures of central tendency (e.g., mean, median) and measures of dispersion (e.g., standard deviation, range). Descriptive analysis provides an overview of the data, allowing researchers to understand its distribution, variability, and general patterns.
  • Inferential Analysis: Inferential analysis aims to draw conclusions or make inferences about a larger population based on the collected sample data. This type of analysis involves applying statistical techniques, such as hypothesis testing, confidence intervals, and regression analysis, to analyze the data and assess the significance of the findings. Inferential analysis helps researchers make generalizations and draw meaningful conclusions beyond the specific sample under investigation.
  • Qualitative Analysis: Qualitative analysis is used to interpret non-numerical data, such as interviews, focus groups, or textual materials. It involves coding, categorizing, and analyzing the data to identify themes, patterns, and relationships. Techniques like content analysis, thematic analysis, or discourse analysis are commonly employed to derive meaningful insights from qualitative data.
  • Correlation Analysis: Correlation analysis is used to examine the relationship between two or more variables. It determines the strength and direction of the association between variables. Common correlation techniques include Pearson’s correlation coefficient, Spearman’s rank correlation, or point-biserial correlation, depending on the nature of the variables being analyzed.

Basic Statistical Analysis

When conducting dissertation data analysis, researchers often utilize basic statistical analysis techniques to gain insights and draw conclusions from their data. These techniques involve the application of statistical measures to summarize and examine the data. Here are some common types of basic statistical analysis used in dissertation research:

  • Descriptive Statistics
  • Frequency Analysis
  • Cross-tabulation
  • Chi-Square Test
  • Correlation Analysis

Advanced Statistical Analysis

In dissertation data analysis, researchers may employ advanced statistical analysis techniques to gain deeper insights and address complex research questions. These techniques go beyond basic statistical measures and involve more sophisticated methods. Here are some examples of advanced statistical analysis commonly used in dissertation research:

Regression Analysis

  • Analysis of Variance (ANOVA)
  • Factor Analysis
  • Cluster Analysis
  • Structural Equation Modeling (SEM)
  • Time Series Analysis

Examples of Methods of Analysis

Regression analysis is a powerful tool for examining relationships between variables and making predictions. It allows researchers to assess the impact of one or more independent variables on a dependent variable. Different types of regression analysis, such as linear regression, logistic regression, or multiple regression, can be used based on the nature of the variables and research objectives.

Event Study

An event study is a statistical technique that aims to assess the impact of a specific event or intervention on a particular variable of interest. This method is commonly employed in finance, economics, or management to analyze the effects of events such as policy changes, corporate announcements, or market shocks.

Vector Autoregression

Vector Autoregression is a statistical modeling technique used to analyze the dynamic relationships and interactions among multiple time series variables. It is commonly employed in fields such as economics, finance, and social sciences to understand the interdependencies between variables over time.

Preparing Data for Analysis

1. become acquainted with the data.

It is crucial to become acquainted with the data to gain a comprehensive understanding of its characteristics, limitations, and potential insights. This step involves thoroughly exploring and familiarizing oneself with the dataset before conducting any formal analysis by reviewing the dataset to understand its structure and content. Identify the variables included, their definitions, and the overall organization of the data. Gain an understanding of the data collection methods, sampling techniques, and any potential biases or limitations associated with the dataset.

2. Review Research Objectives

This step involves assessing the alignment between the research objectives and the data at hand to ensure that the analysis can effectively address the research questions. Evaluate how well the research objectives and questions align with the variables and data collected. Determine if the available data provides the necessary information to answer the research questions adequately. Identify any gaps or limitations in the data that may hinder the achievement of the research objectives.

3. Creating a Data Structure

This step involves organizing the data into a well-defined structure that aligns with the research objectives and analysis techniques. Organize the data in a tabular format where each row represents an individual case or observation, and each column represents a variable. Ensure that each case has complete and accurate data for all relevant variables. Use consistent units of measurement across variables to facilitate meaningful comparisons.

4. Discover Patterns and Connections

In preparing data for dissertation data analysis, one of the key objectives is to discover patterns and connections within the data. This step involves exploring the dataset to identify relationships, trends, and associations that can provide valuable insights. Visual representations can often reveal patterns that are not immediately apparent in tabular data. 

Qualitative Data Analysis

Qualitative data analysis methods are employed to analyze and interpret non-numerical or textual data. These methods are particularly useful in fields such as social sciences, humanities, and qualitative research studies where the focus is on understanding meaning, context, and subjective experiences. Here are some common qualitative data analysis methods:

Thematic Analysis

The thematic analysis involves identifying and analyzing recurring themes, patterns, or concepts within the qualitative data. Researchers immerse themselves in the data, categorize information into meaningful themes, and explore the relationships between them. This method helps in capturing the underlying meanings and interpretations within the data.

Content Analysis

Content analysis involves systematically coding and categorizing qualitative data based on predefined categories or emerging themes. Researchers examine the content of the data, identify relevant codes, and analyze their frequency or distribution. This method allows for a quantitative summary of qualitative data and helps in identifying patterns or trends across different sources.

Grounded Theory

Grounded theory is an inductive approach to qualitative data analysis that aims to generate theories or concepts from the data itself. Researchers iteratively analyze the data, identify concepts, and develop theoretical explanations based on emerging patterns or relationships. This method focuses on building theory from the ground up and is particularly useful when exploring new or understudied phenomena.

Discourse Analysis

Discourse analysis examines how language and communication shape social interactions, power dynamics, and meaning construction. Researchers analyze the structure, content, and context of language in qualitative data to uncover underlying ideologies, social representations, or discursive practices. This method helps in understanding how individuals or groups make sense of the world through language.

Narrative Analysis

Narrative analysis focuses on the study of stories, personal narratives, or accounts shared by individuals. Researchers analyze the structure, content, and themes within the narratives to identify recurring patterns, plot arcs, or narrative devices. This method provides insights into individuals’ live experiences, identity construction, or sense-making processes.

Applying Data Analysis to Your Dissertation

Applying data analysis to your dissertation is a critical step in deriving meaningful insights and drawing valid conclusions from your research. It involves employing appropriate data analysis techniques to explore, interpret, and present your findings. Here are some key considerations when applying data analysis to your dissertation:

Selecting Analysis Techniques

Choose analysis techniques that align with your research questions, objectives, and the nature of your data. Whether quantitative or qualitative, identify the most suitable statistical tests, modeling approaches, or qualitative analysis methods that can effectively address your research goals. Consider factors such as data type, sample size, measurement scales, and the assumptions associated with the chosen techniques.

Data Preparation

Ensure that your data is properly prepared for analysis. Cleanse and validate your dataset, addressing any missing values, outliers, or data inconsistencies. Code variables, transform data if necessary, and format it appropriately to facilitate accurate and efficient analysis. Pay attention to ethical considerations, data privacy, and confidentiality throughout the data preparation process.

Execution of Analysis

Execute the selected analysis techniques systematically and accurately. Utilize statistical software, programming languages, or qualitative analysis tools to carry out the required computations, calculations, or interpretations. Adhere to established guidelines, protocols, or best practices specific to your chosen analysis techniques to ensure reliability and validity.

Interpretation of Results

Thoroughly interpret the results derived from your analysis. Examine statistical outputs, visual representations, or qualitative findings to understand the implications and significance of the results. Relate the outcomes back to your research questions, objectives, and existing literature. Identify key patterns, relationships, or trends that support or challenge your hypotheses.

Drawing Conclusions

Based on your analysis and interpretation, draw well-supported conclusions that directly address your research objectives. Present the key findings in a clear, concise, and logical manner, emphasizing their relevance and contributions to the research field. Discuss any limitations, potential biases, or alternative explanations that may impact the validity of your conclusions.

Validation and Reliability

Evaluate the validity and reliability of your data analysis by considering the rigor of your methods, the consistency of results, and the triangulation of multiple data sources or perspectives if applicable. Engage in critical self-reflection and seek feedback from peers, mentors, or experts to ensure the robustness of your data analysis and conclusions.

In conclusion, dissertation data analysis is an essential component of the research process, allowing researchers to extract meaningful insights and draw valid conclusions from their data. By employing a range of analysis techniques, researchers can explore relationships, identify patterns, and uncover valuable information to address their research objectives.

Turn Your Data Into Easy-To-Understand And Dynamic Stories

Decoding data is daunting and you might end up in confusion. Here’s where infographics come into the picture. With visuals, you can turn your data into easy-to-understand and dynamic stories that your audience can relate to. Mind the Graph is one such platform that helps scientists to explore a library of visuals and use them to amplify their research work. Sign up now to make your presentation simpler. 

inductive-vs-deductive-research-blog

Subscribe to our newsletter

Exclusive high quality content about effective visual communication in science.

Unlock Your Creativity

Create infographics, presentations and other scientifically-accurate designs without hassle — absolutely free for 7 days!

About Sowjanya Pedada

Sowjanya is a passionate writer and an avid reader. She holds MBA in Agribusiness Management and now is working as a content writer. She loves to play with words and hopes to make a difference in the world through her writings. Apart from writing, she is interested in reading fiction novels and doing craftwork. She also loves to travel and explore different cuisines and spend time with her family and friends.

Content tags

en_US

data analysis dissertation

  • Master Your Homework
  • Do My Homework

Data Analysis for Dissertation Writing

Data Analysis for Dissertation Writing

1. Introduction to Data Analysis for Dissertation Writing

Data analysis for dissertation writing is a very important step in the process of completing a successful thesis. It involves collecting, examining and interpreting data to answer questions or reach conclusions about specific issues relating to your research topic.

  • Gathering Data: In order to begin analyzing your data you must first collect it from surveys, interviews, focus groups and any other sources relevant to the project.
  • Analyzing Your Data: After gathering all necessary information you can start using quantitative or qualitative methods depending on how you plan to present your findings.

2. Benefits of Analyzing and Interpreting Research Data

Analyzing and interpreting research data is an important part of creating successful business strategies. The primary benefit of this practice is that it allows organizations to access accurate information about the market, their competitors, and current trends in order to make informed decisions.

  • Improves Decision Making : A detailed analysis of research data can provide valuable insight for businesses into the effectiveness of their current operations. It also allows companies to identify areas where changes are needed or additional resources should be allocated. Armed with this knowledge, managers can sufficiently adjust processes and procedures as required in order to improve overall performance levels.
  • Insight Into Consumers’ Preferences : Analysing and interpreting compiled data helps enlighten decision makers on what consumers expect from a product or service. Through tracking consumer behaviour patterns over time, companies are able gain greater understanding which will assist them when developing new marketing approaches tailored specifically towards particular audiences.

3. Steps Involved in the Data Analysis Process

Data analysis is a critical step for understanding the data, uncovering key insights and making informed decisions. The process of analyzing data includes several steps.

  • Identifying Objectives: First, you need to identify your objectives before beginning any sort of analysis. This helps in formulating questions that can be answered using the data present and gathering relevant datasets used to answer them.
  • Organizing Data: Once all the necessary datasets have been gathered they must be organized so they are easy to interpret. Data should be formatted correctly with headers included such as time-based columns or categorical variables identified.
  • Exploratory Analysis: At this stage various methods can employed like summarizing statistics, plotting graphs etc., which help gain an initial overview of how different elements within each dataset interact with one another.

4. Best Practices for Gathering Reliable and Accurate Results

When conducting surveys, there are certain best practices that should be followed in order to ensure reliable and accurate results. The following suggestions will help improve the quality of survey data.

  • Set Clear Goals: Before beginning a survey project, it is important to have clearly-defined goals that can act as guiding principles for the process. Ask yourself what you want to learn or measure through the survey and use this information when developing questions.
  • Choose an Appropriate Sample Size: Choosing a good sample size will depend on your specific research circumstances but will generally range from 100-500 people depending on population characteristics such as age, gender, race etc. Establishing a larger sample size will reduce potential bias due to non-response.

5. Exploring Statistical Software Tools for Enhancing Data Analysis

In the 21st century, data analysis is largely driven by advanced software. The use of statistical software is essential for any organization that deals with big data sets for decision-making and planning strategies. This section examines five of the most commonly used tools to help you refine your ability to analyze different types of datasets.

