Resilient Educator logo

ChatGPT for Teachers

Trauma-informed practices in schools, teacher well-being, cultivating diversity, equity, & inclusion, integrating technology in the classroom, social-emotional development, covid-19 resources, invest in resilience: summer toolkit, civics & resilience, all toolkits, degree programs, trauma-informed professional development, teacher licensure & certification, how to become - career information, classroom management, instructional design, lifestyle & self-care, online higher ed teaching, current events, 5 problem-solving activities for the classroom.

5 Problem-Solving Activities for the Classroom

Problem-solving skills are necessary in all areas of life, and classroom problem solving activities can be a great way to get students prepped and ready to solve real problems in real life scenarios. Whether in school, work or in their social relationships, the ability to critically analyze a problem, map out all its elements and then prepare a workable solution is one of the most valuable skills one can acquire in life.

Educating your students about problem solving skills from an early age in school can be facilitated through classroom problem solving activities. Such endeavors encourage cognitive as well as social development, and can equip students with the tools they’ll need to address and solve problems throughout the rest of their lives. Here are five classroom problem solving activities your students are sure to benefit from as well as enjoy doing:

1. Brainstorm bonanza

Having your students create lists related to whatever you are currently studying can be a great way to help them to enrich their understanding of a topic while learning to problem-solve. For example, if you are studying a historical, current or fictional event that did not turn out favorably, have your students brainstorm ways that the protagonist or participants could have created a different, more positive outcome. They can brainstorm on paper individually or on a chalkboard or white board in front of the class.

2. Problem-solving as a group

Have your students create and decorate a medium-sized box with a slot in the top. Label the box “The Problem-Solving Box.” Invite students to anonymously write down and submit any problem or issue they might be having at school or at home, ones that they can’t seem to figure out on their own. Once or twice a week, have a student draw one of the items from the box and read it aloud. Then have the class as a group figure out the ideal way the student can address the issue and hopefully solve it.

3. Clue me in

This fun detective game encourages problem-solving, critical thinking and cognitive development. Collect a number of items that are associated with a specific profession, social trend, place, public figure, historical event, animal, etc. Assemble actual items (or pictures of items) that are commonly associated with the target answer. Place them all in a bag (five-10 clues should be sufficient.) Then have a student reach into the bag and one by one pull out clues. Choose a minimum number of clues they must draw out before making their first guess (two- three). After this, the student must venture a guess after each clue pulled until they guess correctly. See how quickly the student is able to solve the riddle.

4. Survivor scenarios

Create a pretend scenario for students that requires them to think creatively to make it through. An example might be getting stranded on an island, knowing that help will not arrive for three days. The group has a limited amount of food and water and must create shelter from items around the island. Encourage working together as a group and hearing out every child that has an idea about how to make it through the three days as safely and comfortably as possible.

5. Moral dilemma

Create a number of possible moral dilemmas your students might encounter in life, write them down, and place each item folded up in a bowl or bag. Some of the items might include things like, “I saw a good friend of mine shoplifting. What should I do?” or “The cashier gave me an extra $1.50 in change after I bought candy at the store. What should I do?” Have each student draw an item from the bag one by one, read it aloud, then tell the class their answer on the spot as to how they would handle the situation.

Classroom problem solving activities need not be dull and routine. Ideally, the problem solving activities you give your students will engage their senses and be genuinely fun to do. The activities and lessons learned will leave an impression on each child, increasing the likelihood that they will take the lesson forward into their everyday lives.

You may also like to read

  • Classroom Activities for Introverted Students
  • Activities for Teaching Tolerance in the Classroom
  • 5 Problem-Solving Activities for Elementary Classrooms
  • 10 Ways to Motivate Students Outside the Classroom
  • Motivating Introverted Students to Excel in the Classroom
  • How to Engage Gifted and Talented Students in the Classroom

Categorized as: Tips for Teachers and Classroom Resources

Tagged as: Assessment Tools ,  Engaging Activities

  • Online & Campus Doctorate (EdD) in Higher Edu...
  • Degrees and Certificates for Teachers & Educa...
  • Programming Teacher: Job Description and Sala...

Teaching problem solving: Let students get ‘stuck’ and ‘unstuck’

Subscribe to the center for universal education bulletin, kate mills and km kate mills literacy interventionist - red bank primary school helyn kim helyn kim former brookings expert @helyn_kim.

October 31, 2017

This is the second in a six-part  blog series  on  teaching 21st century skills , including  problem solving ,  metacognition , critical thinking , and collaboration , in classrooms.

In the real world, students encounter problems that are complex, not well defined, and lack a clear solution and approach. They need to be able to identify and apply different strategies to solve these problems. However, problem solving skills do not necessarily develop naturally; they need to be explicitly taught in a way that can be transferred across multiple settings and contexts.

Here’s what Kate Mills, who taught 4 th grade for 10 years at Knollwood School in New Jersey and is now a Literacy Interventionist at Red Bank Primary School, has to say about creating a classroom culture of problem solvers:

Helping my students grow to be people who will be successful outside of the classroom is equally as important as teaching the curriculum. From the first day of school, I intentionally choose language and activities that help to create a classroom culture of problem solvers. I want to produce students who are able to think about achieving a particular goal and manage their mental processes . This is known as metacognition , and research shows that metacognitive skills help students become better problem solvers.

I begin by “normalizing trouble” in the classroom. Peter H. Johnston teaches the importance of normalizing struggle , of naming it, acknowledging it, and calling it what it is: a sign that we’re growing. The goal is for the students to accept challenge and failure as a chance to grow and do better.

I look for every chance to share problems and highlight how the students— not the teachers— worked through those problems. There is, of course, coaching along the way. For example, a science class that is arguing over whose turn it is to build a vehicle will most likely need a teacher to help them find a way to the balance the work in an equitable way. Afterwards, I make it a point to turn it back to the class and say, “Do you see how you …” By naming what it is they did to solve the problem , students can be more independent and productive as they apply and adapt their thinking when engaging in future complex tasks.

After a few weeks, most of the class understands that the teachers aren’t there to solve problems for the students, but to support them in solving the problems themselves. With that important part of our classroom culture established, we can move to focusing on the strategies that students might need.

Here’s one way I do this in the classroom:

I show the broken escalator video to the class. Since my students are fourth graders, they think it’s hilarious and immediately start exclaiming, “Just get off! Walk!”

When the video is over, I say, “Many of us, probably all of us, are like the man in the video yelling for help when we get stuck. When we get stuck, we stop and immediately say ‘Help!’ instead of embracing the challenge and trying new ways to work through it.” I often introduce this lesson during math class, but it can apply to any area of our lives, and I can refer to the experience and conversation we had during any part of our day.

Research shows that just because students know the strategies does not mean they will engage in the appropriate strategies. Therefore, I try to provide opportunities where students can explicitly practice learning how, when, and why to use which strategies effectively  so that they can become self-directed learners.

For example, I give students a math problem that will make many of them feel “stuck”. I will say, “Your job is to get yourselves stuck—or to allow yourselves to get stuck on this problem—and then work through it, being mindful of how you’re getting yourselves unstuck.” As students work, I check-in to help them name their process: “How did you get yourself unstuck?” or “What was your first step? What are you doing now? What might you try next?” As students talk about their process, I’ll add to a list of strategies that students are using and, if they are struggling, help students name a specific process. For instance, if a student says he wrote the information from the math problem down and points to a chart, I will say: “Oh that’s interesting. You pulled the important information from the problem out and organized it into a chart.” In this way, I am giving him the language to match what he did, so that he now has a strategy he could use in other times of struggle.

The charts grow with us over time and are something that we refer to when students are stuck or struggling. They become a resource for students and a way for them to talk about their process when they are reflecting on and monitoring what did or did not work.

For me, as a teacher, it is important that I create a classroom environment in which students are problem solvers. This helps tie struggles to strategies so that the students will not only see value in working harder but in working smarter by trying new and different strategies and revising their process. In doing so, they will more successful the next time around.

Related Content

Esther Care, Helyn Kim, Alvin Vista

October 17, 2017

David Owen, Alvin Vista

November 15, 2017

Loren Clarke, Esther Care

December 5, 2017

Global Education K-12 Education

Global Economy and Development

Center for Universal Education

Phillip Levine

April 12, 2024

Hannah C. Kistler, Shaun M. Dougherty

April 9, 2024

Katharine Meyer, Rachel M. Perera, Michael Hansen

  • Utility Menu

University Logo

GA4 Tracking Code

Home

fa51e2b1dc8cca8f7467da564e77b5ea

  • Make a Gift
  • Join Our Email List
  • Problem Solving in STEM

Solving problems is a key component of many science, math, and engineering classes.  If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer different types of problems.  Problem solving during section or class allows students to develop their confidence in these skills under your guidance, better preparing them to succeed on their homework and exams. This page offers advice about strategies for facilitating problem solving during class.

How do I decide which problems to cover in section or class?

In-class problem solving should reinforce the major concepts from the class and provide the opportunity for theoretical concepts to become more concrete. If students have a problem set for homework, then in-class problem solving should prepare students for the types of problems that they will see on their homework. You may wish to include some simpler problems both in the interest of time and to help students gain confidence, but it is ideal if the complexity of at least some of the in-class problems mirrors the level of difficulty of the homework. You may also want to ask your students ahead of time which skills or concepts they find confusing, and include some problems that are directly targeted to their concerns.

You have given your students a problem to solve in class. What are some strategies to work through it?

  • Try to give your students a chance to grapple with the problems as much as possible.  Offering them the chance to do the problem themselves allows them to learn from their mistakes in the presence of your expertise as their teacher. (If time is limited, they may not be able to get all the way through multi-step problems, in which case it can help to prioritize giving them a chance to tackle the most challenging steps.)
  • When you do want to teach by solving the problem yourself at the board, talk through the logic of how you choose to apply certain approaches to solve certain problems.  This way you can externalize the type of thinking you hope your students internalize when they solve similar problems themselves.
  • Start by setting up the problem on the board (e.g you might write down key variables and equations; draw a figure illustrating the question).  Ask students to start solving the problem, either independently or in small groups.  As they are working on the problem, walk around to hear what they are saying and see what they are writing down. If several students seem stuck, it might be a good to collect the whole class again to clarify any confusion.  After students have made progress, bring the everyone back together and have students guide you as to what to write on the board.
  • It can help to first ask students to work on the problem by themselves for a minute, and then get into small groups to work on the problem collaboratively.
  • If you have ample board space, have students work in small groups at the board while solving the problem.  That way you can monitor their progress by standing back and watching what they put up on the board.
  • If you have several problems you would like to have the students practice, but not enough time for everyone to do all of them, you can assign different groups of students to work on different – but related - problems.

When do you want students to work in groups to solve problems?

  • Don’t ask students to work in groups for straightforward problems that most students could solve independently in a short amount of time.
  • Do have students work in groups for thought-provoking problems, where students will benefit from meaningful collaboration.
  • Even in cases where you plan to have students work in groups, it can be useful to give students some time to work on their own before collaborating with others.  This ensures that every student engages with the problem and is ready to contribute to a discussion.

What are some benefits of having students work in groups?

  • Students bring different strengths, different knowledge, and different ideas for how to solve a problem; collaboration can help students work through problems that are more challenging than they might be able to tackle on their own.
  • In working in a group, students might consider multiple ways to approach a problem, thus enriching their repertoire of strategies.
  • Students who think they understand the material will gain a deeper understanding by explaining concepts to their peers.

What are some strategies for helping students to form groups?  

  • Instruct students to work with the person (or people) sitting next to them.
  • Count off.  (e.g. 1, 2, 3, 4; all the 1’s find each other and form a group, etc)
  • Hand out playing cards; students need to find the person with the same number card. (There are many variants to this.  For example, you can print pictures of images that go together [rain and umbrella]; each person gets a card and needs to find their partner[s].)
  • Based on what you know about the students, assign groups in advance. List the groups on the board.
  • Note: Always have students take the time to introduce themselves to each other in a new group.

What should you do while your students are working on problems?

  • Walk around and talk to students. Observing their work gives you a sense of what people understand and what they are struggling with. Answer students’ questions, and ask them questions that lead in a productive direction if they are stuck.
  • If you discover that many people have the same question—or that someone has a misunderstanding that others might have—you might stop everyone and discuss a key idea with the entire class.

After students work on a problem during class, what are strategies to have them share their answers and their thinking?

  • Ask for volunteers to share answers. Depending on the nature of the problem, student might provide answers verbally or by writing on the board. As a variant, for questions where a variety of answers are relevant, ask for at least three volunteers before anyone shares their ideas.
  • Use online polling software for students to respond to a multiple-choice question anonymously.
  • If students are working in groups, assign reporters ahead of time. For example, the person with the next birthday could be responsible for sharing their group’s work with the class.
  • Cold call. To reduce student anxiety about cold calling, it can help to identify students who seem to have the correct answer as you were walking around the class and checking in on their progress solving the assigned problem. You may even want to warn the student ahead of time: "This is a great answer! Do you mind if I call on you when we come back together as a class?"
  • Have students write an answer on a notecard that they turn in to you.  If your goal is to understand whether students in general solved a problem correctly, the notecards could be submitted anonymously; if you wish to assess individual students’ work, you would want to ask students to put their names on their notecard.  
  • Use a jigsaw strategy, where you rearrange groups such that each new group is comprised of people who came from different initial groups and had solved different problems.  Students now are responsible for teaching the other students in their new group how to solve their problem.
  • Have a representative from each group explain their problem to the class.
  • Have a representative from each group draw or write the answer on the board.

What happens if a student gives a wrong answer?

  • Ask for their reasoning so that you can understand where they went wrong.
  • Ask if anyone else has other ideas. You can also ask this sometimes when an answer is right.
  • Cultivate an environment where it’s okay to be wrong. Emphasize that you are all learning together, and that you learn through making mistakes.
  • Do make sure that you clarify what the correct answer is before moving on.
  • Once the correct answer is given, go through some answer-checking techniques that can distinguish between correct and incorrect answers. This can help prepare students to verify their future work.

How can you make your classroom inclusive?

  • The goal is that everyone is thinking, talking, and sharing their ideas, and that everyone feels valued and respected. Use a variety of teaching strategies (independent work and group work; allow students to talk to each other before they talk to the class). Create an environment where it is normal to struggle and make mistakes.
  • See Kimberly Tanner’s article on strategies to promoste student engagement and cultivate classroom equity. 

A few final notes…

  • Make sure that you have worked all of the problems and also thought about alternative approaches to solving them.
  • Board work matters. You should have a plan beforehand of what you will write on the board, where, when, what needs to be added, and what can be erased when. If students are going to write their answers on the board, you need to also have a plan for making sure that everyone gets to the correct answer. Students will copy what is on the board and use it as their notes for later study, so correct and logical information must be written there.

For more information...

Tipsheet: Problem Solving in STEM Sections

Tanner, K. D. (2013). Structure matters: twenty-one teaching strategies to promote student engagement and cultivate classroom equity . CBE-Life Sciences Education, 12(3), 322-331.

  • Designing Your Course
  • A Teaching Timeline: From Pre-Term Planning to the Final Exam
  • The First Day of Class
  • Group Agreements
  • Classroom Debate
  • Flipped Classrooms
  • Leading Discussions
  • Polling & Clickers
  • Teaching with Cases
  • Engaged Scholarship
  • Devices in the Classroom
  • Beyond the Classroom
  • On Professionalism
  • Getting Feedback
  • Equitable & Inclusive Teaching
  • Advising and Mentoring
  • Teaching and Your Career
  • Teaching Remotely
  • Tools and Platforms
  • The Science of Learning
  • Bok Publications
  • Other Resources Around Campus

Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

problem solving example for students

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

Menu Trigger

New Designs for School 5 Steps to Teaching Students a Problem-Solving Routine

problem solving example for students

Jeff Heyck-Williams (He, His, Him) Director of the Two Rivers Learning Institute in Washington, DC

Two Rivers and joyful math

We’ve all had the experience of truly purposeful, authentic learning and know how valuable it is. Educators are taking the best of what we know about learning, student support, effective instruction, and interpersonal skill-building to completely reimagine schools so that students experience that kind of purposeful learning all day, every day.

Students can use the 5 steps in this simple routine to solve problems across the curriculum and throughout their lives.

When I visited a fifth-grade class recently, the students were tackling the following problem:

If there are nine people in a room and every person shakes hands exactly once with each of the other people, how many handshakes will there be? How can you prove your answer is correct using a model or numerical explanation?

There were students on the rug modeling people with Unifix cubes. There were kids at one table vigorously shaking each other’s hand. There were kids at another table writing out a diagram with numbers. At yet another table, students were working on creating a numeric expression. What was common across this class was that all of the students were productively grappling around the problem.

On a different day, I was out at recess with a group of kindergarteners who got into an argument over a vigorous game of tag. Several kids were arguing about who should be “it.” Many of them insisted that they hadn’t been tagged. They all agreed that they had a problem. With the assistance of the teacher they walked through a process of identifying what they knew about the problem and how best to solve it. They grappled with this very real problem to come to a solution that all could agree upon.