  • R : R is an open source programming language used mainly in academic institutions and research organizations. It offers a wide range of packages allowing users access to powerful algorithms, visualization capabilities and computing resources.
  • STATA : STATA provides researchers advanced analytics capabilities as well as complex queries when exploring large volumes of information.
  • SAS/JMP : SAS JMP allows statisticians recognize patterns easily in large datasets due to its powerful graphical features such as heat maps, cross tables etc.. Its scripting language features helps experienced programmers customize their own functions based on existing ones from various libraries or modules .

&nb sp;&n bsp; & nbsp ; IBM SPSS Statistics :

IBM SPSS enables analysts perform descriptive statistics (cross tabulation), predictive analytics(linear regression)and more specialized analyses like Cluster Analysis, Factor Analysis etc … all within one single package thanks to its comprehensive library containing over 500 significance tests. .

6. Understanding Limitations Related To Drawing Conclusions from Analyzed Data

Drawing Conclusions Within Limitations

A crucial part of data analysis is often drawing conclusions from the results and making decisions based on these. However, it’s important to be aware of the limitations associated with this process as not every conclusion can be accurately represented by data. In some cases, it may mistakenly lead one to misinterpreting or underestimating a situation if their analyses are too limited in scope.

Data analysts should take into account any external factors that could influence the accuracy of their results and use caution when interpreting them for decision-making purposes. Common limitations include:

  • Inadequate samples – poor quality & insufficient quantity can invalidate findings;
  • Conflicting information – analyzing multiple datasets leads to different interpretations;

7. Conclusion: Maximizing the Value of a Dissertation Through Properly Analysed Results

Having a well-crafted dissertation, supplemented with detailed data analysis, is essential for reaping the maximum benefits of any project. It requires careful consideration and understanding of which data to analyse and how. The results should be summarised in such a way that they are easily understood by readers while their significance should also be clearly articulated.

  • Methodology: Each type of research will have its own appropriate methodology with distinct techniques employed to gain insight into the subject matter as studied. Such techniques might include qualitative or quantitative methods like surveys, interviews, focus groups etc.
  • Reporting Results: Flaws in the reporting procedure can dramatically reduce the impact and value attributed to your dissertation. Analyzing collected information helps supplement conclusions drawn from other sources making sure all insights gathered through different phases contribute towards optimizing efficiency of outcomes.

Analysts specialized in this field may provide helpful guidance when determining how best to assess results obtained from various sources including primary research material enabling authors create an optimal thesis paper reflecting both current findings as well as broader trends regarding area under study. Furthermore, it enables them determine what is right for inclusion based on variables like audience profile and purpose served by project at hand – thereby maximizing overall success rate among stakeholders attached with initiative taken up through submitted write-up! Overall, data analysis for dissertation writing is a vital part of the research process. It helps to guide one’s investigation and can provide insight into their results. With proper planning and preparation, successful data analysis can be achieved with relative ease when approaching dissertation writing.

ON YOUR 1ST ORDER

Mastering Dissertation Data Analysis: A Comprehensive Guide

By Laura Brown on 29th December 2023

To craft an effective dissertation data analysis chapter, you need to follow some simple steps:

  • Start by planning the structure and objectives of the chapter.
  • Clearly set the stage by providing a concise overview of your research design and methodology.
  • Proceed to thorough data preparation, ensuring accuracy and organisation.
  • Justify your methods and present the results using visual aids for clarity.
  • Discuss the findings within the context of your research questions.
  • Finally, review and edit your chapter to ensure coherence.

This approach will ensure a well-crafted and impactful analysis section.

Before delving into details on how you can come up with an engaging data analysis show in your dissertation, we first need to understand what it is and why it is required.

What Is Data Analysis In A Dissertation?

The data analysis chapter is a crucial section of a research dissertation that involves the examination, interpretation, and synthesis of collected data. In this chapter, researchers employ statistical techniques, qualitative methods, or a combination of both to make sense of the data gathered during the research process.

Why Is The Data Analysis Chapter So Important?

The primary objectives of the data analysis chapter are to identify patterns, trends, relationships, and insights within the data set. Researchers use various tools and software to conduct a thorough analysis, ensuring that the results are both accurate and relevant to the research questions or hypotheses. Ultimately, the findings derived from this chapter contribute to the overall conclusions of the dissertation, providing a basis for drawing meaningful and well-supported insights.

Steps Required To Craft Data Analysis Chapter To Perfection

Now that we have an idea of what a dissertation analysis chapter is and why it is necessary to put it in the dissertation, let’s move towards how we can create one that has a significant impact. Our guide will move around the bulleted points that have been discussed initially in the beginning. So, it’s time to begin.

Dissertation Data Analysis With 8 Simple Steps

Step 1: Planning Your Data Analysis Chapter

Planning your data analysis chapter is a critical precursor to its successful execution.

  • Begin by outlining the chapter structure to provide a roadmap for your analysis.
  • Start with an introduction that succinctly introduces the purpose and significance of the data analysis in the context of your research.
  • Following this, delineate the chapter into sections such as Data Preparation, where you detail the steps taken to organise and clean your data.
  • Plan on to clearly define the Data Analysis Techniques employed, justifying their relevance to your research objectives.
  • As you progress, plan for the Results Presentation, incorporating visual aids for clarity. Lastly, earmark a section for the Discussion of Findings, where you will interpret results within the broader context of your research questions.

This structured approach ensures a comprehensive and cohesive data analysis chapter, setting the stage for a compelling narrative that contributes significantly to your dissertation. You can always seek our dissertation data analysis help to plan your chapter.

Step 2: Setting The Stage – Introduction to Data Analysis

Your primary objective is to establish a solid foundation for the analytical journey. You need to skillfully link your data analysis to your research questions, elucidating the direct relevance and purpose of the upcoming analysis.

Simultaneously, define key concepts to provide clarity and ensure a shared understanding of the terms integral to your study. Following this, offer a concise overview of your data set characteristics, outlining its source, nature, and any noteworthy features.

This meticulous groundwork alongside our help with dissertation data analysis lays the base for a coherent and purposeful chapter, guiding readers seamlessly into the subsequent stages of your dissertation.

Step 3: Data Preparation

Now this is another pivotal phase in the data analysis process, ensuring the integrity and reliability of your findings. You should start with an insightful overview of the data cleaning and preprocessing procedures, highlighting the steps taken to refine and organise your dataset. Then, discuss any challenges encountered during the process and the strategies employed to address them.

Moving forward, delve into the specifics of data transformation procedures, elucidating any alterations made to the raw data for analysis. Clearly describe the methods employed for normalisation, scaling, or any other transformations deemed necessary. It will not only enhance the quality of your analysis but also foster transparency in your research methodology, reinforcing the robustness of your data-driven insights.

Step 4: Data Analysis Techniques

The data analysis section of a dissertation is akin to choosing the right tools for an artistic masterpiece. Carefully weigh the quantitative and qualitative approaches, ensuring a tailored fit for the nature of your data.

Quantitative Analysis

  • Descriptive Statistics: Paint a vivid picture of your data through measures like mean, median, and mode. It’s like capturing the essence of your data’s personality.
  • Inferential Statistics:Take a leap into the unknown, making educated guesses and inferences about your larger population based on a sample. It’s statistical magic in action.

Qualitative Analysis

  • Thematic Analysis: Imagine your data as a novel, and thematic analysis as the tool to uncover its hidden chapters. Dissect the narrative, revealing recurring themes and patterns.
  • Content Analysis: Scrutinise your data’s content like detectives, identifying key elements and meanings. It’s a deep dive into the substance of your qualitative data.

Providing Rationale for Chosen Methods

You should also articulate the why behind the chosen methods. It’s not just about numbers or themes; it’s about the story you want your data to tell. Through transparent rationale, you should ensure that your chosen techniques align seamlessly with your research goals, adding depth and credibility to the analysis.

Step 5: Presentation Of Your Results

You can simply break this process into two parts.

a.    Creating Clear and Concise Visualisations

Effectively communicate your findings through meticulously crafted visualisations. Use tables that offer a structured presentation, summarising key data points for quick comprehension. Graphs, on the other hand, visually depict trends and patterns, enhancing overall clarity. Thoughtfully design these visual aids to align with the nature of your data, ensuring they serve as impactful tools for conveying information.

b.    Interpreting and Explaining Results

Go beyond mere presentation by providing insightful interpretation by taking data analysis services for dissertation. Show the significance of your findings within the broader research context. Moreover, articulates the implications of observed patterns or relationships. By weaving a narrative around your results, you guide readers through the relevance and impact of your data analysis, enriching the overall understanding of your dissertation’s key contributions.

Step 6: Discussion of Findings

While discussing your findings and dissertation discussion chapter , it’s like putting together puzzle pieces to understand what your data is saying. You can always take dissertation data analysis help to explain what it all means, connecting back to why you started in the first place.

Be honest about any limitations or possible biases in your study; it’s like showing your cards to make your research more trustworthy. Comparing your results to what other smart people have found before you adds to the conversation, showing where your work fits in.

Looking ahead, you suggest ideas for what future researchers could explore, keeping the conversation going. So, it’s not just about what you found, but also about what comes next and how it all fits into the big picture of what we know.

Step 7: Writing Style and Tone

In order to perfectly come up with this chapter, follow the below points in your writing and adjust the tone accordingly,

  • Use clear and concise language to ensure your audience easily understands complex concepts.
  • Avoid unnecessary jargon in data analysis for thesis, and if specialised terms are necessary, provide brief explanations.
  • Keep your writing style formal and objective, maintaining an academic tone throughout.
  • Avoid overly casual language or slang, as the data analysis chapter is a serious academic document.
  • Clearly define terms and concepts, providing specific details about your data preparation and analysis procedures.
  • Use precise language to convey your ideas, minimising ambiguity.
  • Follow a consistent formatting style for headings, subheadings, and citations to enhance readability.
  • Ensure that tables, graphs, and visual aids are labelled and formatted uniformly for a polished presentation.
  • Connect your analysis to the broader context of your research by explaining the relevance of your chosen methods and the importance of your findings.
  • Offer a balance between detail and context, helping readers understand the significance of your data analysis within the larger study.
  • Present enough detail to support your findings but avoid overwhelming readers with excessive information.
  • Use a balance of text and visual aids to convey information efficiently.
  • Maintain reader engagement by incorporating transitions between sections and effectively linking concepts.
  • Use a mix of sentence structures to add variety and keep the writing engaging.
  • Eliminate grammatical errors, typos, and inconsistencies through thorough proofreading.
  • Consider seeking feedback from peers or mentors to ensure the clarity and coherence of your writing.

You can seek a data analysis dissertation example or sample from CrowdWriter to better understand how we write it while following the above-mentioned points.

Step 8: Reviewing and Editing

Reviewing and editing your data analysis chapter is crucial for ensuring its effectiveness and impact. By revising your work, you refine the clarity and coherence of your analysis, enhancing its overall quality.

Seeking feedback from peers, advisors or dissertation data analysis services provides valuable perspectives, helping identify blind spots and areas for improvement. Addressing common writing pitfalls, such as grammatical errors or unclear expressions, ensures your chapter is polished and professional.

Taking the time to review and edit not only strengthens the academic integrity of your work but also contributes to a final product that is clear, compelling, and ready for scholarly scrutiny.

Concluding On This Data Analysis Help

Be it master thesis data analysis, an undergraduate one or for PhD scholars, the steps remain almost the same as we have discussed in this guide. The primary focus is to be connected with your research questions and objectives while writing your data analysis chapter.

Do not lose your focus and choose the right analysis methods and design. Make sure to present your data through various visuals to better explain your data and engage the reader as well. At last, give it a detailed read and seek assistance from experts and your supervisor for further improvement.

Laura Brown

Laura Brown, a senior content writer who writes actionable blogs at Crowd Writer.

  • Essay Writing
  • Dissertation Writing
  • Assignment Writing
  • Report Writing
  • Literature Review
  • Proposal Writing
  • Poster and Presentation Writing Service
  • PhD Writing Service
  • Coursework Writing
  • Tutoring Service
  • Exam Notes Writing Service

Editing and Proofreading Service

Technical and Statistical Services

  • Appeals and Re-Submissions

Personal Statement Writing Service

  • Sample Dissertations
  • Sample Essays
  • Free Products

A Complete Guide to Dissertation Data Analysis

The analysis chapter is one of the most important parts of a dissertation where you demonstrate the unique research abilities. That is why it often accounts for up to 40% of the total mark. Given the significance of this chapter, it is essential to build your skills in dissertation data analysis .

Typically, the analysis section provides an output of calculations, interpretation of attained results and discussion of these results in light of theories and previous empirical evidence. Oftentimes, the chapter provides qualitative data analysis that do not require any calculations. Since there are different types of research design, let’s look at each type individually.

data analysis dissertation

1. Types of Research

The dissertation topic you have selected, to a considerable degree, informs the way you are going to collect and analyse data. Some topics imply the collection of primary data, while others can be explored using secondary data. Selecting an appropriate data type is vital not only for your ability to achieve the main aim and objectives of your dissertation but also an important part of the dissertation writing process since it is what your whole project will rest on.

Selecting the most appropriate data type for your dissertation may not be as straightforward as it may seem. As you keep diving into your research, you will be discovering more and more details and nuances associated with this or that type of data. At some point, it is important to decide whether you will pursue the qualitative research design or the quantitative research design.

1.1. Qualitative vs Quantitative Research

1.1.1. quantitative research.

Quantitative data is any numerical data which can be used for statistical analysis and mathematical manipulations. This type of data can be used to answer research questions such as ‘How often?’, ‘How much?’, and ‘How many?’. Studies that use this type of data also ask the ‘What’ questions (e.g. What are the determinants of economic growth? To what extent does marketing affect sales? etc.).

An advantage of quantitative data is that it can be verified and conveniently evaluated by researchers. This allows for replicating the research outcomes. In addition, even qualitative data can be quantified and converted to numbers. For example, the use of the Likert scale allows researchers not only to properly assess respondents’ perceptions of and attitudes towards certain phenomena but also to assign a code to each individual response and make it suitable for graphical and statistical analysis. It is also possible to convert the yes/no responses to dummy variables to present them in the form of numbers. Quantitative data is typically analysed using dissertation data analysis software such as Eviews, Matlab, Stata, R, and SPSS.

On the other hand, a significant limitation of purely quantitative methods is that social phenomena explored in economic and behavioural sciences are often complex, so the use of quantitative data does not allow for thoroughly analysing these phenomena. That is, quantitative data can be limited in terms of breadth and depth as compared to qualitative data, which may allow for richer elaboration on the context of the study.

1.1.2. Qualitative Data

Studies that use this type of data usually ask the ‘Why’ and ‘How’ questions (e.g. Why does social media marketing is more effective than traditional marketing? How do consumers make their purchase decisions?). This is non-numerical primary data represented mostly by opinions of relevant persons.

Qualitative data also includes any textual or visual data (infographics) that have been gathered from reports, websites and other secondary sources that do not involve interactions between the researcher and human participants. Examples of the use of secondary qualitative data are texts, images and diagrams you can use in SWOT analysis, PEST analysis, 4Ps analysis, Porter’s Five Forces analysis, most types of Strategic Analysis, etc. Academic articles, journals, books, and conference papers are also examples of secondary qualitative data you can use in your study.

The analysis of qualitative data usually provides deep insights into the phenomenon or issue being under study because respondents are not limited in their ability to give detailed answers. Unlike quantitative research, collecting and analysing qualitative data is more open-ended in eliciting the anecdotes, stories, and lengthy descriptions and evaluations people make of products, services, lifestyle attributes, or any other phenomenon. This is best used in social studies including management and marketing.

It is not always possible to summarise qualitative data as opinions expressed by individuals are multi-faceted. This to some extent limits the dissertation data analysis  as it is not always possible to establish cause-and-effect links between factors represented in a qualitative manner. This is why the results of qualitative analysis can hardly be generalised, and case studies that explore very narrow contexts are often conducted.

For qualitative data analysis, you can use tools such as nVivo and Tableau.  

1.2. Primary vs Secondary Research

1.2.1. primary data.

Primary data is data that had not existed prior to your research and you collect it by means of a survey or interviews for the dissertation data analysis chapter. Interviews provide you with the opportunity to collect detailed insights from industry participants about their company, customers, or competitors. Questionnaire surveys allow for obtaining a large amount of data from a sizeable population in a cost-efficient way. Primary data is usually cross-sectional data (i.e., the data collected at one point of time from different respondents). Time-series are found very rarely or almost never in primary data. Nonetheless, depending on the research aims and objectives, certain designs of data collection instruments allow researchers to conduct a longitudinal study.

1.2.2. Secondary data

This data already exist before the research as they have already been generated, refined, summarized and published in official sources for purposes other than those of your study study. Secondary data often carries more legitimacy as compared to primary data and can help the researcher verify primary data. This is the data collected from databases or websites; it does not involve human participants. This can be both cross-sectional data (e.g. an indicator for different countries/companies at one point of time) and time-series (e.g. an indicator for one company/country for several years). A combination of cross-sectional data and time-series data is panel data. Therefore, all a researcher needs to do is to find the data that would be most appropriate for attaining the research objectives.

Examples of secondary quantitative data are share prices; accounting information such as earnings, total asset, revenue, etc.; macroeconomic variables such as GDP, inflation, unemployment, interest rates, etc.; microeconomic variables such as market share, concentration ratio, etc. Accordingly, dissertation topics that will most likely use secondary quantitative data are FDI dissertations, Mergers and Acquisitions dissertations, Event Studies, Economic Growth dissertations, International Trade dissertations, Corporate Governance dissertations.

Two main limitations of secondary data are the following. First, the freely available secondary data may not perfectly suit the purposes of your study so that you will have to additionally collect primary data or change the research objectives. Second, not all high-quality secondary data is freely available. Good sources of financial data such as WRDS, Thomson Bank Banker, Compustat and Bloomberg all stipulate pre-paid access which may not be affordable for a single researcher.

1.3. Quantitative or Qualitative Research… or Both?

Once you have formulated your research aim and objectives and reviewed the most relevant literature in your field, you should decide whether you need qualitative or quantitative data.

If you are willing to test the relationship between variables or examine hypotheses and theories in practice, you should rather focus on collecting quantitative data. Methodologies based on this data provide cut-and-dry results and are highly effective when you need to obtain a large amount of data in a cost-effective manner. Alternatively, qualitative research will help you better understand meanings, experience, beliefs, values and other non-numerical relationships.

While it is totally okay to use either a qualitative or quantitative methodology, using them together will allow you to back up one type of data with another type of data and research your topic in more depth. However, note that using qualitative and quantitative methodologies in combination can take much more time and effort than you originally planned.

data analysis dissertation

2. Types of Analysis

2.1. basic statistical analysis.

The type of statistical analysis that you choose for the results and findings chapter depends on the extent to which you wish to analyse the data and summarise your findings. If you do not major in quantitative subjects but write a dissertation in social sciences, basic statistical analysis will be sufficient. Such an analysis would be based on descriptive statistics such as the mean, the median, standard deviation, and variance. Then, you can enhance the statistical analysis with visual information by showing the distribution of variables in the form of graphs and charts. However, if you major in a quantitative subject such as accounting, economics or finance, you may need to use more advanced statistical analysis.

2.2. Advanced Statistical Analysis

In order to run an advanced analysis, you will most likely need access to statistical software such as Matlab, R or Stata. Whichever program you choose to proceed with, make sure that it is properly documented in your research. Further, using an advanced statistical technique ensures that you are analysing all possible aspects of your data. For example, a difference between basic regression analysis and analysis at an advanced level is that you will need to consider additional tests and deeper explorations of statistical problems with your model. Also, you need to keep the focus on your research question and objectives as getting deeper into statistical details may distract you from the main aim. Ultimately, the aim of your dissertation is to find answers to the research questions that you defined.

Another important aspect to consider here is that the results and findings section is not all about numbers. Apart from tables and graphs, it is also important to ensure that the interpretation of your statistical findings is accurate as well as engaging for the users. Such a combination of advanced statistical software along with a convincing textual discussion goes a long way in ensuring that your dissertation is well received. Although the use of such advanced statistical software may provide you with a variety of outputs, you need to make sure to present the analysis output properly so that the readers understand your conclusions.

data analysis dissertation

3. Examples of Methods of Analysis

3.1. event study.

If you are studying the effects of particular events on prices of financial assets, for example, it is worth to consider the Event Study Methodology. Events such as mergers and acquisitions, new product launches, expansion into new markets, earnings announcements and public offerings can have a major impact on stock prices and valuation of a firm. Event studies are methods used to measure the impact of a particular event or a series of events on the market value. The concept behind this is to try to understand whether sudden and abnormal stock returns can be attributed to market information pertaining to an event.

Event studies are based on the efficient market hypothesis. According to the theory, in an efficient capital market, all the new and relevant information is immediately reflected in the respective asset prices. Although this theory is not universally applicable, there are many instances in which it holds true. An event study implies a step-by-step analysis of the impact that a particular announcement has on a company’s valuation. In normal conditions, without the influence of the analysed event, it is assumed that expected returns on a stock would be determined by the risk-free rate, systematic risk of the stock and risk premium required by investors. These conditions are measured by the capital asset pricing model (CAPM).

There can primarily be three types of announcements which can constitute event studies. These include corporate announcements, macroeconomic announcements, as well as regulatory events. As the name suggests, corporate announcements could include bankruptcies, asset sales, M&As, credit rating downgrades, earnings announcements and announcements of dividends. These events usually have a major impact on stock prices simply because they are directly interlinked with the company. Macroeconomic announcements can include central bank announcements of changes in interest rates, an announcement of inflation projections and economic growth projections. Finally, regulatory announcements such as policy changes and new laws announcement can also impact the stock prices of companies, and therefore can be measured using the method of event studies.

A critical issue in event studies is choosing the right event window during which the analysed announcements are assumed to produce the strongest effect on share prices. According to the efficient market hypothesis, no statistically significant abnormal returns connected with any events would be expected. However, in reality, there could be rumours before official announcements and some investors may act on such rumours. Moreover, investors may react at different times due to differences in speed of information processing and reaction. In order to account for all these factors, event windows usually capture a short period before the announcement to account for rumours and an asymmetrical period after the announcement.

In order to make event studies stronger and statistically meaningful, a large number of similar or related cases are analysed. Then, abnormal returns are cumulated, and their statistical significance is assessed. The t-statistic is often used to evaluate whether the average abnormal returns are different from zero. So, researchers who use event studies are concerned not only with the positive or negative effects of specific events but also with the generalisation of the results and measuring the statistical significance of abnormal returns.

3.2. Regression Analysis

Regression analysis is a mathematical method applied to determine how explored variables are interconnected. In particular, the following questions can be answered. Which factors are the most influential ones? Which of them can be ignored? How do the factors interact with one another? And the main question, how significant are the findings?

The type most often applied in the dissertation studies is the ordinary least squares (OLS) regression analysis that assesses parameters of linear relationships between explored variables. Typically, three forms of OLS analysis are used.

Longitudinal analysis is applied when a single object with several characteristics is explored over a long period of time. In this case, observations represent the changes of the same characteristics over time. Examples of longitudinal samples are macroeconomic parameters in a particular country, preferences and changes in health characteristics of particular persons during their lives etc. Cross-sectional studies on the contrary, explore characteristics of many similar objects such as respondents, companies, countries, students over cities in a certain moment of time. The main similarity between longitudinal and cross-sectional studies is that the data over one dimension, namely across periods of time (days, weeks, years) or across objects, respectively.

However, it is often the case that we need to explore data that change over two dimensions, both across objects and periods of time. In this case, we need to use a panel regression analysis. Its main distinction from the two mentioned above is that specifics of each object (person, company, country) are accounted for.