Then just last week, I had the pleasure of watching a culminating showcase of learning for our 8th graders. They presented to their families about their project exploring the role that genetics plays in our society. Tackling the problem of how we should or should not regulate gene research and editing in the human population, students explored both the history and scientific concerns about genetics and the ethics of gene editing. Each student developed arguments about how we as a country should proceed in the burgeoning field of human genetics which they took to Capitol Hill to share with legislators. Through the process students read complex text to build their knowledge, identified the underlying issues and questions, and developed unique solutions to this very real problem.

Problem-solving is at the heart of each of these scenarios, and an essential set of skills our students need to develop. They need the abilities to think critically and solve challenging problems without a roadmap to solutions. At Two Rivers Public Charter School in Washington, D.C., we have found that one of the most powerful ways to build these skills in students is through the use of a common set of steps for problem-solving. These steps, when used regularly, become a flexible cognitive routine for students to apply to problems across the curriculum and their lives.

The Problem-Solving Routine

At Two Rivers, we use a fairly simple routine for problem solving that has five basic steps. The power of this structure is that it becomes a routine that students are able to use regularly across multiple contexts. The first three steps are implemented before problem-solving. Students use one step during problem-solving. Finally, they finish with a reflective step after problem-solving.

Problem Solving from Two Rivers Public Charter School

Before Problem-Solving: The KWI

The three steps before problem solving: we call them the K-W-I.

The “K” stands for “know” and requires students to identify what they already know about a problem. The goal in this step of the routine is two-fold. First, the student needs to analyze the problem and identify what is happening within the context of the problem. For example, in the math problem above students identify that they know there are nine people and each person must shake hands with each other person. Second, the student needs to activate their background knowledge about that context or other similar problems. In the case of the handshake problem, students may recognize that this seems like a situation in which they will need to add or multiply.

The “W” stands for “what” a student needs to find out to solve the problem. At this point in the routine the student always must identify the core question that is being asked in a problem or task. However, it may also include other questions that help a student access and understand a problem more deeply. For example, in addition to identifying that they need to determine how many handshakes in the math problem, students may also identify that they need to determine how many handshakes each individual person has or how to organize their work to make sure that they count the handshakes correctly.

The “I” stands for “ideas” and refers to ideas that a student brings to the table to solve a problem effectively. In this portion of the routine, students list the strategies that they will use to solve a problem. In the example from the math class, this step involved all of the different ways that students tackled the problem from Unifix cubes to creating mathematical expressions.

This KWI routine before problem solving sets students up to actively engage in solving problems by ensuring they understand the problem and have some ideas about where to start in solving the problem. Two remaining steps are equally important during and after problem solving.

The power of teaching students to use this routine is that they develop a habit of mind to analyze and tackle problems wherever they find them.

During Problem-Solving: The Metacognitive Moment

The step that occurs during problem solving is a metacognitive moment. We ask students to deliberately pause in their problem-solving and answer the following questions: “Is the path I’m on to solve the problem working?” and “What might I do to either stay on a productive path or readjust my approach to get on a productive path?” At this point in the process, students may hear from other students that have had a breakthrough or they may go back to their KWI to determine if they need to reconsider what they know about the problem. By naming explicitly to students that part of problem-solving is monitoring our thinking and process, we help them become more thoughtful problem solvers.

After Problem-Solving: Evaluating Solutions

As a final step, after students solve the problem, they evaluate both their solutions and the process that they used to arrive at those solutions. They look back to determine if their solution accurately solved the problem, and when time permits they also consider if their path to a solution was efficient and how it compares to other students’ solutions.

The power of teaching students to use this routine is that they develop a habit of mind to analyze and tackle problems wherever they find them. This empowers students to be the problem solvers that we know they can become.

Jeff Heyck-Williams (He, His, Him)

Director of the two rivers learning institute.

Jeff Heyck-Williams is the director of the Two Rivers Learning Institute and a founder of Two Rivers Public Charter School. He has led work around creating school-wide cultures of mathematics, developing assessments of critical thinking and problem-solving, and supporting project-based learning.

Read More About New Designs for School

high school science experiment

NGLC Invites Applications from New England High School Teams for Our Fall 2024 Learning Excursion

March 21, 2024

NGLC's Bravely 2024-2025

Bring Your Vision for Student Success to Life with NGLC and Bravely

March 13, 2024

3 young children smiling

How to Nurture Diverse and Inclusive Classrooms through Play

Rebecca Horrace, Playful Insights Consulting, and Laura Dattile, PlanToys USA

March 5, 2024

problem solving example for students

50 Problem-Solving and Critical Thinking Examples

Critical thinking and problem solving are essential skills for success in the 21st century. Critical thinking is the ability to analyze information, evaluate evidence, and draw logical conclusions. Problem solving is the ability to apply critical thinking to find effective solutions to various challenges. Both skills require creativity, curiosity, and persistence. Developing critical thinking and problem solving skills can help students improve their academic performance, enhance their career prospects, and become more informed and engaged citizens.

problem solving example for students

Sanju Pradeepa

Problem-Solving and Critical Thinking Examples

In today’s complex and fast-paced world, the ability to think critically and solve problems effectively has become a vital skill for success in all areas of life. Whether it’s navigating professional challenges, making sound decisions, or finding innovative solutions, critical thinking and problem-solving are key to overcoming obstacles and achieving desired outcomes. In this blog post, we will explore problem-solving and critical thinking examples.

Table of Contents

Developing the skills needed for critical thinking and problem solving.

Developing the skills needed for critical thinking and problem solving

It is not enough to simply recognize an issue; we must use the right tools and techniques to address it. To do this, we must learn how to define and identify the problem or task at hand, gather relevant information from reliable sources, analyze and compare data to draw conclusions, make logical connections between different ideas, generate a solution or action plan, and make a recommendation.

The first step in developing these skills is understanding what the problem or task is that needs to be addressed. This requires careful consideration of all available information in order to form an accurate picture of what needs to be done. Once the issue has been identified, gathering reliable sources of data can help further your understanding of it. Sources could include interviews with customers or stakeholders, surveys, industry reports, and analysis of customer feedback.

After collecting relevant information from reliable sources, it’s important to analyze and compare the data in order to draw meaningful conclusions about the situation at hand. This helps us better understand our options for addressing an issue by providing context for decision-making. Once you have analyzed the data you collected, making logical connections between different ideas can help you form a more complete picture of the situation and inform your potential solutions.

Once you have analyzed your options for addressing an issue based on all available data points, it’s time to generate a solution or action plan that takes into account considerations such as cost-effectiveness and feasibility. It’s also important to consider the risk factors associated with any proposed solutions in order to ensure that they are responsible before moving forward with implementation. Finally, once all the analysis has been completed, it is time to make a recommendation based on your findings, which should take into account any objectives set out by stakeholders at the beginning of this process as well as any other pertinent factors discovered throughout the analysis stage.

By following these steps carefully when faced with complex issues, one can effectively use critical thinking and problem-solving skills in order to achieve desired outcomes more efficiently than would otherwise be possible without them, while also taking responsibility for decisions made along the way.

what does critical thinking involve

What Does Critical Thinking Involve: 5 Essential Skill

Problem-solving and critical thinking examples.

Problem-Solving and Critical Thinking Examples

Problem-solving and critical thinking are key skills that are highly valued in any professional setting. These skills enable individuals to analyze complex situations, make informed decisions, and find innovative solutions. Here, we present 25 examples of problem-solving and critical thinking. problem-solving scenarios to help you cultivate and enhance these skills.

Ethical dilemma: A company faces a situation where a client asks for a product that does not meet quality standards. The team must decide how to address the client’s request without compromising the company’s credibility or values.

Brainstorming session: A team needs to come up with new ideas for a marketing campaign targeting a specific demographic. Through an organized brainstorming session, they explore various approaches and analyze their potential impact.

Troubleshooting technical issues : An IT professional receives a ticket indicating a network outage. They analyze the issue, assess potential causes (hardware, software, or connectivity), and solve the problem efficiently.

Negotiation : During contract negotiations, representatives from two companies must find common ground to strike a mutually beneficial agreement, considering the needs and limitations of both parties.

Project management: A project manager identifies potential risks and develops contingency plans to address unforeseen obstacles, ensuring the project stays on track.

Decision-making under pressure: In a high-stakes situation, a medical professional must make a critical decision regarding a patient’s treatment, weighing all available information and considering potential risks.

Conflict resolution: A team encounters conflicts due to differing opinions or approaches. The team leader facilitates a discussion to reach a consensus while considering everyone’s perspectives.

Data analysis: A data scientist is presented with a large dataset and is tasked with extracting valuable insights. They apply analytical techniques to identify trends, correlations, and patterns that can inform decision-making.

Customer service: A customer service representative encounters a challenging customer complaint and must employ active listening and problem-solving skills to address the issue and provide a satisfactory resolution.

Market research : A business seeks to expand into a new market. They conduct thorough market research, analyzing consumer behavior, competitor strategies, and economic factors to make informed market-entry decisions.

Creative problem-solvin g: An engineer faces a design challenge and must think outside the box to come up with a unique and innovative solution that meets project requirements.

Change management: During a company-wide transition, managers must effectively communicate the change, address employees’ concerns, and facilitate a smooth transition process.

Crisis management: When a company faces a public relations crisis, effective critical thinking is necessary to analyze the situation, develop a response strategy, and minimize potential damage to the company’s reputation.

Cost optimization : A financial analyst identifies areas where expenses can be reduced while maintaining operational efficiency, presenting recommendations for cost savings.

Time management : An employee has multiple deadlines to meet. They assess the priority of each task, develop a plan, and allocate time accordingly to achieve optimal productivity.

Quality control: A production manager detects an increase in product defects and investigates the root causes, implementing corrective actions to enhance product quality.

Strategic planning: An executive team engages in strategic planning to define long-term goals, assess market trends, and identify growth opportunities.

Cross-functional collaboration: Multiple teams with different areas of expertise must collaborate to develop a comprehensive solution, combining their knowledge and skills.

Training and development : A manager identifies skill gaps in their team and designs training programs to enhance critical thinking, problem-solving, and decision-making abilities.

Risk assessment : A risk management professional evaluates potential risks associated with a new business venture, weighing their potential impact and developing strategies to mitigate them.

Continuous improvement: An operations manager analyzes existing processes, identifies inefficiencies, and introduces improvements to enhance productivity and customer satisfaction.

Customer needs analysis: A product development team conducts extensive research to understand customer needs and preferences, ensuring that the resulting product meets those requirements.

Crisis decision-making: A team dealing with a crisis must think quickly, assess the situation, and make timely decisions with limited information.

Marketing campaign analysis : A marketing team evaluates the success of a recent campaign, analyzing key performance indicators to understand its impact on sales and customer engagement.

Constructive feedback: A supervisor provides feedback to an employee, highlighting areas for improvement and offering constructive suggestions for growth.

Conflict resolution in a team project: Team members engaged in a project have conflicting ideas on the approach. They must engage in open dialogue, actively listen to each other’s perspectives, and reach a compromise that aligns with the project’s goals.

Crisis response in a natural disaster: Emergency responders must think critically and swiftly in responding to a natural disaster, coordinating rescue efforts, allocating resources effectively, and prioritizing the needs of affected individuals.

Product innovation : A product development team conducts market research, studies consumer trends, and uses critical thinking to create innovative products that address unmet customer needs.

Supply chain optimization: A logistics manager analyzes the supply chain to identify areas for efficiency improvement, such as reducing transportation costs, improving inventory management, or streamlining order fulfillment processes.

Business strategy formulation: A business executive assesses market dynamics, the competitive landscape, and internal capabilities to develop a robust business strategy that ensures sustainable growth and competitiveness.

Crisis communication: In the face of a public relations crisis, an organization’s spokesperson must think critically to develop and deliver a transparent, authentic, and effective communication strategy to rebuild trust and manage reputation.

Social problem-solving: A group of volunteers addresses a specific social issue, such as poverty or homelessness, by critically examining its root causes, collaborating with stakeholders, and implementing sustainable solutions for the affected population.

Problem-Solving Mindset

Problem-Solving Mindset: How to Achieve It (15 Ways)

Risk assessment in investment decision-making: An investment analyst evaluates various investment opportunities, conducting risk assessments based on market trends, financial indicators, and potential regulatory changes to make informed investment recommendations.

Environmental sustainability: An environmental scientist analyzes the impact of industrial processes on the environment, develops strategies to mitigate risks, and promotes sustainable practices within organizations and communities.

Adaptation to technological advancements : In a rapidly evolving technological landscape, professionals need critical thinking skills to adapt to new tools, software, and systems, ensuring they can effectively leverage these advancements to enhance productivity and efficiency.

Productivity improvement: An operations manager leverages critical thinking to identify productivity bottlenecks within a workflow and implement process improvements to optimize resource utilization, minimize waste, and increase overall efficiency.

Cost-benefit analysis: An organization considering a major investment or expansion opportunity conducts a thorough cost-benefit analysis, weighing potential costs against expected benefits to make an informed decision.

Human resources management : HR professionals utilize critical thinking to assess job applicants, identify skill gaps within the organization, and design training and development programs to enhance the workforce’s capabilities.

Root cause analysis: In response to a recurring problem or inefficiency, professionals apply critical thinking to identify the root cause of the issue, develop remedial actions, and prevent future occurrences.

Leadership development: Aspiring leaders undergo critical thinking exercises to enhance their decision-making abilities, develop strategic thinking skills, and foster a culture of innovation within their teams.

Brand positioning : Marketers conduct comprehensive market research and consumer behavior analysis to strategically position a brand, differentiating it from competitors and appealing to target audiences effectively.

Resource allocation: Non-profit organizations distribute limited resources efficiently, critically evaluating project proposals, considering social impact, and allocating resources to initiatives that align with their mission.

Innovating in a mature market: A company operating in a mature market seeks to innovate to maintain a competitive edge. They cultivate critical thinking skills to identify gaps, anticipate changing customer needs, and develop new strategies, products, or services accordingly.

Analyzing financial statements : Financial analysts critically assess financial statements, analyze key performance indicators, and derive insights to support financial decision-making, such as investment evaluations or budget planning.

Crisis intervention : Mental health professionals employ critical thinking and problem-solving to assess crises faced by individuals or communities, develop intervention plans, and provide support during challenging times.

Data privacy and cybersecurity : IT professionals critically evaluate existing cybersecurity measures, identify vulnerabilities, and develop strategies to protect sensitive data from threats, ensuring compliance with privacy regulations.

Process improvement : Professionals in manufacturing or service industries critically evaluate existing processes, identify inefficiencies, and implement improvements to optimize efficiency, quality, and customer satisfaction.

Multi-channel marketing strategy : Marketers employ critical thinking to design and execute effective marketing campaigns across various channels such as social media, web, print, and television, ensuring a cohesive brand experience for customers.

Peer review: Researchers critically analyze and review the work of their peers, providing constructive feedback and ensuring the accuracy, validity, and reliability of scientific studies.

Project coordination : A project manager must coordinate multiple teams and resources to ensure seamless collaboration, identify potential bottlenecks, and find solutions to keep the project on schedule.  

These examples highlight the various contexts in which problem-solving and critical-thinking skills are necessary for success. By understanding and practicing these skills, individuals can enhance their ability to navigate challenges and make sound decisions in both personal and professional endeavors.

Conclusion:

Critical thinking and problem-solving are indispensable skills that empower individuals to overcome challenges, make sound decisions, and find innovative solutions. By honing these skills, one can navigate through the complexities of modern life and achieve success in both personal and professional endeavors. Embrace the power of critical thinking and problem-solving, and unlock the door to endless possibilities and growth.

  • Problem solving From Wikipedia, the free encyclopedia
  • Critical thinking From Wikipedia, the free encyclopedia
  • The Importance of Critical Thinking and Problem Solving Skills for Students (5 Minutes)

Believe in mind Newsletter

Let’s boost your self-growth with Believe in Mind.

Interested in self-reflection tips, learning hacks, and knowing ways to calm down your mind? We offer you the best content which you have been looking for.

Follow Me on

You May Like Also

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Chapter 9: Facilitating Complex Thinking

Problem-solving.

Somewhat less open-ended than creative thinking is problem solving , the analysis and solution of tasks or situations that are complex or ambiguous and that pose difficulties or obstacles of some kind (Mayer & Wittrock, 2006). Problem solving is needed, for example, when a physician analyzes a chest X-ray: a photograph of the chest is far from clear and requires skill, experience, and resourcefulness to decide which foggy-looking blobs to ignore, and which to interpret as real physical structures (and therefore real medical concerns). Problem solving is also needed when a grocery store manager has to decide how to improve the sales of a product: should she put it on sale at a lower price, or increase publicity for it, or both? Will these actions actually increase sales enough to pay for their costs?

Example 1: Problem Solving in the Classroom

Problem solving happens in classrooms when teachers present tasks or challenges that are deliberately complex and for which finding a solution is not straightforward or obvious. The responses of students to such problems, as well as the strategies for assisting them, show the key features of problem solving. Consider this example, and students’ responses to it. We have numbered and named the paragraphs to make it easier to comment about them individually:

Scene #1: A problem to be solved

A teacher gave these instructions: “Can you connect all of the dots below using only four straight lines?” She drew the following display on the chalkboard:

nine dots in a three by three grid

The problem itself and the procedure for solving it seemed very clear: simply experiment with different arrangements of four lines. But two volunteers tried doing it at the board, but were unsuccessful. Several others worked at it at their seats, but also without success.