The common steps of the regression analysis are the following:

  • Start with descriptive statistics of the data. This is done to indicate the scope of the data observations included in the sample and identify potential outliers. A common practice is to get rid of the outliers to avoid the distortion of the analysis results.
  • Estimate potential multicollinearity. This phenomenon is connected with strong correlation between explanatory variables. Multicollinearity is an undesirable feature of the sample as regression results, in particular the significance of certain variables, may be distorted. Once multicollinearity is detected, the easiest way to eliminate it is to omit one of the correlated variables.
  • Run Regressions. First, the overall significance of the model is estimated using the F-statistic. After that, the significance of particular variable coefficient is assessed using t-statistics.
  • Don’t forget about diagnostic tests. They are conducted to detect potential imperfections of the sample that could affect the regression outcomes.

Some nuances should be mentioned. When a time series OLS regression analysis is conducted, it is feasible to conduct a full battery of diagnostic tests including the test of linearity (the relationship between the independent and dependent variables should be linear); homoscedasticity (regression residuals should have the same variance); independence of observations; normality of variables; serial correlation (there should no patterns in a particular time series). These tests for longitudinal regression models are available in most software tools such as Eviews and Stata.

3.3. Vector Autoregression

A vector autoregression model (VAR) is a model often used in statistical analysis, which explores interrelationships between several variables that are all treated as endogenous. So, a specific trait of this model is that it includes lagged values of the employed variables as regressors. This allows for estimating not only the instantaneous effects but also dynamic effects in the relationships up to n lags.

In fact, a VAR model consists of k OLS regression equations where k is the number of employed variables. Each equation has its own dependent variable while the explanatory variables are the lagged values of this variable and other variables.

  • Selection of the optimal lag length

Information criteria (IC) are employed to determine the optimal lag length. The most commonly used ones are the Akaike, Hannah-Quinn and Schwarz criteria.

  • Test for stationarity

A widely used method for estimating stationarity is the Augmented Dickey-Fuller test and the Phillips-Perron test.  If a variable is non-stationary, the first difference should be taken and tested for stationarity in the same way.

  • Cointegration test

The variables may be non-stationary but integrated of the same order. In this case, they can be analysed with a Vector Error Correction Model (VECM) instead of VAR. The Johansen cointegration test is conducted to check whether the variables integrated of the same order share a common integrating vector(s). If the variables are cointegrated, VECM is applied in the following analysis instead of a VAR model. VECM is applied to non-transformed non-stationary series whereas VAR is run with transformed or stationary inputs.

  • Model Estimation

A VAR model is run with the chosen number of lags and coefficients with standard errors and respective t-statistics are calculated to assess the statistical significance.

  • Diagnostic tests

Next, the model is tested for serial correlation using the Breusch-Godfrey test, for heteroscedasticity using the Breusch-Pagan test and for stability.

  • Impulse Response Functions (IRFs)

The IRFs are used to graphically represent the results of a VAR model and project the effects of variables on one another.

  • Granger causality test

The variables may be related but there may exist no causal relationships between them, or the effect may be bilateral. The Granger test indicates the causal associations between the variables and shows the direction of causality based on interaction of current and past values of a pair of variables in the VAR system.

Monday - Friday:   9am - 6pm

Saturday: 10am - 6pm

Got Questions?

Email:  [email protected]

*We do NOT use AI (ChatGPT or similar), all orders are custom written by real people.

Our Services

Essay Writing Service

Assignment Writing Service

Coursework Writing Service

Report Writing Service

Reflective Report Writing Service

Literature Review Writing Service

Dissertation Proposal Writing Service

Dissertation Writing Service

MBA Writing Service

safe_payments_new (1)

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Can J Hosp Pharm
  • v.68(4); Jul-Aug 2015

Logo of cjhp

Creating a Data Analysis Plan: What to Consider When Choosing Statistics for a Study

There are three kinds of lies: lies, damned lies, and statistics. – Mark Twain 1

INTRODUCTION

Statistics represent an essential part of a study because, regardless of the study design, investigators need to summarize the collected information for interpretation and presentation to others. It is therefore important for us to heed Mr Twain’s concern when creating the data analysis plan. In fact, even before data collection begins, we need to have a clear analysis plan that will guide us from the initial stages of summarizing and describing the data through to testing our hypotheses.

The purpose of this article is to help you create a data analysis plan for a quantitative study. For those interested in conducting qualitative research, previous articles in this Research Primer series have provided information on the design and analysis of such studies. 2 , 3 Information in the current article is divided into 3 main sections: an overview of terms and concepts used in data analysis, a review of common methods used to summarize study data, and a process to help identify relevant statistical tests. My intention here is to introduce the main elements of data analysis and provide a place for you to start when planning this part of your study. Biostatistical experts, textbooks, statistical software packages, and other resources can certainly add more breadth and depth to this topic when you need additional information and advice.

TERMS AND CONCEPTS USED IN DATA ANALYSIS

When analyzing information from a quantitative study, we are often dealing with numbers; therefore, it is important to begin with an understanding of the source of the numbers. Let us start with the term variable , which defines a specific item of information collected in a study. Examples of variables include age, sex or gender, ethnicity, exercise frequency, weight, treatment group, and blood glucose. Each variable will have a group of categories, which are referred to as values , to help describe the characteristic of an individual study participant. For example, the variable “sex” would have values of “male” and “female”.

Although variables can be defined or grouped in various ways, I will focus on 2 methods at this introductory stage. First, variables can be defined according to the level of measurement. The categories in a nominal variable are names, for example, male and female for the variable “sex”; white, Aboriginal, black, Latin American, South Asian, and East Asian for the variable “ethnicity”; and intervention and control for the variable “treatment group”. Nominal variables with only 2 categories are also referred to as dichotomous variables because the study group can be divided into 2 subgroups based on information in the variable. For example, a study sample can be split into 2 groups (patients receiving the intervention and controls) using the dichotomous variable “treatment group”. An ordinal variable implies that the categories can be placed in a meaningful order, as would be the case for exercise frequency (never, sometimes, often, or always). Nominal-level and ordinal-level variables are also referred to as categorical variables, because each category in the variable can be completely separated from the others. The categories for an interval variable can be placed in a meaningful order, with the interval between consecutive categories also having meaning. Age, weight, and blood glucose can be considered as interval variables, but also as ratio variables, because the ratio between values has meaning (e.g., a 15-year-old is half the age of a 30-year-old). Interval-level and ratio-level variables are also referred to as continuous variables because of the underlying continuity among categories.

As we progress through the levels of measurement from nominal to ratio variables, we gather more information about the study participant. The amount of information that a variable provides will become important in the analysis stage, because we lose information when variables are reduced or aggregated—a common practice that is not recommended. 4 For example, if age is reduced from a ratio-level variable (measured in years) to an ordinal variable (categories of < 65 and ≥ 65 years) we lose the ability to make comparisons across the entire age range and introduce error into the data analysis. 4

A second method of defining variables is to consider them as either dependent or independent. As the terms imply, the value of a dependent variable depends on the value of other variables, whereas the value of an independent variable does not rely on other variables. In addition, an investigator can influence the value of an independent variable, such as treatment-group assignment. Independent variables are also referred to as predictors because we can use information from these variables to predict the value of a dependent variable. Building on the group of variables listed in the first paragraph of this section, blood glucose could be considered a dependent variable, because its value may depend on values of the independent variables age, sex, ethnicity, exercise frequency, weight, and treatment group.

Statistics are mathematical formulae that are used to organize and interpret the information that is collected through variables. There are 2 general categories of statistics, descriptive and inferential. Descriptive statistics are used to describe the collected information, such as the range of values, their average, and the most common category. Knowledge gained from descriptive statistics helps investigators learn more about the study sample. Inferential statistics are used to make comparisons and draw conclusions from the study data. Knowledge gained from inferential statistics allows investigators to make inferences and generalize beyond their study sample to other groups.

Before we move on to specific descriptive and inferential statistics, there are 2 more definitions to review. Parametric statistics are generally used when values in an interval-level or ratio-level variable are normally distributed (i.e., the entire group of values has a bell-shaped curve when plotted by frequency). These statistics are used because we can define parameters of the data, such as the centre and width of the normally distributed curve. In contrast, interval-level and ratio-level variables with values that are not normally distributed, as well as nominal-level and ordinal-level variables, are generally analyzed using nonparametric statistics.

METHODS FOR SUMMARIZING STUDY DATA: DESCRIPTIVE STATISTICS

The first step in a data analysis plan is to describe the data collected in the study. This can be done using figures to give a visual presentation of the data and statistics to generate numeric descriptions of the data.

Selection of an appropriate figure to represent a particular set of data depends on the measurement level of the variable. Data for nominal-level and ordinal-level variables may be interpreted using a pie graph or bar graph . Both options allow us to examine the relative number of participants within each category (by reporting the percentages within each category), whereas a bar graph can also be used to examine absolute numbers. For example, we could create a pie graph to illustrate the proportions of men and women in a study sample and a bar graph to illustrate the number of people who report exercising at each level of frequency (never, sometimes, often, or always).

Interval-level and ratio-level variables may also be interpreted using a pie graph or bar graph; however, these types of variables often have too many categories for such graphs to provide meaningful information. Instead, these variables may be better interpreted using a histogram . Unlike a bar graph, which displays the frequency for each distinct category, a histogram displays the frequency within a range of continuous categories. Information from this type of figure allows us to determine whether the data are normally distributed. In addition to pie graphs, bar graphs, and histograms, many other types of figures are available for the visual representation of data. Interested readers can find additional types of figures in the books recommended in the “Further Readings” section.

Figures are also useful for visualizing comparisons between variables or between subgroups within a variable (for example, the distribution of blood glucose according to sex). Box plots are useful for summarizing information for a variable that does not follow a normal distribution. The lower and upper limits of the box identify the interquartile range (or 25th and 75th percentiles), while the midline indicates the median value (or 50th percentile). Scatter plots provide information on how the categories for one continuous variable relate to categories in a second variable; they are often helpful in the analysis of correlations.

In addition to using figures to present a visual description of the data, investigators can use statistics to provide a numeric description. Regardless of the measurement level, we can find the mode by identifying the most frequent category within a variable. When summarizing nominal-level and ordinal-level variables, the simplest method is to report the proportion of participants within each category.

The choice of the most appropriate descriptive statistic for interval-level and ratio-level variables will depend on how the values are distributed. If the values are normally distributed, we can summarize the information using the parametric statistics of mean and standard deviation. The mean is the arithmetic average of all values within the variable, and the standard deviation tells us how widely the values are dispersed around the mean. When values of interval-level and ratio-level variables are not normally distributed, or we are summarizing information from an ordinal-level variable, it may be more appropriate to use the nonparametric statistics of median and range. The first step in identifying these descriptive statistics is to arrange study participants according to the variable categories from lowest value to highest value. The range is used to report the lowest and highest values. The median or 50th percentile is located by dividing the number of participants into 2 groups, such that half (50%) of the participants have values above the median and the other half (50%) have values below the median. Similarly, the 25th percentile is the value with 25% of the participants having values below and 75% of the participants having values above, and the 75th percentile is the value with 75% of participants having values below and 25% of participants having values above. Together, the 25th and 75th percentiles define the interquartile range .

PROCESS TO IDENTIFY RELEVANT STATISTICAL TESTS: INFERENTIAL STATISTICS

One caveat about the information provided in this section: selecting the most appropriate inferential statistic for a specific study should be a combination of following these suggestions, seeking advice from experts, and discussing with your co-investigators. My intention here is to give you a place to start a conversation with your colleagues about the options available as you develop your data analysis plan.

There are 3 key questions to consider when selecting an appropriate inferential statistic for a study: What is the research question? What is the study design? and What is the level of measurement? It is important for investigators to carefully consider these questions when developing the study protocol and creating the analysis plan. The figures that accompany these questions show decision trees that will help you to narrow down the list of inferential statistics that would be relevant to a particular study. Appendix 1 provides brief definitions of the inferential statistics named in these figures. Additional information, such as the formulae for various inferential statistics, can be obtained from textbooks, statistical software packages, and biostatisticians.

What Is the Research Question?

The first step in identifying relevant inferential statistics for a study is to consider the type of research question being asked. You can find more details about the different types of research questions in a previous article in this Research Primer series that covered questions and hypotheses. 5 A relational question seeks information about the relationship among variables; in this situation, investigators will be interested in determining whether there is an association ( Figure 1 ). A causal question seeks information about the effect of an intervention on an outcome; in this situation, the investigator will be interested in determining whether there is a difference ( Figure 2 ).

An external file that holds a picture, illustration, etc.
Object name is cjhp-68-311f1.jpg

Decision tree to identify inferential statistics for an association.

An external file that holds a picture, illustration, etc.
Object name is cjhp-68-311f2.jpg

Decision tree to identify inferential statistics for measuring a difference.

What Is the Study Design?

When considering a question of association, investigators will be interested in measuring the relationship between variables ( Figure 1 ). A study designed to determine whether there is consensus among different raters will be measuring agreement. For example, an investigator may be interested in determining whether 2 raters, using the same assessment tool, arrive at the same score. Correlation analyses examine the strength of a relationship or connection between 2 variables, like age and blood glucose. Regression analyses also examine the strength of a relationship or connection; however, in this type of analysis, one variable is considered an outcome (or dependent variable) and the other variable is considered a predictor (or independent variable). Regression analyses often consider the influence of multiple predictors on an outcome at the same time. For example, an investigator may be interested in examining the association between a treatment and blood glucose, while also considering other factors, like age, sex, ethnicity, exercise frequency, and weight.

When considering a question of difference, investigators must first determine how many groups they will be comparing. In some cases, investigators may be interested in comparing the characteristic of one group with that of an external reference group. For example, is the mean age of study participants similar to the mean age of all people in the target group? If more than one group is involved, then investigators must also determine whether there is an underlying connection between the sets of values (or samples ) to be compared. Samples are considered independent or unpaired when the information is taken from different groups. For example, we could use an unpaired t test to compare the mean age between 2 independent samples, such as the intervention and control groups in a study. Samples are considered related or paired if the information is taken from the same group of people, for example, measurement of blood glucose at the beginning and end of a study. Because blood glucose is measured in the same people at both time points, we could use a paired t test to determine whether there has been a significant change in blood glucose.

What Is the Level of Measurement?

As described in the first section of this article, variables can be grouped according to the level of measurement (nominal, ordinal, or interval). In most cases, the independent variable in an inferential statistic will be nominal; therefore, investigators need to know the level of measurement for the dependent variable before they can select the relevant inferential statistic. Two exceptions to this consideration are correlation analyses and regression analyses ( Figure 1 ). Because a correlation analysis measures the strength of association between 2 variables, we need to consider the level of measurement for both variables. Regression analyses can consider multiple independent variables, often with a variety of measurement levels. However, for these analyses, investigators still need to consider the level of measurement for the dependent variable.

Selection of inferential statistics to test interval-level variables must include consideration of how the data are distributed. An underlying assumption for parametric tests is that the data approximate a normal distribution. When the data are not normally distributed, information derived from a parametric test may be wrong. 6 When the assumption of normality is violated (for example, when the data are skewed), then investigators should use a nonparametric test. If the data are normally distributed, then investigators can use a parametric test.

ADDITIONAL CONSIDERATIONS

What is the level of significance.

An inferential statistic is used to calculate a p value, the probability of obtaining the observed data by chance. Investigators can then compare this p value against a prespecified level of significance, which is often chosen to be 0.05. This level of significance represents a 1 in 20 chance that the observation is wrong, which is considered an acceptable level of error.

What Are the Most Commonly Used Statistics?

In 1983, Emerson and Colditz 7 reported the first review of statistics used in original research articles published in the New England Journal of Medicine . This review of statistics used in the journal was updated in 1989 and 2005, 8 and this type of analysis has been replicated in many other journals. 9 – 13 Collectively, these reviews have identified 2 important observations. First, the overall sophistication of statistical methodology used and reported in studies has grown over time, with survival analyses and multivariable regression analyses becoming much more common. The second observation is that, despite this trend, 1 in 4 articles describe no statistical methods or report only simple descriptive statistics. When inferential statistics are used, the most common are t tests, contingency table tests (for example, χ 2 test and Fisher exact test), and simple correlation and regression analyses. This information is important for educators, investigators, reviewers, and readers because it suggests that a good foundational knowledge of descriptive statistics and common inferential statistics will enable us to correctly evaluate the majority of research articles. 11 – 13 However, to fully take advantage of all research published in high-impact journals, we need to become acquainted with some of the more complex methods, such as multivariable regression analyses. 8 , 13

What Are Some Additional Resources?

As an investigator and Associate Editor with CJHP , I have often relied on the advice of colleagues to help create my own analysis plans and review the plans of others. Biostatisticians have a wealth of knowledge in the field of statistical analysis and can provide advice on the correct selection, application, and interpretation of these methods. Colleagues who have “been there and done that” with their own data analysis plans are also valuable sources of information. Identify these individuals and consult with them early and often as you develop your analysis plan.

Another important resource to consider when creating your analysis plan is textbooks. Numerous statistical textbooks are available, differing in levels of complexity and scope. The titles listed in the “Further Reading” section are just a few suggestions. I encourage interested readers to look through these and other books to find resources that best fit their needs. However, one crucial book that I highly recommend to anyone wanting to be an investigator or peer reviewer is Lang and Secic’s How to Report Statistics in Medicine (see “Further Reading”). As the title implies, this book covers a wide range of statistics used in medical research and provides numerous examples of how to correctly report the results.

CONCLUSIONS

When it comes to creating an analysis plan for your project, I recommend following the sage advice of Douglas Adams in The Hitchhiker’s Guide to the Galaxy : Don’t panic! 14 Begin with simple methods to summarize and visualize your data, then use the key questions and decision trees provided in this article to identify relevant statistical tests. Information in this article will give you and your co-investigators a place to start discussing the elements necessary for developing an analysis plan. But do not stop there! Use advice from biostatisticians and more experienced colleagues, as well as information in textbooks, to help create your analysis plan and choose the most appropriate statistics for your study. Making careful, informed decisions about the statistics to use in your study should reduce the risk of confirming Mr Twain’s concern.

Appendix 1. Glossary of statistical terms * (part 1 of 2)

  • 1-way ANOVA: Uses 1 variable to define the groups for comparing means. This is similar to the Student t test when comparing the means of 2 groups.
  • Kruskall–Wallis 1-way ANOVA: Nonparametric alternative for the 1-way ANOVA. Used to determine the difference in medians between 3 or more groups.
  • n -way ANOVA: Uses 2 or more variables to define groups when comparing means. Also called a “between-subjects factorial ANOVA”.
  • Repeated-measures ANOVA: A method for analyzing whether the means of 3 or more measures from the same group of participants are different.
  • Freidman ANOVA: Nonparametric alternative for the repeated-measures ANOVA. It is often used to compare rankings and preferences that are measured 3 or more times.
  • Fisher exact: Variation of chi-square that accounts for cell counts < 5.
  • McNemar: Variation of chi-square that tests statistical significance of changes in 2 paired measurements of dichotomous variables.
  • Cochran Q: An extension of the McNemar test that provides a method for testing for differences between 3 or more matched sets of frequencies or proportions. Often used as a measure of heterogeneity in meta-analyses.
  • 1-sample: Used to determine whether the mean of a sample is significantly different from a known or hypothesized value.
  • Independent-samples t test (also referred to as the Student t test): Used when the independent variable is a nominal-level variable that identifies 2 groups and the dependent variable is an interval-level variable.
  • Paired: Used to compare 2 pairs of scores between 2 groups (e.g., baseline and follow-up blood pressure in the intervention and control groups).

Lang TA, Secic M. How to report statistics in medicine: annotated guidelines for authors, editors, and reviewers. 2nd ed. Philadelphia (PA): American College of Physicians; 2006.

Norman GR, Streiner DL. PDQ statistics. 3rd ed. Hamilton (ON): B.C. Decker; 2003.

Plichta SB, Kelvin E. Munro’s statistical methods for health care research . 6th ed. Philadelphia (PA): Wolters Kluwer Health/ Lippincott, Williams & Wilkins; 2013.

This article is the 12th in the CJHP Research Primer Series, an initiative of the CJHP Editorial Board and the CSHP Research Committee. The planned 2-year series is intended to appeal to relatively inexperienced researchers, with the goal of building research capacity among practising pharmacists. The articles, presenting simple but rigorous guidance to encourage and support novice researchers, are being solicited from authors with appropriate expertise.

Previous articles in this series:

  • Bond CM. The research jigsaw: how to get started. Can J Hosp Pharm . 2014;67(1):28–30.
  • Tully MP. Research: articulating questions, generating hypotheses, and choosing study designs. Can J Hosp Pharm . 2014;67(1):31–4.
  • Loewen P. Ethical issues in pharmacy practice research: an introductory guide. Can J Hosp Pharm. 2014;67(2):133–7.
  • Tsuyuki RT. Designing pharmacy practice research trials. Can J Hosp Pharm . 2014;67(3):226–9.
  • Bresee LC. An introduction to developing surveys for pharmacy practice research. Can J Hosp Pharm . 2014;67(4):286–91.
  • Gamble JM. An introduction to the fundamentals of cohort and case–control studies. Can J Hosp Pharm . 2014;67(5):366–72.
  • Austin Z, Sutton J. Qualitative research: getting started. C an J Hosp Pharm . 2014;67(6):436–40.
  • Houle S. An introduction to the fundamentals of randomized controlled trials in pharmacy research. Can J Hosp Pharm . 2014; 68(1):28–32.
  • Charrois TL. Systematic reviews: What do you need to know to get started? Can J Hosp Pharm . 2014;68(2):144–8.
  • Sutton J, Austin Z. Qualitative research: data collection, analysis, and management. Can J Hosp Pharm . 2014;68(3):226–31.
  • Cadarette SM, Wong L. An introduction to health care administrative data. Can J Hosp Pharm. 2014;68(3):232–7.

Competing interests: None declared.

Further Reading

  • Devor J, Peck R. Statistics: the exploration and analysis of data. 7th ed. Boston (MA): Brooks/Cole Cengage Learning; 2012. [ Google Scholar ]
  • Lang TA, Secic M. How to report statistics in medicine: annotated guidelines for authors, editors, and reviewers. 2nd ed. Philadelphia (PA): American College of Physicians; 2006. [ Google Scholar ]
  • Mendenhall W, Beaver RJ, Beaver BM. Introduction to probability and statistics. 13th ed. Belmont (CA): Brooks/Cole Cengage Learning; 2009. [ Google Scholar ]
  • Norman GR, Streiner DL. PDQ statistics. 3rd ed. Hamilton (ON): B.C. Decker; 2003. [ Google Scholar ]
  • Plichta SB, Kelvin E. Munro’s statistical methods for health care research. 6th ed. Philadelphia (PA): Wolters Kluwer Health/Lippincott, Williams & Wilkins; 2013. [ Google Scholar ]

Leeds Beckett University

Skills for Learning : Research Skills

Data analysis is an ongoing process that should occur throughout your research project. Suitable data-analysis methods must be selected when you write your research proposal. The nature of your data (i.e. quantitative or qualitative) will be influenced by your research design and purpose. The data will also influence the analysis methods selected.

We run interactive workshops to help you develop skills related to doing research, such as data analysis, writing literature reviews and preparing for dissertations. Find out more on the Skills for Learning Workshops page.

We have online academic skills modules within MyBeckett for all levels of university study. These modules will help your academic development and support your success at LBU. You can work through the modules at your own pace, revisiting them as required. Find out more from our FAQ What academic skills modules are available?

Quantitative data analysis

Broadly speaking, 'statistics' refers to methods, tools and techniques used to collect, organise and interpret data. The goal of statistics is to gain understanding from data. Therefore, you need to know how to:

  • Produce data – for example, by handing out a questionnaire or doing an experiment.
  • Organise, summarise, present and analyse data.
  • Draw valid conclusions from findings.

There are a number of statistical methods you can use to analyse data. Choosing an appropriate statistical method should follow naturally, however, from your research design. Therefore, you should think about data analysis at the early stages of your study design. You may need to consult a statistician for help with this.