Scene #2: Coaxing students to re-frame the problem

When no one seemed to be getting it, the teacher asked, “Think about how you’ve set up the problem in your mind—about what you believe the problem is about. For instance, have you made any assumptions about how long the lines ought to be? Don’t stay stuck on one approach if it’s not working!”

Scene #3: Alicia abandons a fixed response

After the teacher said this, Alicia indeed continued to think about how she saw the problem. “The lines need to be no longer than the distance across the square,” she said to herself. So she tried several more solutions, but none of them worked either.

The teacher walked by Alicia’s desk and saw what Alicia was doing. She repeated her earlier comment: “Have you assumed anything about how long the lines ought to be?”

Alicia stared at the teacher blankly, but then smiled and said, “Hmm! You didn’t actually say that the lines could be no longer than the matrix! Why not make them longer?” So she experimented again using oversized lines and soon discovered a solution:

Nine dots in a three-by-three grid, all dots are connected using just four lines. The first line travels through the top-right dot, the center dot, and the bottom-left dot. The second line travels from the the bottom-left dot, through the middle-left dot, and through the top-right dot, then extends past the top-right dot. The third line starts where the second line extended, forming an angle as it passes through the top-middle dot and the middle-right dot. The third line then extends past the right-middle dot until it is even with the bottom of the grid. The fourth line starts where the third line extended, then passes through the bottom-right, bottom-middle, and bottom-left dots. The end result are four lines, three of which form a right triangle with corners extending beyond the three-by-three grid, with the remaining line bisecting the right angle of the triangle so that it passes through the middle and top-right dots.

Scene #4: Willem’s and Rachel’s alternative strategies

Meanwhile, Willem worked on the problem. As it happened, Willem loved puzzles of all kinds, and had ample experience with them. He had not, however, seen this particular problem. “It must be a trick,” he said to himself, because he knew from experience that problems posed in this way often were not what they first appeared to be. He mused to himself: “Think outside the box, they always tell you. . .” And that was just the hint he needed: he drew lines outside the box by making them longer than the matrix and soon came up with this solution:

a mirror image of Alicia's solution

When Rachel went to work, she took one look at the problem and knew the answer immediately: she had seen this problem before, though she could not remember where. She had also seen other drawing-related puzzles, and knew that their solution always depended on making the lines longer, shorter, or differently angled than first expected. After staring at the dots briefly, she drew a solution faster than Alicia or even Willem. Her solution looked exactly like Willem’s.

This story illustrates two common features of problem solving: the effect of degree of structure or constraint on problem solving, and the effect of mental obstacles to solving problems. The next sections discuss each of these features, and then looks at common techniques for solving problems.

The effect of constraints: well-structured versus ill-structured problems

Problems vary in how much information they provide for solving a problem, as well as in how many rules or procedures are needed for a solution. A well-structured problem provides much of the information needed and can in principle be solved using relatively few clearly understood rules. Classic examples are the word problems often taught in math lessons or classes: everything you need to know is contained within the stated problem and the solution procedures are relatively clear and precise. An ill-structured problem has the converse qualities: the information is not necessarily within the problem, solution procedures are potentially quite numerous, and a multiple solutions are likely (Voss, 2006). Extreme examples are problems like “How can the world achieve lasting peace?” or “How can teachers insure that students learn?”

By these definitions, the nine-dot problem is relatively well-structured—though not completely. Most of the information needed for a solution is provided in Scene #1: there are nine dots shown and instructions given to draw four lines. But not all necessary information was given: students needed to consider lines that were longer than implied in the original statement of the problem. Students had to “think outside the box,” as Willem said—in this case, literally.

When a problem is well-structured, so are its solution procedures likely to be as well. A well-defined procedure for solving a particular kind of problem is often called an algorithm ; examples are the procedures for multiplying or dividing two numbers or the instructions for using a computer (Leiserson, et al., 2001). Algorithms are only effective when a problem is very well-structured and there is no question about whether the algorithm is an appropriate choice for the problem. In that situation it pretty much guarantees a correct solution. They do not work well, however, with ill-structured problems, where they are ambiguities and questions about how to proceed or even about precisely what the problem is about. In those cases it is more effective to use heuristics , which are general strategies—“rules of thumb,” so to speak—that do not always work, but often do, or that provide at least partial solutions. When beginning research for a term paper, for example, a useful heuristic is to scan the library catalogue for titles that look relevant. There is no guarantee that this strategy will yield the books most needed for the paper, but the strategy works enough of the time to make it worth trying.

In the nine-dot problem, most students began in Scene #1 with a simple algorithm that can be stated like this: “Draw one line, then draw another, and another, and another.” Unfortunately this simple procedure did not produce a solution, so they had to find other strategies for a solution. Three alternatives are described in Scenes #3 (for Alicia) and 4 (for Willem and Rachel). Of these, Willem’s response resembled a heuristic the most: he knew from experience that a good general strategy that often worked for such problems was to suspect a deception or trick in how the problem was originally stated. So he set out to question what the teacher had meant by the word line , and came up with an acceptable solution as a result.

Common obstacles to solving problems

The example also illustrates two common problems that sometimes happen during problem solving. One of these is functional fixedness : a tendency to regard the functions of objects and ideas as fixed (German & Barrett, 2005). Over time, we get so used to one particular purpose for an object that we overlook other uses. We may think of a dictionary, for example, as necessarily something to verify spellings and definitions, but it also can function as a gift, a doorstop, or a footstool. For students working on the nine-dot matrix described in the last section, the notion of “drawing” a line was also initially fixed; they assumed it to be connecting dots but not extending lines beyond the dots. Functional fixedness sometimes is also called response set , the tendency for a person to frame or think about each problem in a series in the same way as the previous problem, even when doing so is not appropriate to later problems. In the example of the nine-dot matrix described above, students often tried one solution after another, but each solution was constrained by a set response not to extend any line beyond the matrix.

Functional fixedness and the response set are obstacles in problem representation , the way that a person understands and organizes information provided in a problem. If information is misunderstood or used inappropriately, then mistakes are likely—if indeed the problem can be solved at all. With the nine-dot matrix problem, for example, construing the instruction to draw four lines as meaning “draw four lines entirely within the matrix” means that the problem simply could not be solved. For another, consider this problem: “The number of water lilies on a lake doubles each day. Each water lily covers exactly one square foot. If it takes 100 days for the lilies to cover the lake exactly, how many days does it take for the lilies to cover exactly half of the lake?” If you think that the size of the lilies affects the solution to this problem, you have not represented the problem correctly. Information about lily size is not relevant to the solution, and only serves to distract from the truly crucial information, the fact that the lilies double their coverage each day. (The answer, incidentally, is that the lake is half covered in 99 days; can you think why?)

Strategies to assist problem solving

Just as there are cognitive obstacles to problem solving, there are also general strategies that help the process be successful, regardless of the specific content of a problem (Thagard, 2005). One helpful strategy is problem analysis —identifying the parts of the problem and working on each part separately. Analysis is especially useful when a problem is ill-structured. Consider this problem, for example: “Devise a plan to improve bicycle transportation in the city.” Solving this problem is easier if you identify its parts or component subproblems, such as (1) installing bicycle lanes on busy streets, (2) educating cyclists and motorists to ride safely, (3) fixing potholes on streets used by cyclists, and (4) revising traffic laws that interfere with cycling. Each separate subproblem is more manageable than the original, general problem. The solution of each subproblem contributes the solution of the whole, though of course is not equivalent to a whole solution.

Another helpful strategy is working backward from a final solution to the originally stated problem. This approach is especially helpful when a problem is well-structured but also has elements that are distracting or misleading when approached in a forward, normal direction. The water lily problem described above is a good example: starting with the day when all the lake is covered (Day 100), ask what day would it therefore be half covered (by the terms of the problem, it would have to be the day before, or Day 99). Working backward in this case encourages reframing the extra information in the problem (i. e. the size of each water lily) as merely distracting, not as crucial to a solution.

A third helpful strategy is analogical thinking —using knowledge or experiences with similar features or structures to help solve the problem at hand (Bassok, 2003). In devising a plan to improve bicycling in the city, for example, an analogy of cars with bicycles is helpful in thinking of solutions: improving conditions for both vehicles requires many of the same measures (improving the roadways, educating drivers). Even solving simpler, more basic problems is helped by considering analogies. A first grade student can partially decode unfamiliar printed words by analogy to words he or she has learned already. If the child cannot yet read the word screen , for example, he can note that part of this word looks similar to words he may already know, such as seen or green , and from this observation derive a clue about how to read the word screen . Teachers can assist this process, as you might expect, by suggesting reasonable, helpful analogies for students to consider.

Bassok, J. (2003). Analogical transfer in problem solving. In Davidson, J. & Sternberg, R. (Eds.). The psychology of problem solving. New York: Cambridge University Press.

German, T. & Barrett, H. (2005). Functional fixedness in a technologically sparse culture. Psychological Science, 16 (1), 1–5.

Leiserson, C., Rivest, R., Cormen, T., & Stein, C. (2001). Introduction to algorithms. Cambridge, MA: MIT Press.

Luchins, A. & Luchins, E. (1994). The water-jar experiment and Einstellung effects. Gestalt Theory: An International Interdisciplinary Journal, 16 (2), 101–121.

Mayer, R. & Wittrock, M. (2006). Problem-solving transfer. In D. Berliner & R. Calfee (Eds.), Handbook of Educational Psychology, pp. 47–62. Mahwah, NJ: Erlbaum.

Thagard, R. (2005). Mind: Introduction to Cognitive Science, 2nd edition. Cambridge, MA: MIT Press.

Voss, J. (2006). Toulmin’s model and the solving of ill-structured problems. Argumentation, 19 (3), 321–329.

  • Educational Psychology. Authored by : Kelvin Seifert and Rosemary Sutton. Located at : https://open.umn.edu/opentextbooks/BookDetail.aspx?bookId=153 . License : CC BY: Attribution
  • Free Resources
  • Project Ideas
  • Login/Register Remember Me Register

Activity Ideas for Teaching English as a Foreign Language

Backyard games for kids

10 Backyard Games to Keep Your Kid Active This Summer

Teaching Entrepreneurship to Child: Tips and Tactics for Parents and Educators

Teaching Entrepreneurship to Child: Tips and Tactics for Parents and Educators

Practical Classroom Management Tips for Teachers

Practical Classroom Management Tips for Teachers

problem solving example for students

Top 10 ways to use Canva in your Classroom

Comments are closed.

Privacy Policy

helpful professor logo

18 Problem-Based Learning Examples

problem-based learning examples and definition, explained below

Problem-based learning (PBL) is a student-centered teaching method where students are given the opportunity to solve open-ended real-world problems. The teacher provides limited guidance and is usually referred to as a “facilitator”.

The burden of responsibility for the majority of the work rests squarely on the shoulders of the students.

Problem-Based Learning Examples

  • Broad problem posing: A teacher writes the question on the board: “Are organic fertilizers better than commercial fertilizers?” The question is purposively broad and requires student teams to clarify the question before even beginning to address it.
  • Solving problems through inquiry: Problem-based learning has strong overlaps with inquiry based learning, where the teacher presents a problem and the students must develop a study to inquire about answers.
  • Divergent thinking problems: Students in the first grade have to create a way to communicate with another group without speaking if both are lost in a forest.
  • Product development: The professor of a Design course has student teams create product packaging that complies with rigorous environmental standards.
  • Real-life problem solving: Students in second grade are given the task of studying the causes of potholes and creating ways to fill them.  
  • Role playing a problem: IT majors play the role of government compliance officers and evaluate various social media apps regarding free-speech and privacy regulations.
  • Solving real-life mathematical problems: Fourth graders use math to estimate crop yields of a hypothetical farm and then represent the results graphically.
  • Multidisciplinary problem solving: Business majors work with students in a nutrition course to create a pizzeria franchise.
  • Authentic learning scenarios: Medical students are given a clinical scenario that includes the patient’s chart, X-rays and results of various tests. They work in groups to diagnosis the patient’s disease and design a treatment program.
  • Solving hypothetical problems: Anthropology students create a public holiday for an underserved class or people in a foreign country.
  • Solving social problems: Students in a Civil Engineering course have to design housing for the poor in an isolated region using only local materials.
  • Escape rooms: The popular trend of escape rooms can be seen as a form of problem-based learning. Learners must solve the problem of ‘how to escape’.
  • Solving a riddle: The teacher presents students with a riddle, which they must work together to solve. This may require the application of curriculum-based outcomes like using certain math equations.
  • Situated learning: Students work on problems in the workplace or ‘real life’ rather than in the classroom, helping them to see how the theory gets applied in a real world context.
  • Turning exams into challenges: Instead of using paper-based exams, the teacher poses a challenge and the students need to present a report on the solution to the challenge.
  • Creating an app: Students in a university programming class don’t just demonstrate their knowledge of programming; they have to create an app that solves a real-life problem.
  • Developing an environmental regeneration plan: Students identify problems with the current ecosystem and then create a plan to solve the problem. Next, they can actually put the plan into action and report on results.
  • Working on a social problem: Students are presented with a social problem that can be solved through policy. Students must come up with a social policy that maximizes benefits while also working through potential side-effects and collateral of an intervention.

Benefits of Problem Based Learning

There are numerous benefits of PBL for students. According to Nilson (2010), PBL promotes:

  • development of critical thinking skills
  • problem-solving abilities
  • communication skills
  • how to handle project management demands
  • oral and written communication
  • researching and information literacy
  • self-awareness
  • understanding of group dynamics
  • leadership and teamwork
  • self-directed learning

Case Studies

1. invasive species.

Students in environmental studies are given a problem-based assignment on an invasive species. The teacher provides a little early support as possible, simply instructing each group to identify the species and develop an action plan to mitigate its impact.

The students form work teams and conduct a brainstorming session on which invasive species exist in a nearby habitat. Then they examine the impact of the species in great detail, identifying the origin of the species, how it effects other plant and wildlife, human activities connected to the problem, and trajectories of consequences in the future.

Once that thorough analysis has occurred, students then begin exploring possible solutions. They have to construct a detailed plan of action and carefully consider the short and long-term effects of each step.

The plan should include government policy, educational programs, and scientific research programs that should be put in place to monitor their plan’s results.

2. Collaborative PBL: Home for the Handicapped

Real-world problems often require an interdisciplinary approach. That means professionals from different backgrounds and perspectives have to collaborate, which is sometimes easier said than done.

In this project, architecture and product design students have to work together to design a house suitable for the handicapped. This means that the floorplan must be easily navigated and that furniture and appliances have to be modified.

The project can be as demanding as the instructors require, from simply making the plans on paper, to actually constructing mock-ups of products and having them tested by affected individuals.

3. Cybersecurity

Issues related to cybersecurity as a result of globalization and technological dependence continue to escalate. Therefore, in addition to teaching future programmers about how to write gaming code, students also need to develop expertise in more serious issues.

Cybersecurity presents an opportunity for students to work in teams on a real-world issue that can have serious consequences. Students are assigned to develop a protocol to protect a nuclear reactor or financial depository.

The programs they design have to be able to handle a variety of potential threats, both internal and external. To make the assignment more realistic, the instructor will activate several programs designed to attack the organization the students are supposed to protect.

Not only do the students need to create programs that defend the organization, but they also must devise protocols to activate in case of a successful breach.

4. Design a Board Game

Students are eager to express their creativity and enjoy working independent of a lot of rules and restrictions. These characteristics are well-suited for PBL activities and result in greater student engagement and deep learning.

Recognizing these features of PBL has led to one teacher giving the students the task of designing their own board game. The facilitator/teacher leaves everything up to the students, and only supplies a set of dice.

The students then hold a class-wide brainstorming session on possible game themes. Once a list is generated, they divide up into teams based on common interests. The facilitator distributes the dice to each group and then steps aside.

The students then get to work on formulating the rules of the game and working out the process of how to play. Eventually they get to the point of being ready to construct a game prototype.

At the end, each team gets to play each other’s games and then engage in a reflection activity. Reflection can involve a worksheet or class discussion, as students consider their performance in the task and key learning outcomes they may have experienced.

5. Increasing Voter Registration

Voter turnout has been low in the U.S. for quite some time. For a democracy, this is not only a problem of people’s voices not being heard, but it can reflect feelings of disappointment in the political process as well.

To address these issues, students in a political science course must work together to understand the issues impacting low voter turnout and devise an action plan to address those factors.

The students start by researching the causal factors through a variety of methods. They might read the relevant literature on the subject, and/or conduct interviews and surveys involving non-voters.

By thoroughly understanding the issues, they can then formulate a plan to encourage voter turnout. That plan is completely up to them. It is important that the facilitator/course instructor provide as little intervention or assistance as possible.

Problem-based learning is a great way for students to learn. Instead of reading a textbook, writing term papers, or listening to hours of lectures, student take an active role in the learning process.

It starts with the instructor, referred to as a facilitator, simply presenting an open-ended problem in a real-world scenario. The students are then given an opportunity to work collaboratively to examine the problem and develop a solution.

Students benefit from this type of learning activity in numerous ways. They learn how to work with others, gain experience and insights into leadership and group dynamics, and develop critical thinking and problem-solving skills.

But perhaps the most significant benefit, is that students become more engaged and enthusiastic about the learning process.

Ali, S. S. (2019). Problem based learning: A student-centered approach. English language teaching , 12(5), 73-78.

Duch, B. J., Groh, S. E, & Allen, D. E. (Eds.). (2001). The power of problem-based learning . Sterling, VA: Stylus.

Hmelo-Silver, C.E., Eberbach, C. (2012). Learning theories and problem-based learning. In: Bridges, S., McGrath, C., Whitehill, T. (Eds.), Problem-based learning in clinical education (pp. 3-17). Innovation and Change in Professional Education, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2515-7_1

Malmia, W., et al. (2019). Problem-based learning as an effort to improve student learning outcomes. Int. J. Sci. Technol. Res, 8 (9), 1140-1143.

Moust, J., Bouhuijs, P., & Schmidt, H. (2021). Introduction to problem-based learning: A guide for students. London: Routledge.

Nilson, L. B. (2010).  Teaching at its best: A research-based resource for college instructors  (2nd ed.).  San Francisco, CA: Jossey-Bass. 

Wirkala, C., & Kuhn, D. (2011). Problem-based learning in K–12 education: Is it effective and how does it achieve its effects? American Educational Research Journal, 48 (5), 1157–1186. https://doi.org/10.3102/0002831211419491

Dave

Dave Cornell (PhD)

Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.

  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Positive Punishment Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Dissociation Examples (Psychology)
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Zone of Proximal Development Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ Perception Checking: 15 Examples and Definition

Chris

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

  • Chris Drew (PhD) #molongui-disabled-link 25 Positive Punishment Examples
  • Chris Drew (PhD) #molongui-disabled-link 25 Dissociation Examples (Psychology)
  • Chris Drew (PhD) #molongui-disabled-link 15 Zone of Proximal Development Examples
  • Chris Drew (PhD) #molongui-disabled-link Perception Checking: 15 Examples and Definition

1 thought on “18 Problem-Based Learning Examples”

' src=

Thanks. Most helpful.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

  • Our Mission

Problem-Solving in Elementary School

Elementary students practice problem-solving and self-questioning techniques to improve reading and social and emotional learning skills.

Three elementary students reading together in a library

In a school district in New Jersey, beginning in kindergarten each child is seen as a future problem solver with creative ideas that can help the world. Vince Caputo, superintendent of the Metuchen School District, explained that what drew him to the position was “a shared value for whole child education.”

Caputo’s first hire as superintendent was Rick Cohen, who works as both the district’s K–12 director of curriculum and principal of Moss Elementary School . Cohen is committed to integrating social and emotional learning (SEL) into academic curriculum and instruction by linking cognitive processes and guided self-talk.

Cohen’s first focus was kindergarten students. “I recommended Moss teachers teach just one problem-solving process to our 6-year-olds across all academic content areas and challenge students to use the same process for social problem-solving,” he explained.  

Reading and Social Problem-Solving

Moss Elementary classrooms use a specific process to develop problem-solving skills focused on tending to social and interpersonal relationships. The process also concentrates on building reading skills—specifically, decoding and comprehension.

Stop, Look, and Think.  Students define the problem. As they read, they look at the pictures and text for clues, searching for information and asking, “What is important and what is not?” Social problem-solving aspect: Students look for signs of feelings in others’ faces, postures, and tone of voice.

Gather Information . Next, students explore what feelings they’re having and what feelings others may be having. As they read, they look at the beginning sound of a word and ask, “What else sounds like this?” Social problem-solving aspect: Students reflect on questions such as, “What word or words describe the feeling you see or hear in others? What word describes your feeling? How do you know, and how sure are you?”

Brainstorming . Then students seek different solutions. As they read, they wonder, “Does it sound right? Does it make sense? How else could it sound to make more sense? What other sounds do those letters make?” Social problem-solving aspect: Students reflect on questions such as, “How can you solve the problem or make the situation better? What else can you think of? What else can you try? What other ideas do you have?”  

Pick the Best One.  Next, students evaluate the solution. While reading, they scan for smaller words they know within larger, more difficult words. They read the difficult words the way they think they sound while asking, “Will it make sense to other people?” Social problem-solving aspect: Students reflect on prompts such as, “Pick the solution that you think will be best to solve the problem. Ask yourself, ‘What will happen if I do this—for me, and for others involved?’”

Go . In the next step, students make a plan and act. They do this by rereading the text. Social problem-solving aspect: Students are asked to try out what they will say and how they will say it. They’re asked to pick a good time to do this, when they’re willing to try it.

Check . Finally, students reflect and revise. After they have read, they ponder what exactly was challenging about what they read and, based on this, decide what to do next. Social problem-solving aspect: Students reflect on questions such as, “How did it work out? Did you solve the problem? How did others feel about what happened? What did you learn? What would you do if the same thing happened again?”

You can watch the Moss Elementary Problem Solvers video and see aspects of this process in action.

The Process of Self-Questioning 

Moss Elementary students and other students in the district are also taught structured self-questioning. Cohen notes, “We realized that many of our elementary students would struggle to generalize the same steps and thinking skills they previously used to figure out an unknown word in a text or resolve social conflicts to think through complex inquiries and research projects.” The solution? Teach students how to self-question, knowing they can also apply this effective strategy across contexts. The self-questioning process students use looks like this:

Stop and Think. “What’s the question?”

Gather Information. “How do I gather information? What are different sides of the issue?”

Brainstorm and Choose. “How do I select, organize, and choose the information? What are some ways to solve the problem? What’s the best choice?”

Plan and Try. “What does the plan look like? When and how can it happen? Who needs to be involved?”

Check & Revise. “How can I present the information? What did I do well? How can I improve?”

The Benefits

Since using the problem-solving and self-questioning processes, the students at Moss Elementary have had growth in their scores for the last two years on the fifth-grade English language arts PARCC tests . However, as Cohen shares, “More important than preparing our students for the tests on state standards, there is evidence that we are also preparing them for the tests of life.”

8 Chapter 6 Supporting Student Problem-Solving

Across content areas, the standards address problem-solving in the form of being able to improvise, decide, inquire, and research. In fact, math and science standards are premised almost completely on problem-solving and inquiry. According to the literature, however, problem-solving and inquiry are often overlooked or addressed only superficially in classrooms, and in some subject areas, are not attended to at all.

OVERVIEW OF PROBLEM-SOLVING AND INQUIRY IN K–12 CLASSROOMS

In keeping with a learning focus, this chapter first discusses problem-solving and inquiry to provide a basis from which teachers can provide support for these goals with technology.

What Is Problem-solving?

Whereas production is a process that focuses on an end-product, problem-solving is a process that centers on a problem. Students apply critical and creative thinking skills to prior knowledge during the problem-solving process. The end result of problem-solving is typically some kind of decision, in other words, choosing a solution and then evaluating it.

There are two general kinds of problems. Close-ended problems are those with known solutions to which students can apply a process similar to one that they have already used. For example, if a student understands the single-digit process in adding 2 plus 2 to make 4, she most likely will be able to solve a problem that asks her to add 1 plus 1. Open-ended or loosely structured problems, on the other hand, are those with many or unknown solutions rather than one correct answer. These types of problems require the ability to apply a variety of strategies and knowledge to finding a solution. For example, an open-ended problem statement might read:

A politician has just discovered information showing that a statement he made to the public earlier in the week was incorrect. If he corrects himself he will look like a fool, but if he doesn’t and someone finds out the truth, he will be in trouble. What should he do or say about this?

Obviously, there is no simple answer to this question, and there is a lot of information to consider.

Many textbooks, teachers, and tests present or ask only for the results of problem-solving and not the whole process that students must go through in thinking about how to arrive at a viable solution. As a result, according to the literature, most people use their personal understandings to try to solve open-ended problems, but the bias of limited experience makes it hard for people to understand the trade-offs or contradictions that these problems present. To solve such problems, students need to be able to use both problem-solving skills and an effective inquiry process.

What Is Inquiry?

Inquiry in education is also sometimes called research, investigation, or guided discovery. During inquiry, students ask questions and then search for answers to those questions. In doing so, they come to new understandings in content and language. Although inquiry is an instructional strategy in itself, it is also a central component of problem-solving when students apply their new understandings to the problem at hand. Each question that the problem raises must be addressed by thorough and systematic investigation to arrive at a well-grounded solution. Therefore, the term “problem-solving” can be considered to include inquiry.

For students to understand both the question and ways of looking at the answer(s), resources such as historical accounts, literature, art, and eyewitness experiences must be used. In addition, each resource must be examined in light of what each different type of material contributes to the solution. Critical literacy, or reading beyond the text, then, is a fundamental aspect of inquiry and so of problem-solving. Search for critical literacy resources by using “critical literacy” and your grade level, and be sure to look at the tools provided in this text’s Teacher Toolbox.

What Is Problem-Based Learning?

Problem-based learning (PBL) is a teaching approach that combines critical thinking, problem- solving skills, and inquiry as students explore real-world problems. It is based on unstructured, complex, and authentic problems that are often presented as part of a project. PBL addresses many of the learning goals presented in this text and across the standards, including communication, creativity, and often production.

Research is being conducted in every area from business to education to see how we solve problems, what guides us, what information we have and use during problem-solving, and how we can become more efficient problem solvers. There are competing theories of how people learn to and do solve problems, and much more research needs to be done. However, we do know several things. First, problem-solving can depend on the context, the participants, and the stakeholders. In addition, studies show that content appears to be covered better by “traditional” instruction, but students retain better after problem-solving. PBL has been found effective at teaching content and problem-solving, and the use of technology can make those gains even higher (Chauhan, 2017). Research clearly shows that the more parts of a problem there are, the less successful students will be at solving it. However, effective scaffolding can help to support students’ problem-solving and overcomes some of the potential issues with it (Belland, Walker, Kim, & Lefler, 2017).

The PBL literature points out that both content knowledge and problem-solving skills are necessary to arrive at solutions, but individual differences among students affect their success, too. For example, field-independent students in general do better than field-dependent students in tasks. In addition, students from some cultures will not be familiar with this kind of learning, and others may not have the language to work with it. Teachers must consider all of these ideas and challenges in supporting student problem-solving.

Characteristics of effective technology-enhanced problem-based learning tasks

PBL tasks share many of the same characteristics of other tasks in this book, but some are specific to PBL. Generally, PBL tasks:

Involve learners in gaining and organizing knowledge of content. Inspiration and other concept-mapping tools like the app Popplet are useful for this.

Help learners link school activities to life, providing the “why” for doing the activity.

Give students control of their learning.

Have built-in and just-in-time scaffolding to help students. Tutorials are available all over the Web for content, language, and technology help.

Are fun and interesting.

Contain specific objectives for students to meet along the way to a larger goal.

Have guidance for the use of tools, especially computer technologies.

Include communication and collaboration (described in chapter 3).

Emphasize the process and the content.

Are central to the curriculum, not peripheral or time fillers.

Lead to additional content learning.

Have a measurable, although not necessarily correct, outcome.

More specifically, PBL tasks:

Use a problem that “appeals to human desire for resolution/stasis/harmony” and “sets up need for and context of learning which follows” (IMSA, 2005, p. 2).

Help students understand the range of problem-solving mechanisms available.

Focus on the merits of the question, the concepts involved, and student research plans.

Provide opportunities for students to examine the process of getting the answer (for example, looking back at the arguments).

Lead to additional “transfer” problems that use the knowledge gained in a different context.

Not every task necessarily exhibits all of these characteristics completely, but these lists can serve as guidelines for creating and evaluating tasks.

Student benefits of problem-solving

There are many potential benefits of using PBL in classrooms at all levels; however, the benefits depend on how well this strategy is employed. With effective PBL, students can become more engaged in their learning and empowered to become more autonomous in classroom work. This, in turn, may lead to improved attitudes about the classroom and thus to other gains such as increased abilities for social-problem solving. Students can gain a deeper understanding of concepts, acquire skills necessary in the real world, and transfer skills to become independent and self-directed learners and thinkers outside of school. For example, when students are encouraged to practice using problem-solving skills across a variety of situations, they gain experience in discovering not only different methods but which method to apply to what kind of problem. Furthermore, students can become more confident when their self-esteem and grade does not depend only on the specific answer that the teacher wants. In addition, during the problem-solving process students can develop better critical and creative thinking skills.

Students can also develop better language skills (both knowledge and communication) through problems that require a high level of interaction with others (Verga & Kotz, 2013). This is important for all learners, but especially for ELLs and others who do not have grade-level language skills. For students who may not understand the language or content or a specific question, the focus on process gives them more opportunities to access information and express their knowledge.

The problem-solving process

The use of PBL requires different processes for students and teachers. The teacher’s process involves careful planning. There are many ways for this to happen, but a general outline that can be adapted includes the following steps:

After students bring up a question, put it in the greater context of a problem to solve (using the format of an essential question; see chapter 4) and decide what the outcome should be–a recommendation, a summary, a process?

Develop objectives that represent both the goal and the specific content, language, and skills toward which students will work.

List background information and possible materials and content that will need to be addressed. Get access to materials and tools and prepare resource lists if necessary.

Write the specific problem. Make sure students know what their role is and what they are expected to do. Then go back and check that the problem and task meet the objectives and characteristics of effective PBL and the relevant standards. Reevaluate materials and tools.

Develop scaffolds that will be needed.

Evaluate and prepare to meet individual students’ needs for language, assistive tools, content review, and thinking skills and strategies

Present the problem to students, assess their understanding, and provide appropriate feedback as they plan and carry out their process.

The student process focuses more on the specific problem-solving task. PBL sources list different terms to describe each step, but the process is more or less the same. Students:

Define and frame the problem: Describe it, recognize what is being asked for, look at it from all sides, and say why they need to solve it.

Plan: Present prior knowledge that affects the problem, decide what further information and concepts are needed, and map what resources will be consulted and why.

Inquire: Gather and analyze the data, build and test hypotheses.

Look back: Review and evaluate the process and content. Ask “What do I understand from this result? What does it tell me?”

problem solving example for students

These steps are summarized in Figure 6.1.

Problem-solving strategies that teachers can demonstrate, model, and teach directly include trial and error, process of elimination, making a model, using a formula, acting out the problem, using graphics or drawing the problem, discovering patterns, and simplifying the problem (e.g., rewording, changing the setting, dividing it into simpler tasks). Even the popular KWL (Know, Want to Know, Learned) chart can help students frame questions. A KWL for a project asking whether a superstore should be built in the community might look like the one in Figure 6.2. Find out more about these strategies at http://literacy.kent.edu/eureka/strategies/discuss-prob.html .

Teaching problem-solving in groups involves the use of planning and other technologies. Using these tools, students post, discuss, and reflect on their joint problem-solving process using visual cues that they create. This helps students focus on both their process and the content. Throughout the teacher and student processes, participants should continue to examine cultural, emotional, intellectual, and other possible barriers to problem-solving.

problem solving example for students

Teachers and Problem-solving

The teacher’s role in PBL

During the teacher’s process of creating the problem context, the teacher must consider what levels of authenticity, complexity, uncertainty, and self-direction students can access and work within. Gordon (1998) broke loosely structured problems into three general types with increasing levels of these aspects. Still in use today, these are:

Academic challenges. An academic challenge is student work structured as a problem arising directly from an area of study. It is used primarily to promote greater understanding of selected subject matter. The academic challenge is crafted by transforming existing curricular material into a problem format.

Scenario challenges. These challenges cast students in real-life roles and ask them to perform these roles in the context of a reality-based or fictional scenario.

Real-life problems. These are actual problems in need of real solutions by real people or organizations. They involve students directly and deeply in the exploration of an area of study. And the solutions have the potential for actual implementation at the classroom, school, community, regional, national, or global level. (p. 3)

To demonstrate the application of this simple categorization, the learning activities presented later in this chapter follow this outline.

As discussed in other chapters in this book, during student work the teacher’s role can vary from director to shepherd, but when the teacher is a co-learner rather than a taskmaster, learners become experts. An often-used term for the teacher’s role in the literature about problem-solving is “coach.” As a coach, the teacher works to facilitate thinking skills and process, including working out group dynamics, keeping students on task and making sure they are participating, assessing their progress and process, and adjusting levels of challenge as students’ needs change. Teachers can provide hints and resources and work on a gradual release of responsibility to learners.

Challenges for teachers

For many teachers, the roles suggested above are easier said than done. To use a PBL approach, teachers must break out of the content-dissemination mode and help their students to do the same. Even when this happens, in many classrooms students have been trained to think that problem-solving is getting the one right answer, and it takes time, practice, and patience for them to understand otherwise. Some teachers feel that they are obligated to cover too much in the curriculum to spend time on PBL or that using real-world problems does not mesh well with the content, materials, and context of the classroom. However, twenty years ago Gordon (1998) noted, “whether it’s a relatively simple matter of deciding what to eat for breakfast or a more complex one such as figuring out how to reduce pollution in one’s community, in life we make decisions and do things that have concrete results. Very few of us do worksheets” (p. 2). He adds that not every aspect of students’ schoolwork needs to be real, but that connections should be made from the classroom to the real world. Educators around the world are still working toward making school more like life.