Tips for working with statistical data

  • Plan so that the data you get has a good chance of successfully tackling the research problem. This will involve reading literature on your subject, as well as on what makes a good study.
  • To reach useful conclusions, you need to reduce uncertainties or 'noise'. Thus, you will need a sufficiently large data sample. A large sample will improve precision. However, this must be balanced against the 'costs' (time and money) of collection.
  • Consider the logistics. Will there be problems in obtaining sufficient high-quality data? Think about accuracy, trustworthiness and completeness.
  • Statistics are based on random samples. Consider whether your sample will be suited to this sort of analysis. Might there be biases to think about?
  • How will you deal with missing values (any data that is not recorded for some reason)? These can result from gaps in a record or whole records being missed out.
  • When analysing data, start by looking at each variable separately. Conduct initial/exploratory data analysis using graphical displays. Do this before looking at variables in conjunction or anything more complicated. This process can help locate errors in the data and also gives you a 'feel' for the data.
  • Look out for patterns of 'missingness'. They are likely to alert you if there’s a problem. If the 'missingness' is not random, then it will have an impact on the results.
  • Be vigilant and think through what you are doing at all times. Think critically. Statistics are not just mathematical tricks that a computer sorts out. Rather, analysing statistical data is a process that the human mind must interpret!

Top tips! Try inventing or generating the sort of data you might get and see if you can analyse it. Make sure that your process works before gathering actual data. Think what the output of an analytic procedure will look like before doing it for real.

(Note: it is actually difficult to generate realistic data. There are fraud-detection methods in place to identify data that has been fabricated. So, remember to get rid of your practice data before analysing the real stuff!)

Statistical software packages

Software packages can be used to analyse and present data. The most widely used ones are SPSS and NVivo.

SPSS is a statistical-analysis and data-management package for quantitative data analysis. Click on ‘ How do I install SPSS? ’ to learn how to download SPSS to your personal device. SPSS can perform a wide variety of statistical procedures. Some examples are:

  • Data management (i.e. creating subsets of data or transforming data).
  • Summarising, describing or presenting data (i.e. mean, median and frequency).
  • Looking at the distribution of data (i.e. standard deviation).
  • Comparing groups for significant differences using parametric (i.e. t-test) and non-parametric (i.e. Chi-square) tests.
  • Identifying significant relationships between variables (i.e. correlation).

NVivo can be used for qualitative data analysis. It is suitable for use with a wide range of methodologies. Click on ‘ How do I access NVivo ’ to learn how to download NVivo to your personal device. NVivo supports grounded theory, survey data, case studies, focus groups, phenomenology, field research and action research.

  • Process data such as interview transcripts, literature or media extracts, and historical documents.
  • Code data on screen and explore all coding and documents interactively.
  • Rearrange, restructure, extend and edit text, coding and coding relationships.
  • Search imported text for words, phrases or patterns, and automatically code the results.

Qualitative data analysis

Miles and Huberman (1994) point out that there are diverse approaches to qualitative research and analysis. They suggest, however, that it is possible to identify 'a fairly classic set of analytic moves arranged in sequence'. This involves:

  • Affixing codes to a set of field notes drawn from observation or interviews.
  • Noting reflections or other remarks in the margins.
  • Sorting/sifting through these materials to identify: a) similar phrases, relationships between variables, patterns and themes and b) distinct differences between subgroups and common sequences.
  • Isolating these patterns/processes and commonalties/differences. Then, taking them out to the field in the next wave of data collection.
  • Highlighting generalisations and relating them to your original research themes.
  • Taking the generalisations and analysing them in relation to theoretical perspectives.

        (Miles and Huberman, 1994.)

Patterns and generalisations are usually arrived at through a process of analytic induction (see above points 5 and 6). Qualitative analysis rarely involves statistical analysis of relationships between variables. Qualitative analysis aims to gain in-depth understanding of concepts, opinions or experiences.

Presenting information

There are a number of different ways of presenting and communicating information. The particular format you use is dependent upon the type of data generated from the methods you have employed.

Here are some appropriate ways of presenting information for different types of data:

Bar charts: These   may be useful for comparing relative sizes. However, they tend to use a large amount of ink to display a relatively small amount of information. Consider a simple line chart as an alternative.

Pie charts: These have the benefit of indicating that the data must add up to 100%. However, they make it difficult for viewers to distinguish relative sizes, especially if two slices have a difference of less than 10%.

Other examples of presenting data in graphical form include line charts and  scatter plots .

Qualitative data is more likely to be presented in text form. For example, using quotations from interviews or field diaries.

  • Plan ahead, thinking carefully about how you will analyse and present your data.
  • Think through possible restrictions to resources you may encounter and plan accordingly.
  • Find out about the different IT packages available for analysing your data and select the most appropriate.
  • If necessary, allow time to attend an introductory course on a particular computer package. You can book SPSS and NVivo workshops via MyHub .
  • Code your data appropriately, assigning conceptual or numerical codes as suitable.
  • Organise your data so it can be analysed and presented easily.
  • Choose the most suitable way of presenting your information, according to the type of data collected. This will allow your information to be understood and interpreted better.

Primary, secondary and tertiary sources

Information sources are sometimes categorised as primary, secondary or tertiary sources depending on whether or not they are ‘original’ materials or data. For some research projects, you may need to use primary sources as well as secondary or tertiary sources. However the distinction between primary and secondary sources is not always clear and depends on the context. For example, a newspaper article might usually be categorised as a secondary source. But it could also be regarded as a primary source if it were an article giving a first-hand account of a historical event written close to the time it occurred.

  • Primary sources
  • Secondary sources
  • Tertiary sources
  • Grey literature

Primary sources are original sources of information that provide first-hand accounts of what is being experienced or researched. They enable you to get as close to the actual event or research as possible. They are useful for getting the most contemporary information about a topic.

Examples include diary entries, newspaper articles, census data, journal articles with original reports of research, letters, email or other correspondence, original manuscripts and archives, interviews, research data and reports, statistics, autobiographies, exhibitions, films, and artists' writings.

Some information will be available on an Open Access basis, freely accessible online. However, many academic sources are paywalled, and you may need to login as a Leeds Beckett student to access them. Where Leeds Beckett does not have access to a source, you can use our  Request It! Service .

Secondary sources interpret, evaluate or analyse primary sources. They're useful for providing background information on a topic, or for looking back at an event from a current perspective. The majority of your literature searching will probably be done to find secondary sources on your topic.

Examples include journal articles which review or interpret original findings, popular magazine articles commenting on more serious research, textbooks and biographies.

The term tertiary sources isn't used a great deal. There's overlap between what might be considered a secondary source and a tertiary source. One definition is that a tertiary source brings together secondary sources.

Examples include almanacs, fact books, bibliographies, dictionaries and encyclopaedias, directories, indexes and abstracts. They can be useful for introductory information or an overview of a topic in the early stages of research.

Depending on your subject of study, grey literature may be another source you need to use. Grey literature includes technical or research reports, theses and dissertations, conference papers, government documents, white papers, and so on.

Artificial intelligence tools

Before using any generative artificial intelligence or paraphrasing tools in your assessments, you should check if this is permitted on your course.

If their use is permitted on your course, you must  acknowledge any use of generative artificial intelligence tools  such as ChatGPT or paraphrasing tools (e.g., Grammarly, Quillbot, etc.), even if you have only used them to generate ideas for your assessments or for proofreading.

  • Academic Integrity Module in MyBeckett
  • Assignment Calculator
  • Building on Feedback
  • Disability Advice
  • Essay X-ray tool
  • International Students' Academic Introduction
  • Manchester Academic Phrasebank
  • Quote, Unquote
  • Skills and Subject Suppor t
  • Turnitin Grammar Checker

{{You can add more boxes below for links specific to this page [this note will not appear on user pages] }}

  • Research Methods Checklist
  • Sampling Checklist

Skills for Learning FAQs

Library & Student Services

0113 812 1000

  • University Disclaimer
  • Accessibility

Grad Coach

Ace Your Data Analysis

Get hands-on help analysing your data from a friendly Grad Coach. It’s like having a professor in your pocket.

Grad Coach awards

Students Helped

Client pass rate, trustpilot score, facebook rating, how we help you  .

Whether you’ve just started collecting your data, are in the thick of analysing it, or you’ve already written a draft chapter – we’re here to help. 

data analysis dissertation

Make sense of the data

If you’ve collected your data, but are feeling confused about what to do and how to make sense of it all, we can help. One of our friendly coaches will hold your hand through each step and help you interpret your dataset .

Alternatively, if you’re still planning your data collection and analysis strategy, we can help you craft a rock-solid methodology  that sets you up for success.

We can help you structure and write your data analysis chapter

Get your thinking onto paper

If you’ve analysed your data, but are struggling to get your thoughts onto paper, one of our friendly Grad Coaches can help you structure your results and/or discussion chapter to kickstart your writing.

We can help identify issues in your data analysis chapter

Refine your writing

If you’ve already written up your results but need a second set of eyes, our popular Content Review service can help you identify and address key issues within your writing, before you submit it for grading .

Why Grad Coach ?

Dissertation coaching is custom-tailored to your needs

It's all about you

We take the time to understand your unique challenges and work with you to achieve your specific academic goals . Whether you're aiming to earn top marks or just need to cross the finish line, we're here to help.

Our dissertation coaches have insider experience as dissertation and thesis supervisors

An insider advantage

Our award-winning Dissertation Coaches all hold doctoral-level degrees and share 100+ years of combined academic experience. Having worked on "the inside", we know exactly what markers want .

Access dissertation coaching wherever you are

Any time, anywhere

Getting help from your dedicated Dissertation Coach is simple. Book a live video /voice call, chat via email or send your document to us for an in-depth review and critique . We're here when you need us. 

Our thesis coaches are tried and tested

A track record you can trust

8,000,000+ students have enjoyed our public lessons and online courses, while 3000+ students have benefited from 1:1 Dissertation Coaching. The plethora of glowing reviews reflects our commitment.

Chat With A Friendly Coach, Today

Prefer email? No problem - you c an  email us here .

Awards and accreditations

Have a question ?

Below we address some of the most popular questions we receive regarding our data analysis support, but feel free to get in touch if you have any other questions.

Dissertation Coaching

I have no idea where to start. can you help.

Absolutely. We regularly work with students who are completely new to data analysis (both qualitative and quantitative) and need step-by-step guidance to understand and interpret their data.

Can you analyse my data for me?

The short answer – no. 

The longer answer:

If you’re undertaking qualitative research , we can fast-track your project with our Qualitative Coding Service. With this service, we take care of the initial coding of your dataset (e.g., interview transcripts), providing a firm foundation on which you can build your qualitative analysis (e.g., thematic analysis, content analysis, etc.).

If you’re undertaking quantitative research , we can fast-track your project with our Statistical Testing Service . With this service, we run the relevant statistical tests using SPSS or R, and provide you with the raw outputs. You can then use these outputs/reports to interpret your results and develop your analysis.

Importantly, in both cases, we are not analysing the data for you or providing an interpretation or write-up for you. If you’d like coaching-based support with that aspect of the project, we can certainly assist you with this (i.e., provide guidance and feedback, review your writing, etc.). But it’s important to understand that you, as the researcher, need to engage with the data and write up your own findings. 

Can you help me choose the right data analysis methods?

Yes, we can assist you in selecting appropriate data analysis methods, based on your research aims and research questions, as well as the characteristics of your data.

Which data analysis methods can you assist with?

We can assist with most qualitative and quantitative analysis methods that are commonplace within the social sciences.

Qualitative methods:

  • Qualitative content analysis
  • Thematic analysis
  • Discourse analysis
  • Narrative analysis
  • Grounded theory

Quantitative methods:

  • Descriptive statistics
  • Inferential statistics

Can you provide data sets for me to analyse?

If you are undertaking secondary research , we can potentially assist you in finding suitable data sets for your analysis.

If you are undertaking primary research , we can help you plan and develop data collection instruments (e.g., surveys, questionnaires, etc.), but we cannot source the data on your behalf. 

Can you write the analysis/results/discussion chapter/section for me?

No. We can provide you with hands-on guidance through each step of the analysis process, but the writing needs to be your own. Writing anything for you would constitute academic misconduct .