In addition, many standardized district and statewide tests do not measure process, so students do not want to spend time on it. However, teachers can overcome this thinking by demonstrating to students the ways in which they need to solve problems every day and how these strategies may transfer to testing situations.

Furthermore, PBL tasks and projects may take longer to develop and assess than traditional instruction. However, teachers can start slowly by helping students practice PBL in controlled environments with structure, then gradually release them to working independently. The guidelines in this chapter address some of these challenges.

GUIDELINES FOR TECHNOLOGY-SUPPORTED PROBLEM-SOLVING

Obviously, PBL is more than simply giving students a problem and asking them to solve it. The following guidelines describe other issues in PBL.

Designing Problem-Solving Opportunities

The guidelines described here can assist students in developing a PBL opportunity.

Guideline #1: Integrate reading and writing. Although an important part of solving problems, discussion alone is not enough for students to develop and practice problem-solving skills. Effective problem-solving and inquiry require students to think clearly and deeply about content, language, and process. Reading and writing tasks can encourage students to take time to think about these issues and to contextualize their thinking practice. They can also provide vehicles for teachers to understand student progress and to provide concrete feedback. Students who have strengths in these areas will be encouraged and those who need help can learn from their stronger partners, just as those who have strengths in speaking can model for and assist their peers during discussion. Even in courses that do not stress reading and writing, integrating these skills into tasks and projects can promote successful learning.

Guideline #2: Avoid plagiarism. The Internet is a great resource for student inquiry and problem-solving. However, when students read and write using Internet resources, they often cut and paste directly from the source. Sometimes this is an innocent mistake; students may be uneducated about the use of resources, perhaps they come from a culture where the concept of ownership is completely different than in the United States, or maybe their language skills are weak and they want to be able to express themselves better. In either case, two strategies can help avoid plagiarism: 1) The teacher can teach directly about plagiarism and copyright issues. Strategies including helping students learn how to cite sources, paraphrase, summarize, and restate; 2) The teacher can be as familiar as possible with the resources that students will use and check for plagiarism when it is suspected. To do so, the teacher can enter a sentence or phrase into any Web browser with quote marks around it and if the entry is exact, the original source will come up in the browser window. Essay checkers such as Turnitin (http://turnitin.com/) are also available online that will check a passage or an entire essay.

Guideline #3: Do not do what students can do. Teaching, and particularly teaching with technology, is often a difficult job, due in part to the time it takes teachers to prepare effective learning experiences. Planning, developing, directing, and assessing do not have to be solely the teacher’s domain, however. Students should take on many of these responsibilities, and at the same time gain in problem-solving, language, content, critical thinking, creativity, and other crucial skills. Teachers do not always need to click the mouse, write on the whiteboard, decide

criteria for a rubric, develop questions, decorate the classroom, or perform many classroom and learning tasks. Students can take ownership and feel responsibility. Although it is often difficult for teachers to give up some of their power, the benefits of having more time and shared responsibility can be transformational. Teachers can train themselves to ask, “Is this something students can do?”

Guideline #4: Make mistakes okay. Problem-solving often involves coming to dead ends, having to revisit data and reformulate ideas, and working with uncertainty. For students used to striving for correct answers and looking to the teacher as a final authority, the messiness of problem-solving can be disconcerting, frustrating, and even scary. Teachers can create environments of acceptance where reasoned, even if wrong, answers are recognized, acknowledged, and given appropriate feedback by the teacher and peers. Teachers already know that students come to the task with a variety of beliefs and information. In working with students’ prior knowledge, they can model how to be supportive of students’ faulty ideas and suggestions. They can also ask positive questions to get the students thinking about what they still need to know and how they can come to know it. They can both encourage and directly teach students to be supportive of mistakes and trials as part of their team-building and leadership skills.

In addition, teachers may need to help students to understand that even a well-reasoned argument or answer can meet with opposition. Students must not feel that they have made a bad decision just because everyone else, particularly the teacher, does not agree. Teachers can model for students that they are part of the learning process and they are impartial as to the outcome when the student’s position has been well defended.

PROBLEM-SOLVING AND INQUIRY TECHNOLOGIES

As with all the goals in this book, the focus of technology in problem-solving is not on the technology itself but on the learning experiences that the technology affords. Different tools exist to support different parts of the process. Some are as simple as handouts that students can print and complete, others as complex as modeling and visualization software. Many software tools that support problem-solving are made for experts in the field and are relatively difficult to learn and use. Examples of these more complicated programs include many types of computer-aided design software, advanced authoring tools, and complex expert systems. In the past there were few software tools for K–12 students that addressed the problem-solving process directly and completely, but more apps are being created all the time that do so. See the Teacher Tools for this text for examples.

Simple inquiry tools that help students perform their investigations during PBL are much more prevalent. The standard word processor, database, concept mapping/graphics and spreadsheet software can all assist students in answering questions and organizing and presenting data, but there are other tools more specifically designed to support inquiry. Software programs that can be used within the PBL framework are mentioned in other chapters in this text. These programs, such as the Tom Snyder Productions/Scholastic programs mentioned in chapter 2 address the overlapping goals of collaboration, production, critical thinking, creativity, and problem-solving. Interestingly, even video games might be used as problem-solving tools. Many of these games require users to puzzle out directions, to find missing artifacts, or to follow clues that are increasingly difficult to find and understand. One common tool with which students at all levels might be familiar is Minecraft (Mojang; https://minecraft.net/en-us/). The Internet has as many resources as teachers might need to use Minecraft across the disciplines to teach whole units and even gamify the classroom.

The following section presents brief descriptions of tools that can support the PBL process. The examples are divided into stand-alone tools that can be used on one or more desktops and Web-based tools.

Stand-Alone Tools

Example 1: Fizz and Martina’s Math Adventures (Tom Snyder Productions/Scholastic)

Students help Fizz and Martina, animated characters in this software, to solve problems by figuring out which data is relevant, performing appropriate calculations, and presenting their solutions. The five titles in this series are perfect for a one-computer classroom. Each software package combines computer-based video, easy navigation, and handouts and other resources as scaffolds. This software is useful in classrooms with ELLs because of the combination of visual, audio, and text-based reinforcement of input. It is also accessible to students with physical disabilities because it can run on one computer; students do not have to actually perform the mouse clicks to run the software themselves.

This software is much more than math. It includes a lot of language, focuses on cooperation and collaboration in teams, and promotes critical thinking as part of problem-solving. Equally important, it helps students to communicate mathematical ideas orally and in writing. See Figure 6.6 for the “getting started” screen from Fizz and Martina to view some of the choices that teachers and students have in using this package.

Example 2: I Spy Treasure Hunt, I Spy School Days, I Spy Spooky Mansion (Scholastic)

The language in these fun simulations consists of isolated, discrete words and phrases, making these programs useful for word study but not for overall concept learning. School Days, for example, focuses on both objects and words related to school. However, students work on extrapolation, trial and error, process of elimination, and other problem-solving strategies. It is difficult to get students away from the computer once they start working on any of the simulations in this series. Each software package has several separate hunts with a large number of riddles that, when solved, allow the user to put together a map or other clues to find the surprise at the end. Some of the riddles involve simply finding an item on the screen, but others require more thought such as figuring out an alternative representation for the item sought or using a process of elimination to figure out where to find it. All of the riddles are presented in both text and audio and can be repeated as many times as the student requires, making it easier for language learners, less literate students, and students with varied learning preferences to access the information. Younger students can also work with older students or an aide for close support so that students are focused. Free versions of the commercial software and similar types of programs such as escape rooms (e.g., escapes at 365 Escape {http://www.365escape.com/Room-Escape-Games.html] and www.primarygames.com) can be found across the Web.

There are many more software packages like these that can be part of a PBL task. See the Teacher Toolbox for ideas.

Example 3: Science Court (Tom Snyder Productions/Scholastic)

Twelve different titles in this series present humorous court cases that students must help to resolve. Whether the focus is on the water cycle, soil, or gravity, students use animated computer-based video, hands-on science activities, and group work to learn and practice science and the inquiry process. As students work toward solving the case, they examine not only the facts but also their reasoning processes. Like Fizz and Martina and much of TSP’s software, Science Court uses multimedia and can be used in the one-computer classroom (as described in chapter 2), making it accessible to diverse students.

Example 4: Geographic Information Systems (GIS)

The use of GIS to track threatened species, map hazardous waste or wetlands in the community, or propose solutions for other environmental problems supports student “spatial literacy and geographic competence” (Baker, 2005, n.p.), in addition to experimental and inquiry techniques, understanding of scale and resolution, and verification skills. Popular desktop-based GIS that students can access include Geodesy and ArcVoyager; many Web-based versions also exist. A GIS is not necessarily an easy tool to learn or use, but it can lead to real-world involvement and language, concept, and thinking skills development.

Web-Based Tools

Many technology-enhanced lessons and tools on the Web come premade. In other words, they were created for someone else’s students and context. Teachers must adapt these tools to fit their own teaching styles, student needs, goals, resources, and contextual variables. Teachers must learn to modify these resources to make them their own and help them to work effectively in their unique teaching situation. With this in mind, teachers can take advantage of the great ideas in the Web-based tools described below.

Example 1: WebQuest

A WebQuest is a Web-based inquiry activity that is highly structured in a preset format. Most teachers are aware of WebQuests—a Web search finds them mentioned in every state, subject area, and grade level, and they are popular topics at conferences and workshops. Created by Bernie Dodge and Tom March in 1995 (see http://webquest.org/), this activity has proliferated wildly.

Each WebQuest has six parts. The Quest starts with an introduction to excite student interest. The task description then explains to students the purpose of the Quest and what the outcome will be. Next, the process includes clear steps and the scaffolds, including resources, that students will need to accomplish the steps. The evaluation section provides rubrics and assessment guidelines, and the conclusion section provides closure. Finally, the teacher section includes hints and tips for other teachers to use the WebQuest.

Advantages to using WebQuests as inquiry and problem-solving tools include:

Students are focused on a specific topic and content and have a great deal of scaffolding.

Students focus on using information rather than looking for it, because resources are preselected.

Students use collaboration, critical thinking, and other important skills to complete their Quest.

Teachers across the United States have reported significant successes for students participating in Quests. However, because Quests can be created and posted by anyone, many found on the Web do not meet standards for inquiry and do not allow students autonomy to work in authentic settings and to solve problems. Teachers who want to use a WebQuest to meet specific goals should examine carefully both the content and the process of the Quest to make sure that they offer real problems as discussed in this chapter. A matrix of wonderful Quests that have been evaluated as outstanding by experts is available on the site.

Although very popular, WebQuests are also very structured. This is fine for students who have not moved to more open-ended problems, but to support a higher level of student thinking, independence, and concept learning, teachers can have students work in teams on Web Inquiry Projects ( http://webinquiry.org/ ).

Example 2: Virtual Field Trips

Virtual field trips are great for concept learning, especially for students who need extra support from photos, text, animation, video, and audio. Content for field trips includes virtual walks through museums, underwater explorations, house tours, and much more (see online field trips suggested by Steele-Carlin [2014] at http://www.educationworld.com/a_tech/tech/tech071.shtml ). However, the format of virtual field trips ranges from simple postcard-like displays to interactive video simulations, and teachers must review the sites before using them to make sure that they meet needs and goals.

With a virtual reality headset (now available for sale cheaply even at major department stores), teachers and students can go on Google Expeditions ( https://edu.google.com/expeditions/ ), 3D immersive field trips from Nearpod ( http://nearpod.com ), and even create their using resources from Larry Ferlazzo’s “Best Resources for Finding and Creating Virtual Field Trips” at http://larryferlazzo.edublogs.org/2009/08/11/the-best-resources-for-finding-and-creating-virtual-field-trips/.

Example 3: Raw Data Sites

Raw data sites abound on the Web, from the U.S. Census to the National Climatic Data Center, from databases full of language data to the Library of Congress. These sites can be used for content learning and other learning goals. Some amazing sites can be found where students can collect their own data. These include sites like John Walker’s (2003) Your Sky (www.fourmilab.to/yoursky) and Water on the Web (2005, waterontheweb.org). When working with raw data students have to draw their own conclusions based on evidence. This is another important problem-solving skill. Note that teachers must supervise and verify that data being entered for students across the world is accurate or

Example 4: Filamentality

Filamentality (https://keithstanger.com/filamentality.html) presents an open-ended problem with a lot of scaffolding. Students and/or teachers start with a goal and then create a Web site in one of five formats that range in level of inquiry and problem-solving from treasure hunts to WebQuests. The site provides lots of help and hints for those who need it, including “Mentality Tips” to help accomplish goals. It is free and easy to use, making it accessible to any teacher (or student) with an Internet connection.

Example 5: Problem Sites

Many education sites offer opportunities for students to solve problems. Some focus on language (e.g., why do we say “when pigs fly”?) or global history (e.g., what’s the real story behind Tut’s tomb?); see, for example, the resources and questions in The Ultimate STEM Guide for Students at http://www.mastersindatascience.org/blog/the-ultimate-stem-guide-for-kids-239-cool-sites-about-science-technology-engineering-and-math/. These problems range in level from very structured, academic problems to real-world unsolved mysteries.

The NASA SciFiles present problems in a format similar to WebQuests at https://knowitall.org/series/nasa-scifiles. In other parts of the Web site there are video cases, quizzes, and tools for problem-solving.

There is an amazing number of tools, both stand-alone and Web-based, to support problem-solving and inquiry, but no tool can provide all the features that meet the needs of all students. Most important in tool choice is that it meets the language, content, and skills goals of the project and students and that there is a caring and supportive teacher guiding the students in their choice and use of the tool.

Teacher Tools

There are many Web sites addressed specifically to teachers who are concerned that they are not familiar enough with PBL or that they do not have the tools to implement this instructional strategy. For example, from Now On at http://www.fno.org/ toolbox.html provides specific suggestions for how to integrate technology and inquiry. Search “problem-solving” on the amazing Edutopia site ( https://www.edutopia.org/ ) for ideas, guidelines, examples, and more.

LEARNING ACTIVITIES: PROBLEM-SOLVING AND INQUIRY

In addition to using the tools described in the previous section to teach problem-solving and inquiry, teachers can develop their own problems according to the guidelines throughout this chapter. Gordon’s (1998) scheme of problem-solving levels (described previously)—academic, scenario, and real life—is a simple and useful one. Teachers can refer to it to make sure that they are providing appropriate structure and guidance and helping students become independent thinkers and learners. This section uses Gordon’s levels to demonstrate the variety of problem-solving and inquiry activities in which students can participate. Each example is presented with the question/problem to be answered or solved, a suggestion of a process that students might follow, and some of the possible electronic tools that might help students to solve the problem.

Academic problems

Example 1: What Will Harry Do? (Literature)

Problem: At the end of the chapter, Harry Potter is faced with a decision to make. What will he do?

Process: Discuss the choices and consequences. Choose the most likely, based on past experience and an understanding of the story line. Make a short video to present the solution. Test it against Harry’s decision and evaluate both the proposed solution and the real one.

Tools: Video camera and video editing software.

Example 2: Treasure Hunt (History)

Problem: Students need resources to learn about the Civil War.

Process: Teacher provides a set of 10 questions to find specific resources online.

Tools: Web browser.

Example 3: Problem of the Week (Math)

Problem: Students should solve the math problem of the week.

Process: Students simplify the problem, write out their solution, post it to the site for feedback, then revise as necessary.

Tools: Current problems from the Math Forum@Drexel, http://mathforum.org/pow/

Example 1: World’s Best Problem Solver

Problem: You are a member of a committee that is going to give a prestigious international award for the world’s best problem-solver. You must nominate someone and defend your position to the committee, as the other committee members must do.

Process: Consult and list possible nominees. Use the process of elimination to determine possible nominees. Research the nominees using several different resources. Weigh the evidence and make a choice. Prepare a statement and support.

Tools: Biography.com has over 25,000 biographies, and Infoplease (infoplease.com) and the Biographical Dictionary (http://www.s9.com/) provide biographies divided into categories for easy searching.

Example 2: Curator

Problem: Students are a committee of curators deciding what to hang in a new community art center. They have access to any painting in the world but can only hang 15 pieces in their preset space. Their goals are to enrich art appreciation in the community, make a name for their museum, and make money.

Process: Students frame the problem, research and review art from around the world, consider characteristics of the community and other relevant factors, choose their pieces, and lay them out for presentation to the community.

Tools: Art museum Web sites, books, and field trips for research and painting clips; computer-aided design, graphics, or word processing software to lay out the gallery for viewing.

Example 3: A New National Anthem

Problem: Congress has decided that the national anthem is too difficult to remember and sing and wants to adopt a new, easier song before the next Congress convenes. They want input from musicians across the United States. Students play the roles of musicians of all types.

Process: Students define the problem (e.g., is it that “The Star-Spangled Banner” is too difficult or that Congress needs to be convinced that it is not?). They either research and choose new songs or research and defend the current national anthem. They prepare presentations for members of Congress.

Tools: Music sites and software, information sites on the national anthem.

Real-life problems

Example 1: Racism in School

Problem: There have been several incidents in our school recently that seem to have been racially motivated. The principal is asking students to consider how to make our school a safe learning environment for all students.

Process: Determine what is being asked—the principal wants help. Explore the incidents and related issues. Weigh the pros and cons of different solutions. Prepare solutions to present to the principal.

Tools: Web sites and other resources about racism and solutions, graphic organizers to organize the information, word processor or presentation software for results. Find excellent free tools for teachers and students at the Southern Poverty Law Center’s Teaching Tolerance Web site at www.tolerance.org.

Example 2: Homelessness vs. Education

Problem: The state legislature is asking for public input on the next budget. Because of a projected deficit, political leaders are deciding which social programs, including education and funding for the homeless, should be cut and to what extent. They are interested in hearing about the effects of these programs on participants and on where cuts could most effectively be made.

Process: Decide what the question is (e.g., how to deal with the deficit? How to cut education or funding for the homeless? Which programs are more important? Something else?). Perform a cost-benefit analysis using state data. Collect other data by interviewing and researching. Propose and weigh different solution schemes and propose a suggestion. Use feedback to improve or revise.

Tools: Spreadsheet for calculations, word processor for written solution, various Web sites and databases for costs, electronic discussion list or email for interviews.

Example 3: Cleaning Up

Problem: Visitors and residents in our town have been complaining about the smell from the university’s experimental cattle farms drifting across the highway to restaurants and stores in the shopping center across the street. They claim that it makes both eating and shopping unpleasant and that something must be done.

Process: Conduct onsite interviews and investigation. Determine the source of the odor. Measure times and places where the odor is discernible. Test a variety of solutions. Choose the most effective solution and write a proposal supported by a poster for evidence.

Tools: Online and offline sources of information on cows, farming, odor; database to organize and record data; word processing and presentation software for describing the solution.

These activities can all be adapted and different tools and processes used. As stated previously, the focus must be both on the content to be learned and the skills to be practiced and acquired. More problem-solving activity suggestions and examples can be found at site at http://www.2learn.ca/.

ASSESSING LEARNER PROBLEM-SOLVING AND INQUIRY

Many of the assessments described in other chapters of this text, for example, rubrics, performance assessments, observation, and student self-reflection, can also be employed to assess problem-solving and inquiry. Most experts on problem-solving and inquiry agree that schools need to get away from testing that does not involve showing process or allowing students to problem-solve; rather, teachers should evaluate problem-solving tasks as if they were someone in the real-world context of the problem. For example, if students are studying an environmental issue, teachers can evaluate their work throughout the project from the standpoint of someone in the field, being careful that their own biases do not cloud their judgment on controversial issues. Rubrics, multiple-choice tests, and other assessment tools mentioned in other chapters of this text can account for the multiple outcomes that are possible in content, language, and skills learning. These resources can be used as models for assessing problem-solving skills in a variety of tasks. Find hundreds of problem-solving rubrics by searching the Web for “problem-solving rubrics” or check Pinterest for teacher-created rubrics.

In addition to the techniques mentioned above, many teachers suggest keeping a weekly problem-solving notebook (also known as a math journal or science journal), in which students record problem solutions, strategies they used, similarities with other problems, extensions of the problem, and an investigation of one or more of the extensions. Using this notebook to assess students’ location and progress in problem-solving could be very effective, and it could even be convenient if learners can keep them online as a blog or in a share cloud space.

FROM THE CLASSROOM

Research and Plagiarism

We’ve been working on summaries all year and the idea that copying word for word is plagiarism. When they come to me (sixth grade) they continue to struggle with putting things in their own words so [Microsoft Encarta] Researcher not only provides a visual (a reference in APA format) that this is someone else’s work, but allows me to see the information they used to create their report as Researcher is an electronic filing system. It’s as if students were printing out the information and keeping it in a file that they will use to create their report. But instead of having them print everything as they go to each individual site they can copy and paste until later. When they finish their research they come back to their file, decide what information they want to use, and can print it out all at once. This has made it easier for me because the students turn this in with their report. So, I would say it not only allows students to learn goals of summarizing, interpreting, or synthesizing, it helps me to address them in greater depth and it’s easier on me! (April, middle school teacher)

I evaluated a WebQuest for middle elementary (third–fourth grades), although it seems a little complicated for that age group. The quest divides students into groups and each person in the group is given a role to play (a botanist, museum curator, ethnobotanist, etc.). The task is for students to find out how plants were used for medicinal purposes in the Southwest many years ago. Students then present their findings, in a format that they can give to a national museum. Weird. It was a little complicated and not well done. I liked the topic and thought it was interesting, but a lot of work would need to be done to modify it so that all students could participate. (Jennie, first-grade teacher).

CHAPTER REVIEW

Define problem-solving and inquiry.

The element that distinguishes problem-solving or problem-based learning from other strategies is that the focal point is a problem that students must work toward solving. A proposed solution is typically the outcome of problem-solving. During the inquiry part of the process, students ask questions and then search for answers to those questions.

Understand the interaction between problem-solving and other instructional goals. Although inquiry is also an important instructional strategy and can stand alone, it is also a central component of problem-solving because students must ask questions and investigate the answers to solve the problem. In addition, students apply critical and creative thinking skills to prior knowledge during the problem-solving process, and they communicate, collaborate, and often produce some kind of concrete artifact.

Discuss guidelines and tools for encouraging effective student problem-solving.

It is often difficult for teachers to not do what students can do, but empowering students in this way can lead to a string of benefits. Other guidelines, such as avoiding plagiarism, integrating reading and writing, and making it okay for students to make mistakes, keep the problem-solving process on track. Tools to assist in this process range from word processing to specially designed inquiry tools.

Create and adapt effective technology-enhanced tasks to support problem-solving. Teachers can design their own tasks following guidelines from any number of sources, but they can also find ready-made problems in books, on the Web, and in some software pack-ages. Teachers who do design their own have plenty of resources available to help. A key to task development is connecting classroom learning to the world outside of the classroom.

Assess student technology-supported problem-solving.

In many ways the assessment of problem-solving and inquiry tasks is similar to the assessment of other goals in this text. Matching goals and objectives to assessment and ensuring that students receive formative feedback throughout the process will make success more likely.

Baker, T. (2005). The history and application of GIS in education. KANGIS: K12 GIS Community. Available from http://kangis.org/learning/ed_docs/gisNed1.cfm.

Belland, B., Walker, A., Kim, N., & Lefler, M. (2017). Synthesizing results from empirical research on computer-based scaffolding in STEM education: A meta-analysis. Review of Educational Research, 87(2), pp. 309-344.

Chauhan, S. (2017). A meta-analysis of the impact of technology on learning effectiveness of elementary students. Computers & Education, 105, pp. 14-30.

Dooly, M. (2005, March/April). The Internet and language teaching: A sure way to interculturality? ESL Magazine, 44, 8–10.

Gordon, R. (1998, January).Balancing real-world problems with real-world results. Phi Delta Kappan, 79(5), 390–393. [electronic version]

IMSA (2005). How does PBL compare with other instructional approaches? Available: http://www2 .imsa.edu/programs/pbln/tutorials/intro/intro7.php.

Molebash, P., & Dodge, B. (2003). Kickstarting inquiry with WebQuests and web inquiry projects. Social Education, 671(3), 158–162.

Verga, L., & Kotz, S. A. (2013). How relevant is social interaction in second language learning? Frontiers in Human Neuroscience, 7, 550. http://doi.org/10.3389/fnhum.2013.00550

Creative Commons License

Share This Book

Feedback/errata, leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Increase Font Size

TheHighSchooler

10 Problem-Solving Scenarios for High School Students

It is certainly common to come across difficult situations including forgetting an assignment at home or overusing your phone only to miss an important project deadline. We are always surrounded by little difficulties that might become bigger problems if not addressed appropriately.

Whether it is saving your friend from the addiction to social media platforms or communicating your personal boundaries to relatives, problem-solving skills are one of the important skills you need to acquire throughout the journey of life.

Do you think these skills are in-built with other high school students? Certainly not.

It takes innovative learning methodologies just like problem-solving scenarios that help you immerse in the subject matter with precision. With problem-solving scenarios, you come across a range of problems that help you build critical thinking skills, logical reasoning, and analytical techniques.

The article will take you through scenarios that are a combination of various problems that need to be addressed strategically and carefully. As you read ahead, make sure to brainstorm solutions and choose the best one that fits the scenario. 

Helpful scenarios to build a problem-solving attitude in high schoolers

Learning through scenarios helps students look at situations from a completely analytical perspective. Problem-solving scenarios offer a combination of various situations that test the thinking skills and growth mindset of high school students. The below-mentioned scenarios are perfect for implementing problem-solving skills simply by allowing open discussions and contributions by students.

1. Uninvited Guests

Uninvited Guests

You have arranged a party at your home after successfully winning the competition at the Science Fair. You invite everyone involved in the project however, one of your friends brings his cousin’s brother along. However, you have limited soft drink cans considering the number of invited people. How would you manage this situation without making anyone feel left out?

2. Communication Issues

Communication Issues

A new teacher has joined the high school to teach about environmental conservation. She often involves students in different agriculture activities and workshops. However, one of your friends, John, is not able to understand the subject matter. He is unable to communicate his doubts to the teachers. How would you motivate him to talk to the teacher without the fear of judgment?

3. Friendship or Personal Choice?

Friendship or Personal Choice?

The history teacher announced an exciting assignment opportunity that helps you explore ancient civilizations. You and your friend are pretty interested in doing the project as a team. One of your other friends, Jason, wants to join the team with limited knowledge and interest in the topic. Would you respect the friendship or deny him so you can score better on the assignment?

4. Peer Pressure 

Peer Pressure 

It is common for high schoolers to follow what their friends do. However, lately, your friends have discovered different ways of showing off their skills. While they do all the fun things, there are certain activities you are not interested in doing. It often puts you in trouble whether to go with friends or take a stand for what is right. Would you take the help of peer mentoring activities in school or try to initiate a direct conversation with them?

5. Team Building 

Team Building

Mr. Jason, the science teacher, assigns different projects and forms teams with random classmates. There are 7 people in each team who need to work towards project completion. As the group starts working, you notice that some members do not contribute at all. How will you ensure that everyone participates and coordinates with the team members?

6. Conflict Resolution 

The drama club and the English club are famous clubs in the school. Both clubs organize various events for the students. This time, both clubs have a tiff because of the event venue. Both clubs need the same auditorium for the venue on the same date. How would you mediate to solve the issue and even make sure that club members are on good terms with each other? 

7. Stress Management 

Stress Management

Your school often conducts different activities or asks students stress survey questions to ensure their happiness and well-being. However, one of your friends always misses them. He gets frustrated and seems stressed throughout the day. What would you do to ensure that your friend gets his issue acknowledged by teachers?

8. Time Management 

Time Management 

Your friend is always enthusiastic about new competitions in high school. He is running here and there to enroll and get certificates. In this case, he often misses important lectures and activities in class. Moreover, his parents complain that he misses swimming class too. How would you explain to him the importance of prioritizing and setting goals to solve this issue?

9. Educational Resources 

You and your friends are avid readers and often take advice from books. While most must-read books for bibliophiles are read by you, it is important to now look for other books. However, you witness that the school library lacks other important books on philosophy and the non-fiction category. How would you escalate this issue to the higher authorities by addressing the needs of students?

10. Financial Planning

Financial Planning

Finance is an important factor and that is why your parents help you plan your pocket money and budgeting. Off lately, they have stopped doing so considering that you can manage on your own. However, after a few months, you have started spending more on games and high-end school supplies. You realize that your spending habits are leading to loss of money and reduced savings. How shall you overcome this situation?

Wrapping Up 

Involving students in different learning practices and innovative ways inspires them to think out of the box and make use of imagination skills. With the usage of different problem-solving scenarios, high school students get an opportunity to delve into realistic examples and consequences of different incidents.

Such scenarios offer an excellent way to promote understanding, critical thinking skills and enhance creativity. Ensure to use different activities and games for creating a comprehensive learning environment.

problem solving example for students

Sananda Bhattacharya, Chief Editor of TheHighSchooler, is dedicated to enhancing operations and growth. With degrees in Literature and Asian Studies from Presidency University, Kolkata, she leverages her educational and innovative background to shape TheHighSchooler into a pivotal resource hub. Providing valuable insights, practical activities, and guidance on school life, graduation, scholarships, and more, Sananda’s leadership enriches the journey of high school students.

Explore a plethora of invaluable resources and insights tailored for high schoolers at TheHighSchooler, under the guidance of Sananda Bhattacharya’s expertise. You can follow her on Linkedin

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

No products in the cart.

Innovative Teaching Ideas

Creative problem solving tools and skills for students and teachers

problem solving example for students

Creative Problem Solving: What Is It?

Creative Problem Solving, or CPS ,  refers to the use of imagination and innovation to find solutions to problems when formulaic or conventional processes have failed.

Despite its rather dry definition – creative problem-solving in its application can be a lot of fun for learners and teachers alike.

Why Are Creative Problem-Solving Skills Important?

problem solving example for students

By definition, creative problem-solving challenges students to think beyond the conventional and to avoid well-trodden, sterile paths of thinking.

Not only does this motivate student learning, encourage engagement, and inspire deeper learning, but the practical applications of this higher-level thinking skill are virtually inexhaustible.

For example, given the rapidly changing world of work, it is hard to conceive of a skill that will be more valuable than the ability to generate innovative solutions to the unique problems that will arise and that are impossible to predict ahead of time.

Outside the world of work, in our busy daily lives, the endless problems arising from day-to-day living can also be overcome by a creative problem-solving approach.

When students have developed their creative problem-solving abilities effectively, they will have added a powerful tool to attack problems that they will encounter, whether in school, work, or in their personal lives.

Due to its at times nebulous nature, teaching creative problem-solving in the classroom poses its own challenges. However, developing a culture of approaching problem-solving in a creative manner is possible.

In this article, we will take a look at a variety of strategies, tools, and activities that can help students improve their creative problem-solving skills.

problem solving example for students

The Underlying Principles of CPS

Before we take a look at a process for implementing creative problem solving, it is helpful to examine a few of the underlying principles of CPS. These core principles should be encouraged in the classroom. They are:

●       Assume Nothing

Assumptions are the enemy of creativity and original thinking. If students assume they already have the answer, they will not be creative in their approach to solving a problem.

●       Problems Are Opportunities

Rather than seeing problems as difficulties to endure, a shift in perspective can instead view problems as challenges that offer new opportunities. Encourage your students to shift their perspectives to see opportunities where they once saw problems.

●       Suspend Judgment

Making immediate judgments closes down the creative response and the formation of new ideas. There is a time to make judgments, but making a judgment too early in the process can be very detrimental to finding a creative solution.

Cognitive Approaches: Convergent vs Divergent Thinking

“It is easier to tame a wild idea than it is to push a closer-in idea further out.”

— Alex Osborn

The terms divergent and convergent thinking, coined by psychologist J.P. Guilford in 1956, refer to two contrasting cognitive approaches to problem-solving.

Convergent Thinking can be thought of as linear and systematic in its approach. It attempts to find a solution to a problem by narrowing down multiple ideas into a single solution. If convergent thinking can be thought of as asking a single question, that question would be ‘ Why ?’

Divergent Thinking focuses more on the generation of multiple ideas and on the connections between those ideas. It sees problems as design opportunities and encourages the use of resources and materials in original ways. Divergent thinking encourages the taking of creative risks and is flexible rather than analytical in its approach. If it was a single question, it’d be ‘ Why not ?’

While it may appear that these two modes of thinking about a problem have an essentially competitive relationship, in CPS they can work together in a complementary manner.

When students have a problem to solve and they’re looking for innovative solutions, they can employ divergent thinking initially to generate multiple ideas, then convergent thinking to analyze and narrow down those ideas.

Students can repeat this process to continue to filter and refine their ideas and perspectives until they arrive at an innovative and satisfactory solution to the initial problem.

Let’s now take a closer look at the creative problem-solving process.

The Creative Problem-Solving Process

problem solving example for students

CPS helps students arrive at innovative and novel solutions to the problems that arise in life. Having a process to follow helps to keep students focused and to reach a point where action can be taken to implement creative ideas.

Originally developed by Alex Osborn and Sid Parnes, the CPS process has gone through a number of revisions over the last 50 or so years and, as a result, there are a number of variations of this model in existence.

The version described below is one of the more recent models and is well-suited to the classroom environment.

However, things can sometimes get a little complex for some of the younger students. So, in this case, it may be beneficial to teach the individual parts of the process in isolation first.

1. Clarify:

Before beginning to seek creative solutions to a problem, it is important to clarify the exact nature of that problem. To do this, students should do the following three things:

i. Identify the Problem

The first step in bringing creativity to problem-solving is to identify the problem, challenge, opportunity, or goal and clearly define it.

ii. Gather Data

Gather data and research information and background to ensure a clear understanding.

iii. Formulate Questions

Enhance awareness of the nature of the problem by creating questions that invite solutions.