Can you help me organise and structure my results/discussion chapter/section?

Yes, we can assist in structuring your chapter to ensure that you have a clear, logical structure and flow that delivers a clear and convincing narrative.

Can you review my writing and give me feedback?

Absolutely. Our Content Review service is designed exactly for this purpose and is one of the most popular services here at Grad Coach. In a Content Review, we carefully read through your research methodology chapter (or any other chapter) and provide detailed comments regarding the key issues/problem areas, why they’re problematic and what you can do to resolve the issues. You can learn more about Content Review here .

Do you provide software support (e.g., SPSS, R, etc.)?

It depends on the software package you’re planning to use, as well as the analysis techniques/tests you plan to undertake. We can typically provide support for the more popular analysis packages, but it’s best to discuss this in an initial consultation.

Can you help me with other aspects of my research project?

Yes. Data analysis support is only one aspect of our offering at Grad Coach, and we typically assist students throughout their entire dissertation/thesis/research project. You can learn more about our full service offering here .

Can I get a coach that specialises in my topic area?

It’s important to clarify that our expertise lies in the research process itself , rather than specific research areas/topics (e.g., psychology, management, etc.).

In other words, the support we provide is topic-agnostic, which allows us to support students across a very broad range of research topics. That said, if there is a coach on our team who has experience in your area of research, as well as your chosen methodology, we can allocate them to your project (dependent on their availability, of course).

If you’re unsure about whether we’re the right fit, feel free to drop us an email or book a free initial consultation.

What qualifications do your coaches have?

All of our coaches hold a doctoral-level degree (for example, a PhD, DBA, etc.). Moreover, they all have experience working within academia, in many cases as dissertation/thesis supervisors. In other words, they understand what markers are looking for when reviewing a student’s work.

Is my data/topic/study kept confidential?

Yes, we prioritise confidentiality and data security. Your written work and personal information are treated as strictly confidential. We can also sign a non-disclosure agreement, should you wish.

I still have questions…

No problem. Feel free to email us or book an initial consultation to discuss.

What our clients say

We've worked 1:1 with 3000+ students . Here's what some of them have to say:

David's depth of knowledge in research methodology was truly impressive. He demonstrated a profound understanding of the nuances and complexities of my research area, offering insights that I hadn't even considered. His ability to synthesize information, identify key research gaps, and suggest research topics was truly inspiring. I felt like I had a true expert by my side, guiding me through the complexities of the proposal.

Cyntia Sacani (US)

I had been struggling with the first 3 chapters of my dissertation for over a year. I finally decided to give GradCoach a try and it made a huge difference. Alexandra provided helpful suggestions along with edits that transformed my paper. My advisor was very impressed.

Tracy Shelton (US)

Working with Kerryn has been brilliant. She has guided me through that pesky academic language that makes us all scratch our heads. I can't recommend Grad Coach highly enough; they are very professional, humble, and fun to work with. If like me, you know your subject matter but you're getting lost in the academic language, look no further, give them a go.

Tony Fogarty (UK)

So helpful! Amy assisted me with an outline for my literature review and with organizing the results for my MBA applied research project. Having a road map helped enormously and saved a lot of time. Definitely worth it.

Jennifer Hagedorn (Canada)

Everything about my experience was great, from Dr. Shaeffer’s expertise, to her patience and flexibility. I reached out to GradCoach after receiving a 78 on a midterm paper. Not only did I get a 100 on my final paper in the same class, but I haven’t received a mark less than A+ since. I recommend GradCoach for everyone who needs help with academic research.

Antonia Singleton (Qatar)

I started using Grad Coach for my dissertation and I can honestly say that if it wasn’t for them, I would have really struggled. I would strongly recommend them – worth every penny!

Richard Egenreider (South Africa)

Fast-Track Your Data Analysis, Today

Enter your details below, pop us an email, or book an introductory consultation .

Dissertation & Thesis Coaching Awards

How to Analyse Secondary Data for a Dissertation

Secondary data refers to data that has already been collected by another researcher. For researchers (and students!) with limited time and resources, secondary data, whether qualitative or quantitative can be a highly viable source of data.  In addition, with the advances in technology and access to peer reviewed journals and studies provided by the internet, it is increasingly popular as a form of data collection.  The question that frequently arises amongst students however, is: how is secondary data best analysed?

The process of data analysis in secondary research

Secondary analysis (i.e., the use of existing data) is a systematic methodological approach that has some clear steps that need to be followed for the process to be effective.  In simple terms there are three steps:

  • Step One: Development of Research Questions
  • Step Two: Identification of dataset
  • Step Three: Evaluation of the dataset.

Let’s look at each of these in more detail:

Step One: Development of research questions

Using secondary data means you need to apply theoretical knowledge and conceptual skills to be able to use the dataset to answer research questions.  Clearly therefore, the first step is thus to clearly define and develop your research questions so that you know the areas of interest that you need to explore for location of the most appropriate secondary data.

Step Two: Identification of Dataset

This stage should start with identification, through investigation, of what is currently known in the subject area and where there are gaps, and thus what data is available to address these gaps.  Sources can be academic from prior studies that have used quantitative or qualitative data, and which can then be gathered together and collated to produce a new secondary dataset.  In addition, other more informal or “grey” literature can also be incorporated, including consumer report, commercial studies or similar.  One of the values of using secondary research is that original survey works often do not use all the data collected which means this unused information can be applied to different settings or perspectives.

Key point: Effective use of secondary data means identifying how the data can be used to deliver meaningful and relevant answers to the research questions.  In other words that the data used is a good fit for the study and research questions.

Step Three: Evaluation of the dataset for effectiveness/fit

A good tip is to use a reflective approach for data evaluation.  In other words, for each piece of secondary data to be utilised, it is sensible to identify the purpose of the work, the credentials of the authors (i.e., credibility, what data is provided in the original work and how long ago it was collected).  In addition, the methods used and the level of consistency that exists compared to other works. This is important because understanding the primary method of data collection will impact on the overall evaluation and analysis when it is used as secondary source. In essence, if there is no understanding of the coding used in qualitative data analysis to identify key themes then there will be a mismatch with interpretations when the data is used for secondary purposes.  Furthermore, having multiple sources which draw similar conclusions ensures a higher level of validity than relying on only one or two secondary sources.

A useful framework provides a flow chart of decision making, as shown in the figure below.

Analyse Secondary Data

Following this process ensures that only those that are most appropriate for your research questions are included in the final dataset, but also demonstrates to your readers that you have been thorough in identifying the right works to use.

Writing up the Analysis

Once you have your dataset, writing up the analysis will depend on the process used.  If the data is qualitative in nature, then you should follow the following process.

Pre-Planning

  • Read and re-read all sources, identifying initial observations, correlations, and relationships between themes and how they apply to your research questions.
  • Once initial themes are identified, it is sensible to explore further and identify sub-themes which lead on from the core themes and correlations in the dataset, which encourages identification of new insights and contributes to the originality of your own work.

Structure of the Analysis Presentation

Introduction.

The introduction should commence with an overview of all your sources. It is good practice to present these in a table, listed chronologically so that your work has an orderly and consistent flow. The introduction should also incorporate a brief (2-3 sentences) overview of the key outcomes and results identified.

The body text for secondary data, irrespective of whether quantitative or qualitative data is used, should be broken up into sub-sections for each argument or theme presented. In the case of qualitative data, depending on whether content, narrative or discourse analysis is used, this means presenting the key papers in the area, their conclusions and how these answer, or not, your research questions. Each source should be clearly cited and referenced at the end of the work. In the case of qualitative data, any figures or tables should be reproduced with the correct citations to their original source. In both cases, it is good practice to give a main heading of a key theme, with sub-headings for each of the sub themes identified in the analysis.

Do not use direct quotes from secondary data unless they are:

  • properly referenced, and
  • are key to underlining a point or conclusion that you have drawn from the data.

All results sections, regardless of whether primary or secondary data has been used should refer back to the research questions and prior works. This is because, regardless of whether the results back up or contradict previous research, including previous works shows a wider level of reading and understanding of the topic being researched and gives a greater depth to your own work.

Summary of results

The summary of the results section of a secondary data dissertation should deliver a summing up of key findings, and if appropriate a conceptual framework that clearly illustrates the findings of the work. This shows that you have understood your secondary data, how it has answered your research questions, and furthermore that your interpretation has led to some firm outcomes.

You may also like

How to Critically Analyse

  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

Writing a Dissertation Data Analysis the Right Way

Dissertation Data Analysis

Do you want to be a college professor? Most teaching positions at four-year universities and colleges require the applicants to have at least a doctoral degree in the field they wish to teach in. If you are looking for information about the dissertation data analysis, it means you have already started working on yours. Congratulations!

Truth be told, learning how to write a data analysis the right way can be tricky. This is, after all, one of the most important chapters of your paper. It is also the most difficult to write, unfortunately. The good news is that we will help you with all the information you need to write a good data analysis chapter right now. And remember, if you need an original dissertation data analysis example, our PhD experts can write one for you in record time. You’ll be amazed how much you can learn from a well-written example.

OK, But What Is the Data Analysis Section?

Don’t know what the data analysis section is or what it is used for? No problem, we’ll explain it to you. Understanding the data analysis meaning is crucial to understanding the next sections of this blog post.

Basically, the data analysis section is the part where you analyze and discuss the data you’ve uncovered. In a typical dissertation, you will present your findings (the data) in the Results section. You will explain how you obtained the data in the Methodology chapter.

The data analysis section should be reserved just for discussing your findings. This means you should refrain from introducing any new data in there. This is extremely important because it can get your paper penalized quite harshly. Remember, the evaluation committee will look at your data analysis section very closely. It’s extremely important to get this chapter done right.

Learn What to Include in Data Analysis

Don’t know what to include in data analysis? Whether you need to do a quantitative data analysis or analyze qualitative data, you need to get it right. Learning how to analyze research data is extremely important, and so is learning what you need to include in your analysis. Here are the basic parts that should mandatorily be in your dissertation data analysis structure:

  • The chapter should start with a brief overview of the problem. You will need to explain the importance of your research and its purpose. Also, you will need to provide a brief explanation of the various types of data and the methods you’ve used to collect said data. In case you’ve made any assumptions, you should list them as well.
  • The next part will include detailed descriptions of each and every one of your hypotheses. Alternatively, you can describe the research questions. In any case, this part of the data analysis chapter will make it clear to your readers what you aim to demonstrate.
  • Then, you will introduce and discuss each and every piece of important data. Your aim is to demonstrate that your data supports your thesis (or answers an important research question). Go in as much detail as possible when analyzing the data. Each question should be discussed in a single paragraph and the paragraph should contain a conclusion at the end.
  • The very last part of the data analysis chapter that an undergraduate must write is the conclusion of the entire chapter. It is basically a short summary of the entire chapter. Make it clear that you know what you’ve been talking about and how your data helps answer the research questions you’ve been meaning to cover.

Dissertation Data Analysis Methods

If you are reading this, it means you need some data analysis help. Fortunately, our writers are experts when it comes to the discussion chapter of a dissertation, the most important part of your paper. To make sure you write it correctly, you need to first ensure you learn about the various data analysis methods that are available to you. Here is what you can – and should – do during the data analysis phase of the paper:

  • Validate the data. This means you need to check for fraud (were all the respondents really interviewed?), screen the respondents to make sure they meet the research criteria, check that the data collection procedures were properly followed, and then verify that the data is complete (did each respondent receive all the questions or not?). Validating the data is no as difficult as you imagine. Just pick several respondents at random and call them or email them to find out if the data is valid.
For example, an outlier can be identified using a scatter plot or a box plot. Points (values) that are beyond an inner fence on either side are mild outliers, while points that are beyond an outer fence are called extreme outliers.
  • If you have a large amount of data, you should code it. Group similar data into sets and code them. This will significantly simplify the process of analyzing the data later.
For example, the median is almost always used to separate the lower half from the upper half of a data set, while the percentage can be used to make a graph that emphasizes a small group of values in a large set o data.
ANOVA, for example, is perfect for testing how much two groups differ from one another in the experiment. You can safely use it to find a relationship between the number of smartphones in a family and the size of the family’s savings.