Explore new ideas to answer the questions raised. It’s time to get creative here. The more ideas generated, the greater the chance of producing a novel and useful idea. At this stage in particular, students should be engaged in divergent thinking as described above.

The focus here shifts from ideas to solutions. Once multiple ideas have been generated, convergent thinking can be used to narrow these down to the most suitable solution. The best idea should be closely analyzed in all its aspects and further ideas generated to make subsequent improvements. This is the stage to refine the initial idea and make it into a really workable solution.

4. Implement

Create a plan to implement the chosen solution. Students need to identify the required resources for the successful implementation of the solution. They need to plan for the actions that need to be taken, when they need to be taken, and who needs to take them.

Summary of Creative Problem Solving Process

In each stage of the CPS Process, students should be encouraged to employ divergent and convergent thinking in turn. Divergent thinking should be used to generate multiple ideas with convergent thinking then used to narrow these ideas down to the most feasible options. We will discuss how students go about this, but let’s first take a quick look at the role of a group facilitator.

problem solving example for students

The Importance of Group Facilitator

CPS is best undertaken in groups and, for larger and more complex projects, it’s even more effective when a facilitator can be appointed for the group.

The facilitator performs a number of useful purposes and helps the group to:

  • Stay focused on the task at hand
  • Move through the various stages efficiently
  • Select appropriate tools and strategies

 A good facilitator does not generate ideas themselves but instead keeps the group focused on each step of the process.

Facilitators should be objective and possess a good understanding of the process outlined above, as well as the other tools and strategies that we will look at below.

The Creative Problem-Solving Process: Tools and Strategies

There are several activities available to help students move through each stage. These will help students to stay on track, remove barriers and blocks, be creative, and reach a consensus as they progress through the CPS process.

  The following tools and strategies can help provide groups with some structure and can be applied at various stages of the problem-solving process. For convenience, they have been categorized according to whether they make demands on divergent or convergent thinking as discussed earlier.

Divergent Thinking Tools:

  ●       Brainstorming

Defined by Alex Osborn as “a group’s attempt to find a solution for a specific problem by amassing ideas ”, this is perhaps the best-known tool in the arsenal of the creative problem solver.

To promote a creative collaboration in a group setting, simply share the challenge with everyone and challenge them to come up with as many ideas as possible. Ideas should be concise and specific. For this reason, it may be worth setting a word limit for recording each idea e.g. express in headline form in no more than 5 words. Post-it notes are perfect for this.

You may also set a quota on the number of ideas to generate or introduce a time limit to further encourage focus. When completed, members of the group can share and compare all the ideas in search of the most suitable.

●       5 W’s and an H

The 5 W’s and an H are Who , What , Where , Why , and How . This strategy is useful to effectively gather data. Students brainstorm questions to ask that begin with each of the question words above in turn. They then seek to gather the necessary information to answer these questions through research and discussion.

problem solving example for students

●       Reverse Assumptions

This activity is a great way to explore new ideas. Have the students begin by generating a list of up to 10 basic assumptions about the idea or concept. For each of these, students then explore the reverse of the assumption listing new insights and perspectives in the process.

The students can then use these insights and perspectives to generate fresh ideas. For example, an assumption about the concept of a restaurant might be that the food is cooked for you. The reverse of that assumption could be a restaurant where you cook the food yourself. So, how about a restaurant where patrons select their own recipes and cook their own food aided by a trained chef?

Convergent Thinking Tools

●       How-How Diagram

This is the perfect activity to use when figuring out the steps required to implement a solution.

Students write the solution on the left-hand side of a page turned landscape. Working together, they identify the individual steps required to achieve this solution and write these to the right of the solution.

When they have written these steps, they go through each step one-by-one identifying in detail each stage of achieving that step. These are written branching to the right of each step.

Students repeat this process until they have exhausted the process and ended up with a comprehensive branch diagram detailing each step necessary for the implementation of the solution.

●       The Evaluation Matrix

Making an evaluation matrix creates a systematic way of analyzing and comparing multiple solutions. It allows for a group to evaluate options against various criteria to help build consensus.

An evaluation matrix begins with the listing of criteria to evaluate potential solutions against. These can then be turned into the form of a positive question that allows for a Yes or No answer. For example, if the budget is the criteria, the evaluation question could be ‘ Is it within budget? ’

Make a matrix grid with a separate column for each of the key criteria. Write the positive question form of these criteria as headings for these columns. The different options can then be detailed and listed down the left-most column.

Students then work through each of the criteria for each option and record whether it fulfills, or doesn’t fulfill, each criteria. For more complex solutions, students could record their responses to each of the criteria on a scale from 0 to 5.

For example:

problem solving example for students

Using the example matrix above, it becomes very clear that Option 1 is the superior solution given that it completely fulfills all the criteria, whereas Option 2 and Option 3 fulfill only 2 out of the 3 criteria each.

 ●       Pair & Share

This activity is suitable to help develop promising ideas. After making a list of possible solutions or questions to pursue, each individual student writes down their top 3 ideas.

Once each student has their list of their 3 best ideas, organize students into pairs. In their pairs, students discuss their combined 6 ideas to decide on the top 3 out of the 6. Once they have agreed on these, they write the new top 3 ideas on a piece of paper.

Now, direct the pairs of students to join up with another pair to make groups of 4. In these groups of 4, students discuss their collective 6 ideas to come up with a new list of the top 3 ideas.

Repeat this process until the whole class comes together as one big group to agree on the top 3 ideas overall.

Establish a Culture of Creative Problem Solving in the Classroom

Approaching problems creatively is about establishing a classroom culture that welcomes innovation and the trial and error that innovation demands. Too often our students are so focused on finding the ‘right‘ answer that they miss opportunities to explore new ideas.

It is up to us as teachers to help create a classroom culture that encourages experimentation and creative playfulness.

To do this we need to ensure our students understand the benefits of a creative approach to problem-solving.

We must ensure too that they are aware of the personal, social, and organizational benefits of CPS.

CPS should become an integral part of their approach to solving problems whether at school, work, or in their personal lives.

As teachers, it is up to us to help create a classroom culture that encourages experimentation and creative playfulness.

To do this, we must ensure our students understand the benefits of a creative approach to problem-solving.

CPS should become an integral part of their approach to solving problems, whether at school, work or in their personal lives.

Empowering Tomorrow’s Leaders: The Crucial Role of Computational and Systems Thinking in Education

the importance of systems thinking and computational thinking strategies for students cannot be overstated, as these skills are integral to navigating the complexities of our rapidly evolving digital landscape. Computational thinking, characterized by algorithmic problem-solving and logical reasoning, equips students with the ability to approach challenges systematically. In an era dominated by technology, these skills are not limited to coding but extend to critical thinking, enabling students to dissect problems, identify patterns, and devise efficient solutions. As our world becomes increasingly interconnected and data-driven, computational thinking provides a foundational framework for students to make sense of information, fostering a generation adept at leveraging technology for innovation.

Simultaneously, systems thinking is indispensable in comprehending the intricate web of relationships within various contexts. It encourages students to view issues holistically, understanding the interdependence of components and the ripple effects of decisions. In an era marked by global challenges, such as climate change and socio-economic disparities, systems thinking instills a proactive mindset. Students equipped with these skills are better prepared to analyze multifaceted problems, appreciate diverse perspectives, and collaborate on sustainable solutions.

Together, computational and systems thinking empower students to navigate an ever-changing world with confidence, adaptability, and a profound understanding of the interconnected systems that shape our future. These skills are not just academic; they are the building blocks of a resilient, innovative, and forward-thinking society.

be sure to check out our great video guides to teaching systems thinking and computational thinking below.

Similar Posts

An excellent collection of Fermi problems for your class

An excellent collection of Fermi problems for your class

Enrico Fermi is the father of “solving maths problems we will never know the exact answer to.” Such as how many…

101 Excellent Educational Quotes for teachers and students

101 Excellent Educational Quotes for teachers and students

Sometimes, as a teacher, you need something brilliant to say to inspire and motivate yourself and those around you.   And, if…

classic printable battleship game for students

classic printable battleship game for students

Battleship Game for Students Battleship is a classic game of strategy and logic that kids of all ages love to play. …

Five reasons why computational thinking is an essential tool for teachers and students.

Five reasons why computational thinking is an essential tool for teachers and students.

Numerous countries and regions undertaking curriculum redesign within recent years have embraced computational thinking as an essential mindset for students and…

5-amazing-classroom-decoration-ideas-for-creative-learning-and-teaching

5-amazing-classroom-decoration-ideas-for-creative-learning-and-teaching

Amazing learning happens in inviting classrooms As teachers we have no control over whether students go home to a happy, stimulating…

Growth Mindset activities for teachers and students

Growth Mindset activities for teachers and students

Growth Mindset – What is it, and Why is it important? As educators, we are constantly advocating for the idea of…

Career Sidekick

Interview Questions

Comprehensive Interview Guide: 60+ Professions Explored in Detail

26 Good Examples of Problem Solving (Interview Answers)

By Biron Clark

Published: November 15, 2023

Employers like to hire people who can solve problems and work well under pressure. A job rarely goes 100% according to plan, so hiring managers will be more likely to hire you if you seem like you can handle unexpected challenges while staying calm and logical in your approach.

But how do they measure this?

They’re going to ask you interview questions about these problem solving skills, and they might also look for examples of problem solving on your resume and cover letter. So coming up, I’m going to share a list of examples of problem solving, whether you’re an experienced job seeker or recent graduate.

Then I’ll share sample interview answers to, “Give an example of a time you used logic to solve a problem?”

Problem-Solving Defined

It is the ability to identify the problem, prioritize based on gravity and urgency, analyze the root cause, gather relevant information, develop and evaluate viable solutions, decide on the most effective and logical solution, and plan and execute implementation. 

Problem-solving also involves critical thinking, communication, listening, creativity, research, data gathering, risk assessment, continuous learning, decision-making, and other soft and technical skills.

Solving problems not only prevent losses or damages but also boosts self-confidence and reputation when you successfully execute it. The spotlight shines on you when people see you handle issues with ease and savvy despite the challenges. Your ability and potential to be a future leader that can take on more significant roles and tackle bigger setbacks shine through. Problem-solving is a skill you can master by learning from others and acquiring wisdom from their and your own experiences. 

It takes a village to come up with solutions, but a good problem solver can steer the team towards the best choice and implement it to achieve the desired result.

Watch: 26 Good Examples of Problem Solving

Examples of problem solving scenarios in the workplace.

  • Correcting a mistake at work, whether it was made by you or someone else
  • Overcoming a delay at work through problem solving and communication
  • Resolving an issue with a difficult or upset customer
  • Overcoming issues related to a limited budget, and still delivering good work through the use of creative problem solving
  • Overcoming a scheduling/staffing shortage in the department to still deliver excellent work
  • Troubleshooting and resolving technical issues
  • Handling and resolving a conflict with a coworker
  • Solving any problems related to money, customer billing, accounting and bookkeeping, etc.
  • Taking initiative when another team member overlooked or missed something important
  • Taking initiative to meet with your superior to discuss a problem before it became potentially worse
  • Solving a safety issue at work or reporting the issue to those who could solve it
  • Using problem solving abilities to reduce/eliminate a company expense
  • Finding a way to make the company more profitable through new service or product offerings, new pricing ideas, promotion and sale ideas, etc.
  • Changing how a process, team, or task is organized to make it more efficient
  • Using creative thinking to come up with a solution that the company hasn’t used before
  • Performing research to collect data and information to find a new solution to a problem
  • Boosting a company or team’s performance by improving some aspect of communication among employees
  • Finding a new piece of data that can guide a company’s decisions or strategy better in a certain area

Problem Solving Examples for Recent Grads/Entry Level Job Seekers

  • Coordinating work between team members in a class project
  • Reassigning a missing team member’s work to other group members in a class project
  • Adjusting your workflow on a project to accommodate a tight deadline
  • Speaking to your professor to get help when you were struggling or unsure about a project
  • Asking classmates, peers, or professors for help in an area of struggle
  • Talking to your academic advisor to brainstorm solutions to a problem you were facing
  • Researching solutions to an academic problem online, via Google or other methods
  • Using problem solving and creative thinking to obtain an internship or other work opportunity during school after struggling at first

You can share all of the examples above when you’re asked questions about problem solving in your interview. As you can see, even if you have no professional work experience, it’s possible to think back to problems and unexpected challenges that you faced in your studies and discuss how you solved them.

Interview Answers to “Give an Example of an Occasion When You Used Logic to Solve a Problem”

Now, let’s look at some sample interview answers to, “Give me an example of a time you used logic to solve a problem,” since you’re likely to hear this interview question in all sorts of industries.

Example Answer 1:

At my current job, I recently solved a problem where a client was upset about our software pricing. They had misunderstood the sales representative who explained pricing originally, and when their package renewed for its second month, they called to complain about the invoice. I apologized for the confusion and then spoke to our billing team to see what type of solution we could come up with. We decided that the best course of action was to offer a long-term pricing package that would provide a discount. This not only solved the problem but got the customer to agree to a longer-term contract, which means we’ll keep their business for at least one year now, and they’re happy with the pricing. I feel I got the best possible outcome and the way I chose to solve the problem was effective.

Example Answer 2:

In my last job, I had to do quite a bit of problem solving related to our shift scheduling. We had four people quit within a week and the department was severely understaffed. I coordinated a ramp-up of our hiring efforts, I got approval from the department head to offer bonuses for overtime work, and then I found eight employees who were willing to do overtime this month. I think the key problem solving skills here were taking initiative, communicating clearly, and reacting quickly to solve this problem before it became an even bigger issue.

Example Answer 3:

In my current marketing role, my manager asked me to come up with a solution to our declining social media engagement. I assessed our current strategy and recent results, analyzed what some of our top competitors were doing, and then came up with an exact blueprint we could follow this year to emulate our best competitors but also stand out and develop a unique voice as a brand. I feel this is a good example of using logic to solve a problem because it was based on analysis and observation of competitors, rather than guessing or quickly reacting to the situation without reliable data. I always use logic and data to solve problems when possible. The project turned out to be a success and we increased our social media engagement by an average of 82% by the end of the year.

Answering Questions About Problem Solving with the STAR Method

When you answer interview questions about problem solving scenarios, or if you decide to demonstrate your problem solving skills in a cover letter (which is a good idea any time the job description mention problem solving as a necessary skill), I recommend using the STAR method to tell your story.

STAR stands for:

It’s a simple way of walking the listener or reader through the story in a way that will make sense to them. So before jumping in and talking about the problem that needed solving, make sure to describe the general situation. What job/company were you working at? When was this? Then, you can describe the task at hand and the problem that needed solving. After this, describe the course of action you chose and why. Ideally, show that you evaluated all the information you could given the time you had, and made a decision based on logic and fact.

Finally, describe a positive result you got.

Whether you’re answering interview questions about problem solving or writing a cover letter, you should only choose examples where you got a positive result and successfully solved the issue.

Example answer:

Situation : We had an irate client who was a social media influencer and had impossible delivery time demands we could not meet. She spoke negatively about us in her vlog and asked her followers to boycott our products. (Task : To develop an official statement to explain our company’s side, clarify the issue, and prevent it from getting out of hand). Action : I drafted a statement that balanced empathy, understanding, and utmost customer service with facts, logic, and fairness. It was direct, simple, succinct, and phrased to highlight our brand values while addressing the issue in a logical yet sensitive way.   We also tapped our influencer partners to subtly and indirectly share their positive experiences with our brand so we could counter the negative content being shared online.  Result : We got the results we worked for through proper communication and a positive and strategic campaign. The irate client agreed to have a dialogue with us. She apologized to us, and we reaffirmed our commitment to delivering quality service to all. We assured her that she can reach out to us anytime regarding her purchases and that we’d gladly accommodate her requests whenever possible. She also retracted her negative statements in her vlog and urged her followers to keep supporting our brand.

What Are Good Outcomes of Problem Solving?

Whenever you answer interview questions about problem solving or share examples of problem solving in a cover letter, you want to be sure you’re sharing a positive outcome.

Below are good outcomes of problem solving:

  • Saving the company time or money
  • Making the company money
  • Pleasing/keeping a customer
  • Obtaining new customers
  • Solving a safety issue
  • Solving a staffing/scheduling issue
  • Solving a logistical issue
  • Solving a company hiring issue
  • Solving a technical/software issue
  • Making a process more efficient and faster for the company
  • Creating a new business process to make the company more profitable
  • Improving the company’s brand/image/reputation
  • Getting the company positive reviews from customers/clients

Every employer wants to make more money, save money, and save time. If you can assess your problem solving experience and think about how you’ve helped past employers in those three areas, then that’s a great start. That’s where I recommend you begin looking for stories of times you had to solve problems.

Tips to Improve Your Problem Solving Skills

Throughout your career, you’re going to get hired for better jobs and earn more money if you can show employers that you’re a problem solver. So to improve your problem solving skills, I recommend always analyzing a problem and situation before acting. When discussing problem solving with employers, you never want to sound like you rush or make impulsive decisions. They want to see fact-based or data-based decisions when you solve problems.

Next, to get better at solving problems, analyze the outcomes of past solutions you came up with. You can recognize what works and what doesn’t. Think about how you can get better at researching and analyzing a situation, but also how you can get better at communicating, deciding the right people in the organization to talk to and “pull in” to help you if needed, etc.

Finally, practice staying calm even in stressful situations. Take a few minutes to walk outside if needed. Step away from your phone and computer to clear your head. A work problem is rarely so urgent that you cannot take five minutes to think (with the possible exception of safety problems), and you’ll get better outcomes if you solve problems by acting logically instead of rushing to react in a panic.

You can use all of the ideas above to describe your problem solving skills when asked interview questions about the topic. If you say that you do the things above, employers will be impressed when they assess your problem solving ability.

If you practice the tips above, you’ll be ready to share detailed, impressive stories and problem solving examples that will make hiring managers want to offer you the job. Every employer appreciates a problem solver, whether solving problems is a requirement listed on the job description or not. And you never know which hiring manager or interviewer will ask you about a time you solved a problem, so you should always be ready to discuss this when applying for a job.

Related interview questions & answers:

  • How do you handle stress?
  • How do you handle conflict?
  • Tell me about a time when you failed

Biron Clark

About the Author

Read more articles by Biron Clark

Continue Reading

15 Most Common Pharmacist Interview Questions and Answers

15 most common paralegal interview questions and answers, top 30+ funny interview questions and answers, 60 hardest interview questions and answers, 100+ best ice breaker questions to ask candidates, top 20 situational interview questions (& sample answers), 15 most common physical therapist interview questions and answers, 15 most common project manager interview questions and answers.

Educational Membership icon

  • New! Member Benefit New! Member Benefit
  • Featured Analytics Hub
  • Resources Resources
  • Member Directory
  • Networking Communities
  • Advertise, Exhibit, Sponsor
  • Find or Post Jobs

Connect Icon

  • Learn and Engage Learn and Engage
  • Bridge Program

problem solving example for students

  • Compare AACSB-Accredited Schools
  • Explore Programs

Bullseye mission icon

  • Advocacy Advocacy
  • Featured AACSB Announces 2024 Class of Influential Leaders
  • Diversity, Equity, Inclusion, and Belonging
  • Influential Leaders
  • Innovations That Inspire
  • Connect With Us Connect With Us
  • Accredited School Search
  • Accreditation
  • Learning and Events
  • Advertise, Sponsor, Exhibit
  • Tips and Advice
  • Is Business School Right for Me?

A Blueprint for Meeting Society’s Impact Challenge

Article Icon

  • Organizations, policymakers, and communities expect business schools to produce graduates who can help design feasible solutions to complex societal challenges.
  • To become capable problem-solvers, students must be put to work solving personally relevant real-world issues in collaboration with key stakeholders in the community.
  • With this in mind, Suffolk University has developed a pedagogical framework for delivering immersive hands-on learning that shows students the impact of their contributions and inspires them to make the world a better place.

  Society faces ever-increasing existential challenges that demand resilience, innovation, flexibility, and creativity. Rooted in incredible social complexity and global interdependencies, these “wicked problems” are substantial, pervasive, and difficult to solve.

Our graduates will be expected to have the skills necessary to help organizations deliver critical solutions. That means that quality business education must be both experiential and dedicated to making the world a better place. At the same time, however, we have seen an ongoing disconnect between business school curricula and the real-world need for student engagement, student employability, and community impact.

In 2023, we addressed this disconnect by creating and implementing the IMMERSE Blueprint at the Sawyer Business School (SBS) at Suffolk University in Boston. In this framework, IMMERSE stands for learning experiences that are integrative, multisensory, motivational, emotional, relevant, synergistic, and experiential . Guided by this framework, we design our courses to allow students to conduct collaborative research, engage in design thinking, delve into public policy, and tap into other capabilities so that they can define and synthesize the goals, interests, and concerns of multiple stakeholders.

The IMMERSE Blueprint is supported by our school’s curricula that leverages the capabilities of nonprofit, social, public, and private sectors. As we expose students to the realities of all four sectors, we teach them to apply mindful problem-solving strategies to complex challenges. Over the long term, we want the conributions of our graduates to mitigate the negative consequences that society now faces. 

Expanding on Experiential Education 

Immersive education expands on traditional experiential pedagogy first explored in a  1975 paper  by David Kolb and Ronald Fry. Since then, educators have developed strategies that extend beyond Kolb and Fry’s theory, deploying learner-centric modalities that capture students’ attention, stimulate their senses, and foster their active participation in meaningful problem-solving.  

As we expose students to the realities of the nonprofit, social, public, and private sectors, we teach them to apply mindful problem-solving strategies to complex challenges .

Quality immersions connect students emotionally to real-world experiences through the contextualization of issues and personal reflections on their learning and contributions. Effective experiential education also supports active and participatory learning through immersive media, including  simulations ,  augmented reality , and  virtual reality . Since immersive learning is such a versatile approach, learners can quickly acquire new skills at any stage of technological or social innovation. 

The Building Blocks of Immersive Education 

The IMMERSE Blueprint synthesizes best practices and research related to innovative pedagogy, faculty and student engagement, and partnerships. It provides a systematic and cohesive framework for implementing immersion-based pedagogy for all graduate and undergraduate SBS students.  

The acronym IMMERSE integrates the seven critical characteristics mentioned above, with a goal attached to each, into a common framework:

We now use this framework as a guide to help us design and deliver impactful pedagogies via all types of learning modalities. Our faculty also use these characteristics to evaluate how immersive their teaching strategies are.

This blueprint challenges professors to reframe their teaching styles—to evolve from merely sharing information to creating opportunities for students to deeply experience content. Although not every class will incorporate every element of IMMERSE, our faculty’s ultimate teaching goal is to expose students to as many of the framework’s characteristics as possible throughout their journeys at SBS.

Supporting the Blueprint

We engage in a range of activities to support educators as they incorporate IMMERSE into their teaching. For example:

  • We deliver extensive faculty information and training sessions on topics such as “How to Debrief Immersive Learning.”
  • We award IMMERSE-dedicated teaching grants.
  • We support a growing cross-disciplinary faculty learning community.
  • We publish a newsletter sharing best practices.
  • We track implementation and best practices through surveys and other tools.

SBS also continues to build additional infrastructure needed to support IMMERSE throughout our curriculum. This effort includes:

  • The planned formation of a representative SBS working group.
  • The continued development of enhanced immersive courses—including the recent reframing of our foundational undergraduate course from a simple review of business topics to a dynamic, integrated, case-based, and client-focused challenge.
  • Expanded data collection that tracks IMMERSE-related pedagogy implementation, student competency-based learning outcomes, relevant assurance of learning (AoL) policies, and feedback from clients that supply projects to our students.

For instance, we are tracking the relevant learning outcomes of our MBA students, who currently form teams to work on six to 10 real client projects throughout their programs. Based on the data we have collected so far, we have concluded that 97.5 percent of our MBA students meet or exceed AoL expectations for analytic thinking related to IMMERSE criteria.

Examples of Teaching Strategies

In the fall of 2023, we delivered the inaugural version of “Tackling Wicked Global Problems,” our new signature required course for all SBS undergraduates. In the semesterlong course, sophomores take on a single wicked problem project involving multiple external clients and stakeholders. They evaluate the issues and associated challenges, before developing creative solutions. Students will apply the skills they build during this course in their subsequent classes.

The course uses  systems thinking  as a theoretical lens and supplements this framing with a variety of pedagogical approaches and group activities. In this way, the course helps students gain a fuller perspective on the nature of wicked challenges, enhances their appreciation of the stakeholder interests involved in these challenges, and inspires them to iterate plausible solutions. 

“Tackling Wicked Global Problems” follows our framework in the following ways:

After the course’s first run, student feedback was both positive and insightful. One student described the coursework as “a big adjustment to try and tackle a wicked problem and be part of a solution.” Another pointed to the “perspective change [that occurs] when you realize that there isn’t a perfect solution, and there are tradeoffs.”

We found the feedback of another student especially heartening in light of what we want to accomplish through the IMMERSE approach. The student wrote that the new offering was the “best course I have taken to show business is exciting and can solve societal problems.”

Understanding Industry Clusters

SBS has multiple graduate programs in business, analytics, healthcare, and public administration that incorporate immersive learning across their curricula. These include course-based consulting work, capstone classes, simulation-based activities, global travel seminars, and other hands-on learning opportunities.

As we continue to refine the principles embedded in this framework, we know that we can close the relevancy gap between business curricula and the world’s need for real-life impact.

For example, all first-year MBA students enroll in “Understanding World Class Clusters” (WCC), where they learn about economic clusters. During each WCC course, students form teams that analyze challenges facing one of Boston’s four main clusters, which center on the industries of healthcare, biotechnology, technology, and finance. 

Student teams receive individual coaching from professors and sponsoring organizations, as they conduct research, deliver recommendations, and coordinate intermediate results with their sponsors. In WCC, our teaching framework is deployed in the following way:

The Value of Immersive Learning Principles

The IMMERSE Blueprint addresses concerns that employers, students, the community, and other societal stakeholders have about whether higher education is truly creating a pipeline of talent capable of tackling tough questions. As we continue to refine the principles embedded in this framework, we know that we can close the relevancy gap between business curricula and the world’s need for real-life impact.

When we deliver hands-on, meaningful immersive education throughout the curriculum, we enhance our students’ analytical and critical competencies, all while equipping them with the life skills and resilience they will need to achieve their personal goals. Most important, we show them firsthand how much positive impact they can have if they apply their newfound skills to society’s complex existential challenges. 

  • collaboration
  • design thinking
  • experiential learning
  • learner engagement
  • societal impact

IMAGES

  1. 10 Examples Of Problem-Solving Skills In Action

    problem solving example for students

  2. Some students need a problem solving checklist to help them stay

    problem solving example for students

  3. 39 Best Problem-Solving Examples (2024)

    problem solving example for students

  4. What IS Problem-Solving?

    problem solving example for students

  5. Word Problems Solving Worksheet by Teach Simple

    problem solving example for students

  6. Problem Solving Strategies for Education

    problem solving example for students

VIDEO

  1. GEN 1001 Problem Solving 1

  2. Problem Solving Example 3

  3. problem_solving_example_1

  4. PHYS2210

  5. 7.3 Work Energy Problem Solving & Example 7.9 Loop the Loop

  6. Example solution for fluid mechanics Q1

COMMENTS

  1. 9 problem-solving examples for students (plus benefits)

    The following are problem-solving examples for students: 1. Brainstorming. Brainstorming is a creative process that can generate many potential solutions to an issue. When brainstorming, involve your students in creating lists. For example, if you want to focus on some historical figures and their significance, you can ask students to come up ...

  2. 3 Ways to Improve Student Problem-Solving

    3. Three-Act Tasks: Originally created by Dan Meyer, three-act tasks follow the three acts of a story. The first act is typically called the "setup," followed by the "confrontation" and then the "resolution.". This storyline process can be used in mathematics in which students encounter a contextual problem (e.g., a pool is being ...

  3. Strengthening High School Students' Problem-Solving Skills

    Finding, shaping, and solving problems puts high school students in charge of their learning and bolsters critical-thinking skills. As an educator for over 20 years, I've heard a lot about critical thinking, problem-solving, and inquiry and how they foster student engagement. However, I've also seen students draw a blank when they're ...

  4. 5 Problem-Solving Activities for the Classroom

    2. Problem-solving as a group. Have your students create and decorate a medium-sized box with a slot in the top. Label the box "The Problem-Solving Box.". Invite students to anonymously write down and submit any problem or issue they might be having at school or at home, ones that they can't seem to figure out on their own.

  5. Teaching Problem Solving

    Problem solving is a necessary skill in all disciplines and one that the Sheridan Center is focusing on as part of the Brown Learning Collaborative, which provides students the opportunity to achieve new levels of excellence in six key skills traditionally honed in a liberal arts education ­- critical reading, writing, research, data ...

  6. 4 Strategies to Build Your Students' Problem Solving Skills

    Here are a few effective strategies: Project-Based Learning: Projects that require planning, execution, and evaluation naturally involve problem-solving. For example, a project where students need to build a model bridge within a budget encourages them to solve logistical and financial problems. Group Work: Group work allows students to face ...

  7. Teaching problem solving: Let students get 'stuck' and 'unstuck'

    Teaching problem solving: Let students get 'stuck' and 'unstuck'. This is the second in a six-part blog series on teaching 21st century skills, including problem solving , metacognition ...

  8. Problem Solving in STEM

    Problem Solving in STEM. Solving problems is a key component of many science, math, and engineering classes. If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer ...

  9. Teaching Problem Solving

    Make students articulate their problem solving process . In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".

  10. Guiding Students to Be Independent Problem-Solvers in STEM ...

    This shifts students' attention to look at the details of the steps and not glance at the end of the work for the final answer. Further, grading can include points for steps and not the final solution. 5. Teach explicitly problem solving. After solving problems, students can create their own problem-solving strategy that they write on a note ...

  11. 5 Step Problem Solving Process Model for Students

    The three steps before problem solving: we call them the K-W-I. The "K" stands for "know" and requires students to identify what they already know about a problem. The goal in this step of the routine is two-fold. First, the student needs to analyze the problem and identify what is happening within the context of the problem.

  12. 50 Problem-Solving and Critical Thinking Examples

    These skills enable individuals to analyze complex situations, make informed decisions, and find innovative solutions. Here, we present 25 examples of problem-solving and critical thinking. problem-solving scenarios to help you cultivate and enhance these skills. Ethical dilemma: A company faces a situation where a client asks for a product ...

  13. Problem-solving

    The responses of students to such problems, as well as the strategies for assisting them, show the key features of problem solving. Consider this example, and students' responses to it. We have numbered and named the paragraphs to make it easier to comment about them individually: Scene #1: A problem to be solved

  14. Essential Problem Solving Skills For College Life

    Flickr.com. Another great problem solving skill is using process of elimination to eliminate possible solutions to a problem that might not make sense. Like on an exam where choices might be unfitting for the question, there are answers, or solutions to problems that might not be applicable to the given situation.

  15. 39 Best Problem-Solving Examples (2024)

    10. Conflict Resolution. Conflict resolution is a strategy developed to resolve disagreements and arguments, often involving communication, negotiation, and compromise. When employed as a problem-solving technique, it can diffuse tension, clear bottlenecks, and create a collaborative environment.

  16. Problem-solving Activities: The Real MVPs for Students

    So, let's sprinkle our K-12 classrooms with some problem-solving magic and watch our students thrive!". 1. Open-Ended Questions. Open-ended questions are questions that require more than one word or sentence to answer. They can't be answered with a standard response and require thoughtful answers.

  17. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In general, effective problem-solving strategies include the following steps: Define the problem. Come up with alternative solutions. Decide on a solution. Implement the solution. Problem-solving ...

  18. 18 Problem-Based Learning Examples (2024)

    Problem-based learning (PBL) is a student-centered teaching method where students are given the opportunity to solve open-ended real-world problems. The teacher provides limited guidance and is usually referred to as a "facilitator". The burden of responsibility for the majority of the work rests squarely on the shoulders of the students.

  19. Problem-Solving in Elementary School

    Reading and Social Problem-Solving. Moss Elementary classrooms use a specific process to develop problem-solving skills focused on tending to social and interpersonal relationships. The process also concentrates on building reading skills—specifically, decoding and comprehension. Stop, Look, and Think. Students define the problem.

  20. 8 Chapter 6 Supporting Student Problem-Solving

    However, effective scaffolding can help to support students' problem-solving and overcomes some of the potential issues with it (Belland, Walker, Kim, & Lefler, 2017). ... Example 2: Curator. Problem: Students are a committee of curators deciding what to hang in a new community art center. They have access to any painting in the world but can ...

  21. 10 Problem-Solving Scenarios for High School Students

    The below-mentioned scenarios are perfect for implementing problem-solving skills simply by allowing open discussions and contributions by students. 1. Uninvited Guests. You have arranged a party at your home after successfully winning the competition at the Science Fair. You invite everyone involved in the project however, one of your friends ...

  22. Creative problem solving tools and skills for students and teachers

    So, in this case, it may be beneficial to teach the individual parts of the process in isolation first. 1. Clarify: Before beginning to seek creative solutions to a problem, it is important to clarify the exact nature of that problem. To do this, students should do the following three things: i. Identify the Problem.

  23. 26 Good Examples of Problem Solving (Interview Answers)

    Examples of Problem Solving Scenarios in the Workplace. Correcting a mistake at work, whether it was made by you or someone else. Overcoming a delay at work through problem solving and communication. Resolving an issue with a difficult or upset customer. Overcoming issues related to a limited budget, and still delivering good work through the ...

  24. Combine Executive Function Scaffolds, Metacognitive Prompting, and

    These gains in math problem-solving scores for students using CueThink seem to be moderated by variations in student EF ability, in particular, individual differences in working memory capacity. Students who scored higher on an initial WM test showed larger gain in math problem-solving (Bryck & Rhodes, 2024).

  25. A Blueprint for Meeting Society's Impact Challenge

    To become capable problem-solvers, students must be put to work solving personally relevant real-world issues in collaboration with key stakeholders in the community. With this in mind, Suffolk University has developed a pedagogical framework for delivering immersive hands-on learning that shows students the impact of their contributions and ...