Analyzing qualitative data is a bit different from analyzing quantitative data. However, the process is not entirely different. Here are some methods to analyze qualitative data:

You should first get familiar with the data, carefully review each research question to see which one can be answered by the data you have collected, code or index the resulting data, and then identify all the patterns. The most popular methods of conducting a qualitative data analysis are the grounded theory, the narrative analysis, the content analysis, and the discourse analysis. Each has its strengths and weaknesses, so be very careful which one you choose.

Of course, it goes without saying that you need to become familiar with each of the different methods used to analyze various types of data. Going into detail for each method is not possible in a single blog post. After all, there are entire books written about these methods. However, if you are having any trouble with analyzing the data – or if you don’t know which dissertation data analysis methods suits your data best – you can always ask our dissertation experts. Our customer support department is online 24 hours a day, 7 days a week – even during holidays. We are always here for you!

Tips and Tricks to Write the Analysis Chapter

Did you know that the best way to learn how to write a data analysis chapter is to get a great example of data analysis in research paper? In case you don’t have access to such an example and don’t want to get assistance from our experts, we can still help you. Here are a few very useful tips that should make writing the analysis chapter a lot easier:

  • Always start the chapter with a short introductory paragraph that explains the purpose of the chapter. Don’t just assume that your audience knows what a discussion chapter is. Provide them with a brief overview of what you are about to demonstrate.
  • When you analyze and discuss the data, keep the literature review in mind. Make as many cross references as possible between your analysis and the literature review. This way, you will demonstrate to the evaluation committee that you know what you’re talking about.
  • Never be afraid to provide your point of view on the data you are analyzing. This is why it’s called a data analysis and not a results chapter. Be as critical as possible and make sure you discuss every set of data in detail.
  • If you notice any patterns or themes in the data, make sure you acknowledge them and explain them adequately. You should also take note of these patterns in the conclusion at the end of the chapter.
  • Do not assume your readers are familiar with jargon. Always provide a clear definition of the terms you are using in your paper. Not doing so can get you penalized. Why risk it?
  • Don’t be afraid to discuss both the advantage and the disadvantages you can get from the data. Being biased and trying to ignore the drawbacks of the results will not get you far.
  • Always remember to discuss the significance of each set of data. Also, try to explain to your audience how the various elements connect to each other.
  • Be as balanced as possible and make sure your judgments are reasonable. Only strong evidence should be used to support your claims and arguments. Weak evidence just shows that you did not do your best to uncover enough information to answer the research question.
  • Get dissertation data analysis help whenever you feel like you need it. Don’t leave anything to chance because the outcome of your dissertation depends in large part on the data analysis chapter.

Finally, don’t be afraid to make effective use of any quantitative data analysis software you can get your hands on. We know that many of these tools can be quite expensive, but we can assure you that the investment is a good idea. Many of these tools are of real help when it comes to analyzing huge amounts of data.

Final Considerations

Finally, you need to be aware that the data analysis chapter should not be rushed in any way. We do agree that the Results chapter is extremely important, but we consider that the Discussion chapter is equally as important. Why? Because you will be explaining your findings and not just presenting some results. You will have the option to talk about your personal opinions. You are free to unleash your critical thinking and impress the evaluation committee. The data analysis section is where you can really shine.

Also, you need to make sure that this chapter is as interesting as it can be for the reader. Make sure you discuss all the interesting results of your research. Explain peculiar findings. Make correlations and reference other works by established authors in your field. Show your readers that you know that subject extremely well and that you are perfectly capable of conducting a proper analysis no matter how complex the data may be. This way, you can ensure that you get maximum points for the data analysis chapter. If you can’t do a great job, get help ASAP!

Need Some Assistance With Data Analysis?

If you are a university student or a graduate, you may need some cheap help with writing the analysis chapter of your dissertation. Remember, time saving is extremely important because finishing the dissertation on time is mandatory. You should consider our amazing services the moment you notice you are not on track with your dissertation. Also, you should get help from our dissertation writing service in case you can’t do a terrific job writing the data analysis chapter. This is one of the most important chapters of your paper and the supervisor will look closely at it.

Why risk getting penalized when you can get high quality academic writing services from our team of experts? All our writers are PhD degree holders, so they know exactly how to write any chapter of a dissertation the right way. This also means that our professionals work fast. They can get the analysis chapter done for you in no time and bring you back on track. It’s also worth noting that we have access to the best software tools for data analysis. We will bring our knowledge and technical know-how to your project and ensure you get a top grade on your paper. Get in touch with us and let’s discuss the specifics of your project right now!

Leave a Reply Cancel reply

IMAGES

  1. Dissertation Using Secondary Data

    data analysis dissertation

  2. Data Analysis

    data analysis dissertation

  3. Kris' Dissertation Chpater 5 Data Analysis

    data analysis dissertation

  4. Quantitative data analysis

    data analysis dissertation

  5. What Is Data Analysis In Research Example

    data analysis dissertation

  6. Writing the Best Dissertation Data Analysis Possible

    data analysis dissertation

VIDEO

  1. Qualitative Data Analysis Workshop

  2. Qualitative Data Analysis Workshop

  3. Introduction to Data Analysis( day1)

  4. How to analyse qualitative data

  5. book your #dissertation #assignments today to score distinction #assignmenthelp #ukuniversities #uk

  6. A very brief Introduction to Data Analysis (part 1)

COMMENTS

  1. Step 7: Data analysis techniques for your dissertation

    Learn how to choose the appropriate statistical tests for your data based on your research questions, hypotheses and design. Find out why it is useful to think about data analysis at this stage of the dissertation process and how to prepare for the next stage of data collection.

  2. 11 Tips For Writing a Dissertation Data Analysis

    Learn how to perform dissertation data analysis using various tools and methods for qualitative and quantitative data. Find out the best tips for writing a data analysis dissertation and get professional help from Statistics Solutions.

  3. Dissertation Results/Findings Chapter (Quantitative)

    Learn how to write the results chapter for quantitative dissertations and theses, including what to include, how to structure it and tips for writing. The results chapter presents the data using tables, graphs and charts, and aligns with the research questions and objectives.

  4. Dissertation Data Analysis Plan

    Learn how to write a data analysis plan for your dissertation, including statistical tests, assumptions, data cleaning, and power analysis. Find out how to select the appropriate test based on the research questions and variables, and how to document the data analysis steps.

  5. How to Write a Results Section

    Learn how to report the main findings of your data collection and analysis in a concise and objective way. See tips and examples for quantitative and qualitative research, and the difference between results, discussion, and conclusion sections.

  6. Qualitative Data Analysis Methods for Dissertations

    Learn how to collect, prepare and analyze qualitative data for your dissertation. Explore the common qualitative data analysis methods, such as content analysis, thematic analysis, narrative analysis and more.

  7. A Step-by-Step Guide to Dissertation Data Analysis

    Types of Data Analysis for Dissertation. The various types of data Analysis in a Dissertation are as follows; 1. Qualitative Data Analysis. Qualitative data analysis is a type of data analysis that involves analyzing data that cannot be measured numerically. This data type includes interviews, focus groups, and open-ended surveys.

  8. Quantitative Data Analysis Methods & Techniques 101

    Quantitative data analysis is one of those things that often strikes fear in students. It's totally understandable - quantitative analysis is a complex topic, full of daunting lingo, like medians, modes, correlation and regression.Suddenly we're all wishing we'd paid a little more attention in math class…. The good news is that while quantitative data analysis is a mammoth topic ...

  9. A practical guide to data analysis in general literature reviews

    This article is a practical guide to conducting data analysis in general literature reviews. The general literature review is a synthesis and analysis of published research on a relevant clinical issue, and is a common format for academic theses at the bachelor's and master's levels in nursing, physiotherapy, occupational therapy, public health and other related fields.

  10. Raw Data to Excellence: Master Dissertation Analysis

    The first step in dissertation data analysis is to carefully prepare and clean the collected data. This may involve removing any irrelevant or incomplete information, addressing missing data, and ensuring data integrity. Once the data is ready, various statistical and analytical techniques can be applied to extract meaningful information.

  11. A Really Simple Guide to Quantitative Data Analysis

    It is important to know w hat kind of data you are planning to collect or analyse as this w ill. affect your analysis method. A 12 step approach to quantitative data analysis. Step 1: Start with ...

  12. How to write a great data science thesis

    They will stress the importance of structure, substance and style. They will urge you to write down your methodology and results first, then progress to the literature review, introduction and conclusions and to write the summary or abstract last. To write clearly and directly with the reader's expectations always in mind.

  13. How to Use Quantitative Data Analysis in a Thesis

    Applying Quantitative Data Analysis to Your Thesis Statement. It's difficult—if not impossible—to flesh out a thesis statement before beginning your preliminary research. If you're at the beginning stages of your dissertation process and are working to develop your dissertation proposal, you will first need to conduct a brief but broad ...

  14. Data Analysis for Dissertation Writing

    Overall, data analysis for dissertation writing is a vital part of the research process. It helps to guide one's investigation and can provide insight into their results. With proper planning and preparation, successful data analysis can be achieved with relative ease when approaching dissertation writing. Writing a dissertation can present ...

  15. Qualitative Data Analysis Methods: Top 6 + Examples

    QDA Method #3: Discourse Analysis. Discourse is simply a fancy word for written or spoken language or debate. So, discourse analysis is all about analysing language within its social context. In other words, analysing language - such as a conversation, a speech, etc - within the culture and society it takes place.

  16. Dissertation Data Analysis: A Quick Help With 8 Steps

    The data analysis chapter is a crucial section of a research dissertation that involves the examination, interpretation, and synthesis of collected data. In this chapter, researchers employ statistical techniques, qualitative methods, or a combination of both to make sense of the data gathered during the research process.

  17. A Complete Guide to Dissertation Data Analysis

    A Complete Guide to Dissertation Data Analysis. 11/11/2022. The analysis chapter is one of the most important parts of a dissertation where you demonstrate the unique research abilities. That is why it often accounts for up to 40% of the total mark. Given the significance of this chapter, it is essential to build your skills in dissertation ...

  18. Creating a Data Analysis Plan: What to Consider When Choosing

    The first step in a data analysis plan is to describe the data collected in the study. This can be done using figures to give a visual presentation of the data and statistics to generate numeric descriptions of the data. Selection of an appropriate figure to represent a particular set of data depends on the measurement level of the variable.

  19. The Library: Research Skills: Analysing and Presenting Data

    The nature of your data (i.e. quantitative or qualitative) will be influenced by your research design and purpose. The data will also influence the analysis methods selected. We run interactive workshops to help you develop skills related to doing research, such as data analysis, writing literature reviews and preparing for dissertations.

  20. Dissertation & Thesis Data Analysis Help

    Fast-Track Your Data Analysis, Today. Enter your details below, pop us an email, or book an introductory consultation. If you are a human seeing this field, please leave it empty. Get 1-on-1 help analysing and interpreting your qualitative or quantitative dissertation or thesis data from the experts at Grad Coach. Book online now.

  21. How to Analyse Secondary Data for a Dissertation

    The process of data analysis in secondary research. Secondary analysis (i.e., the use of existing data) is a systematic methodological approach that has some clear steps that need to be followed for the process to be effective. In simple terms there are three steps: Step One: Development of Research Questions. Step Two: Identification of dataset.

  22. Writing the Best Dissertation Data Analysis Possible

    Learn how to write a data analysis chapter for your dissertation, including what to include, how to validate and edit the data, and what methods to use for quantitative and qualitative data. Get a free example of data analysis in research paper from our PhD experts.

  23. PDF A Complete Dissertation

    include the type of study ("An Analysis") and the participants. Use of keywords will promote proper categorization into data-bases such as ERIC (the Education Resources Information Center) and Dissertation Abstracts International. Frequent Errors Frequent title errors include the use of trendy, elaborate, nonspecific, or literary

  24. Academic Resources

    0 likes, 0 comments - academic_solutions_officialJanuary 26, 2024 on : "Our Thesis Defense Preparation service ensures you're ready for every question, presentation hurdle, and academic inquiry. ‍ ...